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Abstract: This paper proposes a controller design approach that integrates RTO and MPC for
the control of constrained uncertain nonlinear systems. Assuming that the economic function is
a known function of constrained system’s states, parameterized by unknown parameters and
time-varying, the controller design objective is to simultaneously identify and regulate the
system to the optimal operating point. The approach relies on a novel set-based parameter
estimation routine and a robust model predictive controller that takes into the effect of
parameter estimation errors. A simulation example is used to demonstrate the effectiveness
of the design technique.
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1. INTRODUCTION

In this paper, we provide a formal design technique that
integrates RTO and MPC for constrained uncertain non-
linear systems. The framework considered assumes the
economic function is a known function of constrained
system’s states, parameterized by unknown parameters.
The objective and constraint functions may explicitly de-
pend on time, which means that our proposed method
is applicable to both dynamic and steady state economic
optimization. The control objective is to simultaneously
identify and regulate the system to the operating point
that optimizes the economic function. The control input
may also be required to satisfy some constraints.

The method proposed solves the control and optimiza-
tion problem at the same frequency. This eliminates the
ensuing interval of “no-feedback” that occurs between
economic optimization and thereby improving disturbance
attenuation. The RTO layer is tackled via a computational
efficient approach. The constrained economic optimization
problem is converted to an unconstrained problem and
Newton based optimization method is used to develop
an update law for the optimum value. The integrated
design distinguishes between the extremum seeking and
the adaptive tracking of the reference trajectory.

While many advances have been made in nonlinear sys-
tems for the stabilization of one fixed operating point,
few attempts have been made to address the stabiliza-
tion problem for time-varying or non-fixed setpoints. In
Magni (2002), a stabilizing nonlinear MPC algorithm was
developed for asymptotically constant reference signals.
By selecting a prediction horizon that is longer than the
time the reference setpoint is assumed to have converged,
the constant pre-programmed value is used to design the
stabilizing controller parameters, i.e, the terminal stability
constraint Xf and terminal penalty W . The result is lim-
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ited to reference signals that converge to a-priori known
constant setpoint. The method proposed in Findeisen et al.
(2000), combines a pseudo-linearization technique with a
nonlinear MPC strategy to stabilize a family of (known
and constant) setpoints. While the method provides a pos-
sible solution for tracking changing setpoints, such pseudo-
linearization transformation and feedback is in general
difficult to obtain and involve cumbersome computation.

2. PROBLEM DESCRIPTION

Consider a constrained optimization problem of the form
minx∈Rnx p(t, x, θ) (1a)

s.t. cj(x) ≤ 0 j = 1 . . .mc (1b)
with θ representing unknown parameters, assumed to be
uniquely identifiable and lie within an initially known
convex set Θ0 , B(θ0, z0

θ). The functions p and cj are
assumed to be C2 in all of their arguments (with locally
Lipschitz second derivatives), uniformly for t ∈ [0, ∞).
The constraint cj ≤ 0 must be satisfied along the system’s
state trajectory x(t).
Assumption 1. The following assumptions are made about
(1).

(1) There exists ε0 > 0 such that ∂2p
∂x2 ≥ ε0I and ∂2c

∂x2 ≥ 0
for all (t, x, θ) ∈ (R+ × Rnx × Θε), where Θε is an ε
neighborhood of Θ.

(2) The feasible set
X =

{
x ∈ Rnx | max

j
cj(x) ≤ 0

}
,

has a nonempty interior.

Assumption 1 states that the cost surface is strictly convex
in x and X is a non-empty convex set. Standard nonlinear
optimization results guarantee the existence of a unique
minimizer x∗(t, x, θ) ∈ X to problem 1. In the case of non-
convex cost surface, only local attraction to an extremum
could be guaranteed. The control objective is to stabilize
the nonlinear system



ẋ = f(x, ξ, u) + g(x, ξ, u)θ , F(x, ξ, u, θ) (2a)
ξ̇ = fξ(x, ξ) (2b)

to the optimum operating point or trajectory given by the
solution of (1) while obeying the input constraint u ∈ U ∈
Rnu in addition to the state constraint x ∈ X ∈ Rnx . The
dynamics of the state ξ is assumed to satisfy the following
input to state stability condition with respect to x.
Assumption 2. If x is bounded by a compact set Bx ⊆ X,
then there exists a compact set Bξ ⊆ Rnξ such that ξ ∈ Bξ
is positively invariant under 2.

