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Abstract: In this paper, we consider the problem of Adaptive model predictive control subject
to exogenous disturbances. Using a novel set-based adaptive estimation, the problem of robust
adaptive MPC is proposed and solved for a class of linearly parameterized uncertain nonlinear
systems subject to state and input constraints. Two formulations of the adaptive MPC routine
are proposed. A minmax approach is first considered. A Lipschitz-based formulation, amenable
to real-time computations, is then proposed. A chemical reactor simulation example is presented
that demonstrates the effectivenessof the technique.
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1. INTRODUCTION

Most physical systems possess consists of parametric and
non-parametric uncertainties and the system dynamics
can be influenced by exogeneous disturbances as well.
Examples in chemical engineering include reaction rates,
activation energies, fouling factors, and microbial growth
rates. Since parametric uncertainty may degrade the per-
formance of MPC, mechanisms to update the unknown
or uncertain parameters are desirable in application. One
possibility would be to use state measurements to update
the model parameters off-line. A more attractive possi-
bility is to apply adaptive extensions of MPC in which
parameter estimation and control are performed online.
In this paper, we extend an adaptive MPC framework to
nonlinear systems with both constant parametric uncer-
tainty and additive exogenous disturbances.

The literature contains very few results on the design
of adaptive nonlinear MPC Adetola and Guay (2004);
Mayne and Michalska (1993). Existing design techniques
are restricted to systems that are linear in the unknown
(constant) parameters and do not involve state constraints.
Although MPC exhibits some degree of robustness to un-
certainties, in reality, the degree of robustness provided by
nominal models or certainty equivalent models may not be
sufficient in practical applications. Parameter estimation
error must be accounted for in the computation of the
control law.

This paper is inspired by DeHaan and Guay (2007);
DeHaan et al. (2007). While the focus in DeHaan and
Guay (2007); DeHaan et al. (2007) is on the use of
adaptation to reduce the conservatism of robust MPC
controller, this study addresses the problem of adaptive
MPC and incorporates robust features to guarantee closed-
loop stability and constraint satisfaction. Simplicity is
achieved here-in by generating a parameter estimator for
the unknown parameter vector and parameterizing the
? The authors would like to acknowledge the financial support of the
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control policy in terms of these estimates rather than
adapting a parameter uncertainty set directly.

First, a min-max feedback nonlinear MPC scheme is com-
bined with an adaptation mechanism. The parameter es-
timation routine are used to update the parameter un-
certainty set, at certain time instants, in a manner that
guarantees non-expansion of the set leading to a gradual
reduction in the conservativeness or computational de-
mands of the algorithms. The min-max formulation explic-
itly accounts for the effect of future parameter estimation
and automatically injects some useful excitation into the
closed-loop system to aid in parameter identification.

Second, the technique is extended to a less computa-
tionally demanding robust MPC algorithm. The nominal
model rather than the unknown bounded system state is
controlled, subject to conditions that ensure that given
constraints are satisfied for all possible uncertainties. State
prediction error bound is determined based on assumed
Lipschitz continuity of the model. Using a nominal model
prediction, it is impossible to predict the actual future
behavior of the parameter estimation error as was possible
in the min-max framework. It is shown how the future
model improvement over the prediction horizon can be
considered by developing a worst-case upper bound on the
future parameter estimation error. The conservativeness
of the algorithm reduces as the error bound decreases
monotonically over time.

The paper is as follows. The problem description is given
in section 2. The parameter estimation routine is presented
in section 3.Two approaches to robust adpative model
predictive control are detailed in section 4. This is followed
by a simulation example in section 5 and brief conclusions
in section 6.

2. PROBLEM SET-UP

Consider the uncertain nonlinear system
ẋ = f(x, u) + g(x, u)θ + ϑ , F(x, u, θ, ϑ) (1)



where the disturbance ϑ ∈ D ⊂ Rnd is assumed to satisfy
a known upper bound ‖ϑ(t)‖ ≤Mϑ <∞. The objective of
the study is to (robustly) stabilize the plant to some target
set Ξ ⊂ Rnx while satisfying the pointwise constraints
x ∈ X ∈ Rnx and u ∈ U ∈ Rnu . The target set is a compact
set, contains the origin and is robustly invariant under no
control. It is assumed that θ is uniquely identifiable and
lie within an initially known compact set Θ0 = B(θ0, zθ)
where θ0 is a nominal parameter value, zθ is the radius of
the parameter uncertainty set.