3. EXTREMUM SEEKING SETPOINT DESIGN

3.1 Finite-time Parameter Identification

Let x̂ denote the state predictor for (2), the dynamics of
the state predictor is designed as

˙̂x = f(x, ξ, u) + g(x, ξ, u)θ̂ + kw(t)e+ w
˙̂
θ, (3)

where θ̂ is a parameter estimate generated via any update
law ˙̂

θ, kw > 0 is a design matrix, e = x−x̂ is the prediction
error and w is the output of the filter

ẇ = g(x, ξ, u)− kww, w(t0) = 0. (4)

Denoting the parameter estimation error as θ̃ = θ − θ̂, it
follows from (2) and (3) that

ė = g(x, ξ, u)θ̃ − kw e− w ˙̂
θ. (5)

The use of the filter matrix w in the above development
provides direct information about parameter estimation
error θ̃ without requiring a knowledge of the velocity vector
ẋ. This is achieved by defining the auxiliary variable

η = e− wθ̃ (6)
with η, in view of (4, 5), generated from

η̇ = −kw η, η(t0) = e(t0). (7)
Based on the dynamics (3), (4) and (7), the main result is
given by the following theorem.
Theorem 3. Let Q ∈ Rnθ×nθ and C ∈ Rnθ be generated
from the following dynamics:

Q̇ = wTw, Q(t0) = 0 (8a)
Ċ = wT (wθ̂ + e− η), C(t0) = 0 (8b)

Suppose there exists a time tc and a constant c1 > 0 such
that Q(tc) is invertible i.e.

Q(tc) =
∫ tc

t0

wT (τ)w(τ) dτ � c1I, (9)

then
θ = Q(t)−1C(t) for all t ≥ tc. (10)

Proof: The result can be easily shown by noting that

Q(t) θ =
∫ t

t0

wT (τ)w(τ)
[
θ̂(τ) + θ̃(τ)

]
dτ. (11)

Using the fact that wθ̃ = e− η, it follows from (11) that

θ = Q(t)−1

∫ t

t0

Ċ(τ) dτ = Q(t)−1C(t) (12)

and (12) holds for all t ≥ tc since Q(t) � Q(tc).

The result in theorem 3 is independent of the control u
and parameter identifier ˙̂

θ structure used for the state
prediction (eqn 3). Moreover, the result holds if a nominal
estimate θ0 of the unknown parameter (no parameter
adaptation) is employed in the estimation routine. In this
case, θ̂ is replaced with θ0 and the last part of the state
predictor (3) is dropped ( ˙̂

θ = 0).

Let
θc , Q(tc)−1 C(tc) (13)

The finite-time (FT) identifier is given by

θ̂c(t) =
{
θ̂(t), if t < tc
θc, if t ≥ tc.

(14)

3.2 Constraint Removal

An interior point barrier function method is used to
enforce the inequality constraint. The state constraint is
incorporated by augmenting the cost function p as follows:

pa(t, x, θ) , p(t, x, θ)− 1
ηc

mc∑
j=1

ln(−cj(x)) (15)

with ηc > 0, a fixed constant. The augmented cost
function (15) is strictly convex in x and the unconstrained
minimization of pa therefore has a unique minimizer in
int{X} which converges to that of (1) in the limit as
ηc →∞ Bertsekas (1995).