3. PARAMETER AND UNCERTAINTY SET
ESTIMATION

3.1 Parameter Adaptation

Let the estimator model for (1) be selected as

˙̂x = f(x, u) + g(x, u)θ̂ + kw e+ w
˙̂
θ, kw > 0 (2)

ẇ = g(x, u)− kw w, w(t0) = 0. (3)
resulting in state prediction error e = x− x̂ and auxiliary
variable η = e− wθ̃ dynamics:

ė = g(x, u)θ̃ − kw e− w ˙̂
θ + ϑ

e(t0) = x(t0)− x̂(t0) (4)
η̇ = −kw η + ϑ, η(t0) = e(t0). (5)

Since ϑ is not known, an estimate of η is generated from
˙̂η = −kw η̂, η̂(t0) = e(t0). (6)

with resulting estimation error η̃ = η − η̂ dynamics
˙̃η = −kw η̃ + ϑ, η̃(t0) = 0. (7)

Let Σ ∈ Rnθ×nθ be generated from

Σ̇ = wTw, Σ(t0) = α I � 0, (8)
based on equations (2), (3) and (6), thye preferred param-
eter update law is given by

Σ̇−1 = −Σ−1wTwΣ−1, Σ−1(t0) =
1
α
I (9a)

˙̂
θ = Proj

{
γ Σ−1wT (e− η̂), θ̂

}
,

θ̂(t0) = θ0 ∈ Θ0 (9b)

where γ = γT > 0 and Proj{φ, θ̂} denotes a Lipschitz
projection operator such that

− Proj{φ, θ̂}T θ̃ ≤ −φT θ̃, (10)

θ̂(t0) ∈ Θ0 ⇒ θ̂(t) ∈ Θ0
ε , ∀ t ≥ t0. (11)

where Θ0
ε , B(θ0, z0

θ+ε), ε > 0. More details on parameter
projection can be found in Krstic et al. (1995). To proof
the following lemma, we need the following result
Lemma 1. Desoer and Vidyasagar (1975) Consider the
system

ẋ(t) = Ax(t) + u(t) (12)
Suppose the equilibrium state xe = 0 of the homogeneous
equation is exponentially stable,

(1) if u ∈  Lp for 1 < p <∞, then x ∈  Lp and
(2) if u ∈  Lp for p = 1 or 2, then x→ 0 as t→∞.
Lemma 2. The identifier (9) is such that the estimation
error θ̃ = θ − θ̂ is bounded. Moreover, if

ϑ ∈ L2 or
∫ ∞
t0

[
‖η̃‖2 − γ ‖e− η̂‖2

]
dτ < +∞

(13)

with γ = λmin (γ) and the strong condition

lim
t→∞

λmin

(
Σ
)

=∞ (14)

is satisfied, then θ̃ converges to zero asymptotically.

Proof: Let Vθ̃ = θ̃TΣ θ̃, it follows from (9) and the
relationship wθ̃ = e− η̂ − η̃ that

V̇θ̃ ≤ −2γ θ̃TwT (e− η̂) + θ̃TwTwθ̃

= −γ (e− η̂)T (e− η̂) + ‖η̃‖2, (15)

implying that θ̃ is bounded. Moreover, it follows from (15)
that

Vθ̃(t) = Vθ̃(t0) +
∫ t

t0

V̇θ̃(τ)dτ (16)

≤ Vθ̃(t0)− γ
∫ t

t0

‖e− η̂‖2 dτ +
∫ t

t0

‖η̃‖2 dτ (17)

Considering the dynamics of (7), if ϑ ∈ L2, then η̃ ∈ L2

(Lemma 1). Hence, the right hand side of (17) is finite in
view of (13), and by (14) we have
limt→∞ θ̃(t) = 0

3.2 Set Adaptation

An update law that measures the worst-case progress of
the parameter identifier in the presence of disturbance is
given by:

zθ =

√
Vzθ

λmin(Σ)
(18a)

Vzθ(t0) = λmax

(
Σ(t0)

)
(z0
θ)2 (18b)

V̇zθ = −γ (e− η̂)T (e− η̂) +
(Mϑ

kw

)2

. (18c)

Using the parameter estimator (9) and its error bound zθ
(18), the uncertain ball Θ , B(θ̂, zθ) is adapted online
according to the following algorithm:
Algorithm 1. Beginning from time ti−1 = t0, the param-
eter and set adaptation is implemented iteratively as fol-
lows:

1 Initialize zθ(ti−1) = z0
θ , θ̂(ti−1) = θ̂0 and Θ(ti−1) =

B(θ̂(ti−1), zθ(ti−1)).
2 At time ti, using equations (9) and (18) perform the

update

(
θ̂, Θ

)
=


(
θ̂(ti), Θ(ti)

)
, if zθ(ti) ≤ zθ(ti−1)

−‖θ̂(ti)− θ̂(ti−1)‖(
θ̂(ti−1), Θ(ti−1)

)
, otherwise

(19)
3 Iterate back to step 2, incrementing i = i+ 1.

The algorithm ensure that Θ is only updated when zθ
value has decreased by an amount which guarantees a
contraction of the set. Moreover zθ evolution as given in
(18) ensures non-exclusion of θ as shown below.



Lemma 3. The evolution of Θ = B(θ̂, zθ) under (9), (18)
and algorithm 1 is such that

i) Θ(t2) ⊆ Θ(t1), t0 ≤ t1 ≤ t2
ii) θ ∈ Θ(t0)⇒ θ ∈ Θ(t), ∀t ≥ t0

Proof:

i) If Θ(ti+1) * Θ(ti), then

sup
s∈Θ(ti+1)

‖s− θ̂(ti)‖ ≥ zθ(ti). (20)

However, it follows from triangle inequality and algo-
rithm 1 that Θ, at update times, obeys

sup
s∈Θ(ti+1)

‖s− θ̂(ti)‖

≤ sup
s∈Θ(ti+1)

‖s− θ̂(ti+1)‖+ ‖θ̂(ti+1)− θ̂(ti)‖

≤ zθ(ti+1) + ‖θ̂(ti+1)− θ̂(ti)‖ ≤ zθ(ti),
which contradicts (20). Hence, Θ update guarantees
Θ(ti+1) ⊆ Θ(ti) and the strict contraction claim
follows from the fact that Θ is held constant over
update intervals τ ∈ (ti, ti+1).

ii) We know that Vθ̃(t0) ≤ Vzθ(t0) (by definition) and
it follows from (15) and (18c) that V̇θ̃(t) ≤ V̇zθ (t).
Hence, by the comparison lemma, we have

Vθ̃(t) ≤ Vzθ(t), ∀t ≥ t0. (21)

and since Vθ̃ = θ̃TΣ θ̃, it follows that

‖θ̃(t)‖2 ≤ Vzθ(t)
λmin(Σ(t))

= z2
θ(t), ∀t ≥ t0. (22)

Hence, if θ ∈ Θ(t0), then θ ∈ B(θ̂(t), zθ(t)), ∀t ≥ t0.

4. ROBUST ADAPTIVE MPC

4.1 A Min-max Approach

The formulation of the min-max MPC consists of maxi-
mizing a cost function with respect to θ ∈ Θ, ϑ ∈ D and
minimizing over feedback control policies κ. The robust
receding horizon control law is

u = κmpc(x, θ̂, zθ) , κ∗(0, x, θ̂, zθ) (23a)

κ∗ , arg min
κ(·,·,·,·)

J(x, θ̂, zθ, κ) (23b)

where
J(x, θ̂, zθ, κ) , max

θ∈Θ, ϑ∈D

∫ T

0

L(xp, up)dτ

+W (xp(T ), θ̃p(T )) (24a)
s.t. ∀τ ∈ [0, T ]
ẋp = f(xp, up) + g(xp, up)θ + ϑ, xp(0) = x (24b)
ẇp = gT (xp, up)− kw wp, wp(0) = w (24c)
(Σ̇−1)p = −(Σ−1)pwTw(Σ−1)p,