3.3 Setpoint Update Law

Let xr ∈ Rnx denote a reference setpoint to be tracked
by x and θ̂ denote an estimate of the unknown parameter
θ. A setpoint update law ẋr can be designed based on
newton’s method, such that xr(t) converges exponentially
to the (unknown) θ̂ dependent optimum value of (15).
To this end, consider an optimization Lyapunov function
candidate

Vr = 1
2‖
∂pa
∂x

(t, xr, θ̂)‖2 , 1
2‖zr‖

2 (16)

For the remainder of this section, omitted arguments of pa
and its derivatives are evaluated at (t, xr, θ̂). Differentiat-
ing (16) yields

V̇r=
∂pa
∂x

(
∂2pa
∂x∂t

+
∂2pa
∂x2

ẋr +
∂2pa
∂x∂θ

˙̂
θ

)
. (17)

Using the update law

ẋr =−
(
∂2pa
∂x2

)−1 [
∂2pa
∂x∂t

+
∂2pa
∂x∂θ

˙̂
θ + kr

∂pTa
∂x

]
, fr(t, xr, θ̂)

(18)

with kr > 0 and r(0)=r0∈ int {X} results in

V̇r≤−kr‖zr‖2, (19)
which implies that the gradient function zr converges
exponentially to the origin.

Lemma 4. Suppose (θ, θ̂) is bounded, the optimal setpoint
xr(t) generated by (18) is feasible and converges to x∗pa(θ̂),
the minimizer of (15) exponentially.



Proof: Feasibility follows from the boundedness of (θ, θ̂)
and Assumption 1.1 while convergence follows from (19)
and the fact that zr is a diffeomorphism.

4. ONE-LAYER INTEGRATION APPROACH

Since the true optimal setpoint depends on θ, the actual
desired trajectory x∗r(t, θ) is not available in advance.
However, xr(t, θ̂) can be generated from the setpoint
update law (18) and the corresponding reference input
ur(xr) can be computed on-line.

Assumption 5. xr(t, θ̂) is such that there exists ur(xr)
satisfying

0 = f(xr, ur, θ̂) (20)

The design objective is to design a model predictive control
law such that the true plant state x tracks the reference
trajectory xr(t, θ̂). Given the desired time varying trajec-
tory (xr, ur), an attractive approach is to transform the
tracking problem for a time-invariant system into a regula-
tion problem for an associated time varying control system
in terms of the state error xe = x − xr and stabilize the
xe = 0 state. The formulation requires the MPC controller
to drive the tracking error xe into the terminal set Xef (θ̃)
at the end of the horizon. Since the system’s dynamics is
uncertain, we use the finite-time identifier (34) for online
parameter adaptation and incorporate robust features in
to the adaptive controller formulation to account for the
impact of the parameter estimation error θ̃ in the design.

4.1 Min-max Adaptive MPC

Feedback min-max robust MPC is employed to provide
robustness for the MPC controller during the adaptation
phase. The controller maximizes a cost function with re-
spect to θ and minimizes it over feedback control policies κ.

The integrated controller is given as

u = κmpc(t, xe, θ̂) , κ∗(0, xe, θ̂) (21a)

κ∗ , arg min
κ(·,·,·,·)

J(t, xe, θ̂, κ) (21b)

where J(t, xe, θ̂, κ) is the (worst-case) cost associated with
the optimal control problem:

J(t, xe, θ̂, κ) , max
θ∈Θ

∫ T

0

L(τ, xpe, u
p, ur)dτ (22a)

+W ( τ, xpe(T ), θ̃p(T ) ) (22b)
s.t. ∀τ ∈ [0, T ]
ẋp = f(xp, ξp, up) + g(xp, ξp, up) θ, xp(0) = x (22c)
ξ̇p = f(xp, ξp), ξp(0) = ξ (22d)
ẋpr = fr(t, xr, θ), xpr(0) = xr (22e)
xpe = xp − xpr (22f)
ẇp = β(gT (xp, ξp, up)− kwwp), wp(0) = w (22g)

Q̇p = β(wp
T

wp), Qp(0) = Q (22h)
˙̂
θp = ΓQp θ̃p, θ̃p = θ − θ̂p, θ̂p(0) = θ̂ (22i)
up(τ) , κ(τ, xpe(τ), θ̂p(τ)) ∈ U (22j)
xpe(τ) ∈ Xe, xpe(T ) ∈ Xef (θ̃p(T )) (22k)

where Xe =
{
xpe : xp ∈ X

}
, Xef is the terminal constraint

and β ∈ {0, 1}. The effect of the future parameter
adaptation is incorporated in the controller design via
(22a) and (22k), which results in less conservative worst-
case predictions and terminal conditions.