(Σ−1)p(0) = Σ−1 (24d)
˙̂
θp = Proj

{
γ (Σ−1)pwT (e− η̂), θ̂

}
θ̃p = θ − θ̂p, θ̂p(0) = θ̂ (24e)

up(τ) , κ(τ, xp(τ), θ̂p(τ)) ∈ U (24f)
xp(τ) ∈ X, xp(T ) ∈ Xf (θ̃p(T )) (24g)

The effect of future parameter adaptation is also accounted
for in this formulation. The conservativeness of the algo-
rithm is reduced by parameterizing both W and Xf as
functions of θ̃(T ). While it is possible for the set Θ to
contract upon θ over time, the robustness feature due to
ϑ ∈ D will still remain.
Algorithm 2. The MPC algorithm performs as follows: At
sampling instant ti

(1) Measure the current state of the plant x(t) and
obtain the current value of matrices w and Σ−1 from
equations (3) and (9a) respectively

(2) Obtain the current value of parameter estimates θ̂ and
uncertainty bound zθ from (9b) and (18) respectively
If zθ(ti) ≤ zθ(ti−1)− ‖θ̂(ti)− θ̂(ti−1)‖

θ̂ = θ̂(ti), zθ = zθ(ti)

,
Else

θ̂ = θ̂(ti−1), zθ = zθ(ti−1)
End

(3) Solve the optimization problem (23) and apply the
resulting feedback control law to the plant until the
next sampling instant

(4) Increment i = i+1. Repeat the procedure from step
1 for the next sampling instant.

4.2 Lipschitz-based Approach

In this section, we present a Lipschitz-based method
whereby the nominal model rather than the unknown
bounded system state is controlled, subject to conditions
that ensure that given constraints are satisfied for all
possible uncertainties. State prediction error bound is
determined based on the Lipschitz continuity of the model.
A knowledge of appropriate Lipschitz bounds for the
x-dependence of the dynamics f(x, u) and g(x, u) are
assumed as follows:
Assumption 4. A set of functions Lj : X × U → R+,
j ∈ {f, g} are known which satisfy

Lj(X, u) ≥

min
{
Lj
∣∣∣ sup
x1,x2∈X

(
‖j(x1, u)−j(x2, u)‖−Lj‖x1−x2‖

)
≤ 0
}
,

where for j ≡ g is interpreted as an induced norm since
g(x, u) is a matrix.

Assuming a knowledge of the Lipschitz bounds for the x-
dependence of the dynamics f(x, u) and g(x, u) as given in
Assumption 4 and let Π = zθ+‖θ̂‖, a worst-case deviation
zpx ≥ maxθ∈Θ ‖x− xp‖ can be generated from

żpx = (Lf + LgΠ)zpx + ‖g(xp, u)‖zθ +Mϑ,

zpx(t0) = 0. (26)

Using this error bound, the robust Lipschitz-based MPC
is given by

u = κmpc(x, θ̂, zθ) = u∗(0) (27a)

u∗(.) , arg min
up[ 0,T ]

J(x, θ̂, zθ, up) (27b)

where



J(x, θ̂, zθ, up)=
∫ T

0

L(xp, up)dτ +W (xp(T ), zpθ ) (28a)

s.t. ∀τ ∈ [0, T ]
ẋp = f(xp, up) + g(xp, up)θ̂, xp(0) = x (28b)
żpx = (Lf + LgΠ)zpx + ‖gp‖zθ +Mϑ, z

p
x(0) = 0(28c)

Xp(τ) , B(xp(τ), zpx(τ)) ⊆ X, up(τ) ∈ U (28d)
Xp(T ) ⊆ Xf (zpθ ) (28e)

The effect of the disturbance is built into the uncer-
tainty cone B(xp(τ), zpx(τ)) via (28c). Since the uncer-
tainty bound is no more monotonically decreasing in this
case, the uncertainty radius zθ which appears in (28c)
and in the terminal expressions of (28a) and (28e) are
held constant over the prediction horizon. However, the
fact that they are updated at sampling instants when zθ
shrinks reduces the conservatism of the robust MPC and
enlarges the terminal domain that would otherwise have
been designed based on a large initial uncertainty zθ(t0).
Algorithm 3. The Lipschitz-based MPC algorithm per-
forms as follows: At sampling instant ti

(1) Measure the current state of the plant x = x(ti)
(2) Obtain the current value of the parameter estimates

θ̂ and uncertainty bound zθ from equations (9) and
(18) respectively,
If zθ(ti) ≤ zθ(ti−1)

θ̂ = θ̂(ti), zθ = zθ(ti)
Else

θ̂ = θ̂(ti−1), zθ = zθ(ti−1)
End

(3) Solve the optimization problem (27) and apply the
resulting feedback control law to the plant until the
next sampling instant

(4) Increment i:=i+1; repeat the procedure from step 1
for the next sampling instant.

5. CLOSED-LOOP ROBUST STABILITY

Robust stabilization to the target set Ξ is guaranteed by
appropriate selection of the design parameters W and Xf .
The robust stability conditions require the satisfaction of
the following criteria.
Criterion 5. The terminal penalty function W : Xf ×
Θ̃0 → [0, +∞] and the terminal constraint function Xf :
Θ̃0 → X are such that for each (θ, θ̂, θ̃) ∈ (Θ0 ×Θ0 × Θ̃0

ε),
there exists a feedback kf (., θ̂) : Xf → U satisfying

(1) 0 ∈ Xf (θ̃) ⊆ X, Xf (θ̃) closed
(2) kf (x, θ̂) ∈ U, ∀x ∈ Xf (θ̃)
(3) W (x, θ̃) is continuous with respect to x ∈ Rnx

(4) ∀x ∈ Xf (θ̃)\Ξ, Xf (θ̃) is strongly positively invariant
under kf (x, θ̂) with respect to ẋ ∈ f(x, kf (x, θ̂)) +
g(x, kf (x, θ̂))Θ +D

(5) L(x, kf (x, θ̂)) + ∂W
∂x F(x, kf (x, θ̂), θ, ϑ) ≤ 0, ∀x ∈

Xf (θ̃)\Ξ.

Criterion 6. For any θ̃1, θ̃2 ∈ Θ̃0 s.t. ‖θ̃2‖ ≤ ‖θ̃1‖,

(1) W (x, θ̃2) ≤W (x, θ̃1), ∀x ∈ Xf (θ̃1)
(2) Xf (θ̃2) ⊇ Xf (θ̃1)

The revised condition C5 require W to be a local robust
CLF for the uncertain system 1 with respect to θ ∈ Θ and
ϑ ∈ D.

5.1 Main Results

Theorem 7. Let Xd0 , Xd0(Θ0) ⊆ X denote the set of
initial states with uncertainty Θ0 for which (23) has a
solution. Assuming criteria 5 and 6 are satisfied, then the
closed-loop system state x, given by (1,9,18,23), originat-
ing from any x0 ∈ Xd0 feasibly approaches the target set
Ξ as t→ +∞.

Proof: Feasibility : The closed-loop stability is based upon
the feasibility of the control action at each sample time.
Assuming, at time t, that an optimal solution up[0,T ] to
the optimization problem (23) exist and is found. Let Θp

denote the estimated uncertainty set at time t and Θv

denote the set at time t + δ that would result with the
feedback implementation of u[t,t+δ] = up[0,δ]. Also, let xp

represents the worst case state trajectory originating from
xp(0) = x(t) and xv represents the trajectory originating
from xv(0) = x + δv under the same feasible control
input uv[δ,T ] = up[δ,T ]. Moreover, let Xa

Θb , {xa| ẋa ∈
F(xa, up,Θb) , f(xa, up) + g(xa, up)Θb}.
Since the up[0,T ] is optimal with respect to the worst case
uncertainty scenario, it suffice to say that up[0,T ] drives any
trajectory xp ∈ Xp

Θp into the terminal region Xpf . Since Θ
is non-expanding over time, we have Θv ⊆ Θp implying
xv ∈ Xp

Θv ⊆ Xp
Θp . The terminal region Xpf is strongly

positively invariant for the nonlinear system (1) under the
feedback kf (., .), the input constraint is satisfied in Xpf and
Xvf ⊇ Xpf by criteria 2.2, 2.4 and 3.2 respectively. Hence,
the input u = [up[δ,T ], kf [T,T+δ]] is a feasible solution of (23)
at time t+ δ and by induction, the optimization problem
is feasible for all t ≥ 0.