4.2 Implementation Algorithm

Algorithm 1. The finite-time min-max MPC algorithm
performs as follows: At sampling instant ti

(1) Measure the current states of the plant x = x(ti),
ξ = ξ(ti) and obtain the current value of the desired
setpoint xr = xr(ti) via the update law (18)

(2) Obtain the current value of matrices w, Q and C
from

ẇ= g(x, u)− kw w, w(t0) = 0, (23)

and
Q̇ = wTw, Q(t0) = 0 (24a)
Ċ = wT (w θ0 + x− x̂− η), C(t0) = 0 (24b)

respectively
(3) If det(Q) = 0 or cond(Q) is not satisfactory update

the parameter estimates θ̂ and the uncertainty set
Θ(t) , B

(
θ̂(t), zθ(t)

)
according to Algorithm 3 in

the Appendix.
Else if det(Q) > 0 and cond(Q) is satisfactory, set
β = 0 and update

θ̂ = Q−1(ti)C(ti), zθ = 0
End

(4) Solve the optimization problem (21,22) and apply the
resulting feedback control law to the plant until the
next sampling instant

(5) Increment i = i+1. If zθ > 0, repeat the procedure
from step 1 for the next sampling instant. Other-
wise, repeat only steps 1 and 4 for the next sampling
instant.

Since the algorithm is such that the uncertainty set Θ
contracts over time, the conservatism introduced by the
robustness feature in terms of constraint satisfaction and
controller performance reduces over time and when Θ con-
tracts upon θ, the min-max adaptive framework becomes
that of a nominal MPC. The drawback of the finite-time
identifier is attenuated in this application since the matrix
invertibility condition is checked only at sampling instants.
The benefit of the identifier, however, is that it allows
an earlier and immediate elimination of the robustness
feature.

4.3 Lipschitz-based Adaptive MPC

While the min-max approach provides the tightest uncer-
tainty cone around the actual system’s trajectory, its ap-
plication is limited by the enormous computation required
to obtain the solution of the min-max MPC algorithm. To
address this concern, the robust tracking problem is re-
posed as the minimization of a nominal objective function
subject to “robust constraints”.

The model predictive feedback is defined as



u = κmpc(t, xe, θ̂, zθ) = u∗(0) (25a)

u∗(.) , arg min
up[ 0,T ]

J(t, xe, θ̂, zθ, up, ur) (25b)

where J(t, xe, θ̂, zθ, up, ur) is given by the optimal control
problem:

J(t, xe, θ̂, zθ, up, ur) =
∫ T

0

L(t, xpe, u
p, ur)dτ (26a)

+W (xpe(T ), zpθ (T )) (26b)
s.t. ∀τ ∈ [0, T ]
ẋp = f(xp, up) + g(xp, up)θ̂, xp(0) = x (26c)
ξ̇p = f(ξp, xp), ξp(0) = ξ (26d)
ẋpr = fr(t, xr, θ̂), xpr(0) = xr (26e)
xpe = xp − xr (26f)
żpe = β(Lf + LgΠ)zpe + ‖g(xp, ξp, up)‖zθ, (26g)
zpx(0) = 0 (26h)
Xp
e (τ) , B(xpe(τ), zpe (τ)) ⊆ Xe, up(τ) ∈ U (26i)

Xp
e (T ) ⊆ Xef (zpθ (T )) (26j)

Since the Lipschitz-based robust controller is implemented
in open-loop, there is no setpoint trajectory xr(θ̂) feed-
back during the inter-sample implementation. Therefore,
the worst-case deviation zpe ≥ maxθ∈Θ ‖xe − xpe‖ =
maxθ∈Θ ‖x− xp‖. Hence zpe given in (26g) follows from