Stability : The stability of the closed-loop system is
established by proving strict decrease of the optimal
cost J∗(x, θ̂, zθ) , J(x, θ̂, zθ, κ∗). Let the trajectories
(xp, θ̂p, θ̃p, zpθ ) and control up correspond to any worst
case minimizing solution of J∗(x, θ̂, zθ). If xp[ 0,T ] were ex-
tended to τ ∈ [0, T + δ] by implementing the feedback
u(τ) = kf (xp(τ), θ̂p(τ) ) on τ ∈ [T, T + δ], then criterion
5(5) guarantees the inequality∫ T+δ

T

L(xp, kf (xp, θ̂p) )dτ +W (xpT+δ, θ̃
p
T )−W (xpT , θ̃

p
T ) ≤ 0

(29)

where in (29) and in the remainder of the proof, xpσ ,
xp(σ), θ̃pσ , θ̃p(σ), for σ = T, T + δ.
The optimal cost

J∗(x, θ̂, zθ) =
∫ T

0

L(xp, up)dτ +W (xpT , θ̃
p
T )

≥
∫ T

0

L(xp, up)dτ +W (xpT , θ̃
p
T ) (30)



+
∫ T+δ

T

L(xp, kf (xp, θ̂p) )dτ +W (xpT+δ, θ̃
p
T )−W (xpT , θ̃

p
T )

(31)

≥
∫ δ

0

L(xp, up)dτ +
∫ T

δ

L(xp, up)dτ (32)

+
∫ T+δ

T

L(xp, kf (xp, θ̂p) )dτ +W (xpT+δ, θ̃
p
T+δ) (33)

≥
∫ δ

0

L(xp, up)dτ + J∗(x(δ), θ̂(δ), zθ(δ)) (34)

Then, it follows from (34) that

J∗(x(δ), θ̂(δ), zθ(δ))− J∗(x, θ̂, zθ) ≤ −
∫ δ

0

L(xp, up)dτ

≤ −
∫ δ

0

µL(‖x, u‖)dτ.

(35)
where µL is a class K∞ function. Hence x(t) → 0 asymp-
totically.
Remark 8. In the above proof,

• (31) is obtained using inequality (29)
• (33) follows from criterion 5.1 and the fact that ‖θ̃‖

is non-increasing
• (34) follows by noting that the last 3 terms in (33) is a

(potentially) suboptimal cost on the interval [δ, T +δ]
starting from the point (xp(δ), θ̂p(δ)) with associated
uncertainty set B(θ̂p(δ), zpθ (δ)).

The closed-loop stability is established by the feasibility
of the control action at each sample time and the strict
decrease of the optimal cost J∗. The proof follows from
the fact that the control law is optimal with respect to the
worst case uncertainty (θ, ϑ) ∈ (Θ, D) scenario and the
terminal region Xpf is strongly positively invariant for (1)
under the (local) feedback kf (., .).

Theorem 9. Let X ′d0 , X ′d0(Θ0) ⊆ X denote the set
of initial states for which (27) has a solution. Assuming
Assumption 4 and Criteria 5 and 6 are satisfied, then the
origin of the closed-loop system given by (1,9,18,27) is
feasibly asymptotically stabilized from any x0 ∈ X ′d0 to
the target set Ξ.

The proof of the Lipschitz-based control law follows from
that of theorem 7.

6. SIMULATION EXAMPLE

To illustrate the effectiveness of the proposed design,
we consider the regulation of the CSTR subject to an
additional disturbance on the temperature dynamic:

ĊA =
q

V
(CAin − CA)− k0 exp

(
−E
RTr

)
CA

Ṫr =
q

V
(Tin − Tr)−

∆H
ρ cp

k0 exp
(
−E
RTr

)
CA

+
UA

ρ cp V
(Tc − Tr) + ϑ

where ϑ(t) is an unknown function of time. We also assume
that the reaction kinetic constant k0 and ∆H are only
nominally known.