żpx = (Lf + LgΠ)zpx + ‖g(xp, u)‖zθ, zpx(t0) = 0 (27)

where Π = zθ+‖θ̂‖. We assume an appropriate knowledge
of Lipschitz bounds as follows:
Assumption 6. A set of functions Lj : X×Rnξ ×U→ R+,
j ∈ {f, g} are known which satisfy

Lj(X, ξ, u) ≥

min
{
Lj
∣∣∣ sup
x1,x2∈X

(
‖j(x1, ξ, u)−j(x2, ξ, u)‖−Lj‖x1−x2‖

)
≤ 0
}
,

4.4 Implementation Algorithm

Algorithm 2. The finite-time Lipschitz based MPC algo-
rithm performs as follows: At sampling instant ti

(1) Measure the current states of the plant x = x(ti),
ξ = ξ(ti) and obtain the current value of the desired
setpoint xr = xr(ti) via the update law (18)

(2) Obtain the current value of matrices w, Q and C
from (23) and (24)

(3) If det(Q) = 0 or cond(Q) is not satisfactory, set β =
1 and update the parameter estimates θ̂ = θ̂(ti) and
uncertainty bounds zθ = zθ(ti) and zpθ (T ) = zpθ (ti+T )
via equation (29)

˙̂
θ = Γ (C −Q θ̂), θ̂(t0) = θ0, (29)

equation (A.1) and equation (30)

zpθ (τ) = exp−Ē(τ−ti) zθ(ti) τ ∈ [ti, ti + T ) (30)
where

Ē ≥ E(ti) = λmin (ΓQ(ti)) .

Else if det(Q) > 0 and cond(Q) is satisfactory, set
β = 0 and update

θ̂ = Q−1(ti)C(ti), zθ = 0
End

(4) Solve the optimization problem (25,26) and apply
the resulting feedback control law to the plant until
the next sampling instant

(5) Increment i = i+1. If zθ > 0, repeat the procedure
from step 1 for the next sampling instant. Other-
wise, repeat only steps 1 and 4 for the next sampling
instant.

Implementing the adaptive MPC control law according to
Algorithm 2 ensures that the uncertainty bound zθ reduces
over time and hence, the error margin zpx imposed on
the predicted state also reduces over time and shrinks to
zero when the actual parameter estimate is constructed in
finite-time.

4.5 Robust Stability

Robust stability is guaranteed under the standard assump-
tions that Xef ⊆ Xe is an invariant set, W is a local robust
CLF for the resulting time varying system and the decay
rate of W is greater than the stage cost L within the ter-
minal set Xef in conjunction with the requirement for W
to decrease and Xf to enlarge with decreased parametric
uncertainty.

4.6 Enhancing Parameter Convergence

In min-max adaptive formulation, the terminal penalty is
parameterized as a function of θ̃. This ensures that the
algorithm will seek to reduce the parameter error in the
process of optimizing the cost function and will automat-
ically inject some excitation in the closed-loop system,
when necessary, to enhance parameter convergence. How-
ever, this is not the case in the Lipschitz-based approach
since the control calculation only uses nominal model. To
improve the quality of excitation in the closed-loop the
proposed excitation cost is

JE =
β

1 + Epθ (T )
(31)

where
Epθ (τ) = λmin{Qp(τ)} or Epθ (τ) = νT Qp(τ) ν (32)

with ν ∈ Rnθ a unit vector. Note that any reduction in
the cost function due to JE implies an improvement in the
rank of Qp. Though, the predicted regressor matrix Qp

differs from the actual matrix Q, a sufficient condition for
Q > 0 is for Qp > zQ ≥ ‖Q−Qp‖.

5. TWO-LAYER INTEGRATION METHOD

The integration task can also be posed as a two degree
of freedom paradigm where the problem is divided into
two phases. The first phase deals with generating a state
trajectory that optimizes a given objective function while
respecting the system’s dynamics and constraints, and the
second phase deals with the design of a controller that
would regulate the system around the trajectory.