It is assumed that reaction kinetic constant k0 and heat of
reaction ∆H are only nominally known and parameterized
as k0 = θ1 × 1010 min−1 and ∆H k0 = −θ2 × 1015

J/mol min with the parameters satisfying 0.1 ≤ θ1 ≤ 10
and 0.1 ≤ θ2 ≤ 10. The objective is to adaptively regulate
the unstable equilibrium CeqA = 0.5 mol/l, T eqr = 350 K,
T eqc = 300 K while satisfying the constraints 0 ≤ CA ≤ 1,
280 ≤ Tr ≤ 370 and 280 ≤ Tc ≤ 370. The nominal
operating conditions, which corresponds to the given un-
stable equilibrium are taken from Magni et al. (2001):
q=100 l/min, V=100 l, ρ=1000 g/l, cp = 0.239 J/g K,
E/R = 8750 K, UA= 5×104 J/min K, CAin = 1 mol/l and
Tin = 350 K.

The control objective is to robustly regulate the reactor
temperature and concentration to the (open loop) unstable
equilibrium CeqA = 0.5 mol/l, T eqr = 350 K, T eqc = 300 K by
manipulating the temperature of the coolant stream Tc.

Defining x = [CA−C
eq
A

0.5 ,
Tr−T eqr

20 ]′, u = Tc−T eqc
20 , the stage

cost L(x, u) was selected as a quadratic function of its
arguments:

L(x, u) = xT Qx x+ uT Ru u (36a)

Qx =
[

0.5 0
0 1.1429

]
Ru = 1.333. (36b)

The terminal penalty function used is a quadratic parameter-
dependent Lyapunov function W (x, θ) = xTP (θ)x for
the linearized system. Denoting the closed-loop system
under a local robust stabilizing controller u = kf (θ)x as
ẋ = Acl(θ)x. The matrix P (θ) := P0 + θ1P1 + θ2P2 +
. . . θnθPnθ was selected to satisfy the Lyapunov system of
LMIs

P (θ) > 0
Acl(θ)TP (θ) + P (θ)Acl(θ) < 0

for all admissible values of θ. Since θ lie between known
extrema values, the task of finding P (θ) reduces to solving
a finite set of linear matrix inequalities by introducing
additional constraints Gahinet et al. (1996). For the initial
nominal estimate θ0 = 5.05 and z0

θ = 4.95, the matrix
P (θ0) obtained is

P (θ0) =
[

0.6089 0.1134
0.1134 4.9122

]
(37)

and the corresponding terminal region is

Xf = {x : xTP (θ0)x ≤ 0.25}. (38)

For simulation purposes, the disturbance is selected as a
fluctuation of the inlet temperate ϑ(t) = 0.01Tin sin(3t)
and the true values of the unknown parameters were also
chosen as k0 = 7.2 × 1010min−1 and ∆H = - 5.0 ×
104 J/mol. The stage cost (36), terminal penalty (37)
and terminal region (38) were used. The Lipschitz-based
approach was used for the controller calculations and the
result was implemented according to Algorithm 3. As
depicted in Figures 1 to 3, the robust adaptive MPC drives
the system to a neighborhood of the equilibrium while
satisfying the imposed constraints and achieves parameter
convergence. Figure 4 shows that the uncertainty bound
zθ also reduces over time.
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Fig. 1. Closed-loop reactor trajectories under additive
disturbance ϑ(t)
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Fig. 2. Closed-loop input profiles for states starting at
different initial conditions (CA(0), Tr(0)): (0.3, 335)
is solid line, (0.6, 335) is dashed line and (0.3, 363) is
the dotted line
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Fig. 3. Closed-loop parameter estimates profile for states
starting at different initial conditions (CA(0), Tr(0)):
(0.3, 335) is solid line, (0.6, 335) is dashed line and
(0.3, 363) is the dotted line

7. CONCLUSIONS

The adaptive MPC design technique is extended to con-
strained nonlinear systems with both parametric and time
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Fig. 4. Closed-loop uncertainty bound trajectories for
initial condition (CA, Tr) = (0.3, 335)

varying disturbances. The proposed robust controller up-
dates the plant model online when model improvement is
guaranteed. The embedded adaptation mechanism enables
us to construct less conservative terminal design parame-
ters based upon subsets of the original parametric uncer-
tainty. While the introduced conservatism/computation
complexity due to the parametric uncertainty reduces over
time, the portion due to the disturbance ϑ ∈ D remains
active for all time.
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