The MPC controller design follows that of (21) and
(25). The only difference is that rather than solving the
setpoint differential equation (18) inside the MPC loop,
the measurement of xr obtained at sampling instants



is used as the desired setpoint to be tracked, that is,
equations (22e) and (26e) are replaced by

ẋpr = 0, xpr(0) = xr. (33)
The adaptive controllers are implemented according to
Algorithms 1 and 2.

6. MAIN RESULT

The integration result is provided in the following:
Theorem 7. Consider problem (1) subject to system dy-
namics (2), and satisfying Assumption 1. Let the controller
be (21) or (25) with setpoint update law (18) and param-
eter identifier (34)

θ̂c(t) =
{
θ̂(t), if t < tc
Q(tc)−1 C(tc), if t ≥ tc.

. (34)

If the invertibility condition (equation 35)

Q(tc) =
∫ tc

t0

wT (τ)w(τ) dτ � c1I, (35)

is satisfied, then for any % > 0, there exists constant ηc
such that limt→∞ ‖x(t) − x∗(t, θ)‖ ≤ %, with x∗(t, θ) the
unique minimizer of (1). In addition x ∈ X, u ∈ U for all
t ≥ 0.

Proof: We know from from triangle inequality that

‖x− x∗(θ)‖ ≤ ‖x− xr(θ̂)‖+ ‖xr(θ̂)− x∗pa(θ̂)‖
+ ‖x∗pa(θ̂)− x∗(θ̂)‖+ ‖x∗(θ̂)− x∗(θ)‖ (36)

where x∗pa(θ̂) denotes the unique minimizer of the uncon-
strained problem (15) for θ ≡ θ̂. Since the MPC controllers
guarantees asymptotic convergence of xe to the origin,
we have limt→∞ ‖x − xr(θ̂)‖ = 0. Also, it follows from
Lemma 4, that ‖xr(θ̂) − x∗pa(θ̂)‖ converges exponentially
to the origin. Moreover, it is well established that x∗pa(θ̂)
converges continuously to x∗(θ̂) as ηc → ∞ (Bertsekas,
1995, Proposition 4.1.1). Therefore there exists a class K
function 1 αc(·) such that

lim
t→∞

‖x∗pa(θ̂)− x∗(θ̂)‖ ≤ αc
(

1
ηc

)
. (37)

The finite-time identification procedure employed ensures
that θ̂ = θ for all t ≥ tc, with tc < ∞ and thus
limt→∞ ‖x∗(θ̂)− x∗(θ)‖ = 0.

Finally, we have

lim
t→∞

‖x(t)− x∗(t, θ)‖ ≤ αc
(

1
ηc

)
(38)

and the result follows for sufficiently large ηc. The con-
straint satisfaction claim follows from the feasibility of the
adaptive model predictive controllers.

7. SIMULATION EXAMPLE

Consider the parallel isothermal stirred-tank reactor in
which reagent A forms product B and waste-product C

1 A continuous function µ : R+ → R+ is of class K if it is strictly
increasing and µ(0) = 0.

DeHaan and Guay (2005). The reactors dynamics are given
by

dAi
dt

= Ain
F ini
Vi
−Ai

F outi

Vi
− ki1Ai − 2ki2A2

i ,

dBi
dt

= −Bi
F outi

Vi
+ ki1Ai,

dCi
dt

= −Ci
F outi

Vi
+ ki2A

2
i ,

where Ai, Bi, Ci denote concentrations in reactor i, kij are
the reaction kinetic constants, which are only nominally
known. The inlet flows F ini are the control inputs, while
the outlet flows F outi are governed by PI controllers which
regulate reactor volume to V 0

i .

The economic cost function is the net expense of operating
the process at steady state.

p(Ai, s, θ) =
2∑
i=1

[(pi1si + PA − PB)ki1AiV 0
i

+ (pi2si + 2PA)ki2A2
iV

0
i ] (39)

where PA, PB denote component prices, pij is the net
operating cost of reaction j in reactor i. Disturbances s1,
s2 reflect changes in the operating cost (utilities, etc) of
each reactor. The control objective is to robustly regulate
the process to the optimal operating point that optimizes
the economic cost (39) while satisfying the following state
constraints 0 ≤ Ai ≤ 3, cv = A2

1V
0
1 + A2

2V
0
2 − 15 ≤ 0 and

input constraint 0.01 ≤ F ini ≤ 0.2. The reaction kinetics
are assumed to satisfy 0.01 ≤ ki ≤ 0.2.

The two-layer approach was used for the simulation. The
setpoint value available at sampling instant is passed down
to the MPC controller for implementation. The robustness
of the adaptive controller is guaranteed via the Lipschitz
bound method. The stage cost is selected as a quadratic
cost L(xe, ue) = xTe Qx xe + uTe Ru ue, with Qx > 0 and
Ru ≥ 0.

Terminal Penalty and Terminal Set Design Let x =
[A1, A2]T , θ = [k11, k12, k21, k22]T and u = [F in1 , F in2 ]T ,
the dynamics of the system can be expressed in the form:

ẋ =−


x1kV 1(ξ1 − V 0

1 + ξ3)
ξ1

x2kV 2(ξ2 − V 0
2 + ξ4)

ξ2


︸ ︷︷ ︸

fp1

+


Ain
ξ1

0

0
Ain
ξ2


︸ ︷︷ ︸

fp2

u−
[
x1 2x2

1 0 0
0 0 x2 2x2

2

]
︸ ︷︷ ︸

g

θ,

where ξ1, ξ2 are the two tank volumes and ξ3, ξ4 are the
PI integrators. The system parameters are V 0

1 = 0.9,
V 0

2 = 1.5, kv1 = kv2 = 1, PA = 5, PB = 26, p11 = p21 = 3
and p12 = p22 = 1.

A Lyapunov function for the terminal penalty is defined
as the input to state stabilizing control Lyapunov function
(iss-clf):

W (xe) =
1
2
xTe xe (40)



Choosing a terminal controller

u = kf (xe) = −f−1
p2

(
− fp1 + k1xe + k2 g g

T xe

)
, (41)

with design constants k1, k2 > 0, the time derivative of
(40) becomes

Ẇ (xe) = −k1 x
T
e xe − xTe g θ − k2x

T
e g g

T xe (42)

≤ −k1‖xe‖2 +
1

4k2
‖θ‖2 (43)

Since the stability condition requires Ẇ (xe(T )) + L(T ) ≤
0. We choose the weighting matrices of L as Q = 0.5I and
R = 0. The terminal state region is selected as

Xef = {xe : W (xe) ≤ αe} (44)
such that
kf (xe) ∈ U, Ẇ (T ) + L(T ) ≤ 0, ∀(θ, xe) ∈ (Θ, Xef )

(45)
Since the given constraints requires the reaction kinetic θ
and concentration x to be positive, it follows that

Ẇ + L = −(k1 − 0.5)‖xe‖2 − xTe g θ − k2x
T
e g g

T xe ≤ 0
(46)

for all k1 > 0.5 and xe > 0. Moreover, for xe < 0, the
constants k1 and k2 can always be selected such that (46)
is satisfied ∀ θ ∈ Θ. The task of computing the terminal
set is then reduced to finding the largest possible αe such
that for kf (.) ∈ U for all x ∈ Xef .

The simulation results are presented in Figures 1 to 3.
The phase trajectories displayed in Figure 1 shows that the
reactor states obeys the imposed constraints while Figure 2
shows that the actual, unknown setpoint cost p(t, xr, θ)
converges to the optimal, unknown p∗(t, x∗, θ). Figure 3
shows the convergence of the parameter estimates to the
true values.
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Fig. 1. Phase diagram and feasible state region

8. CONCLUSIONS

This paper provides a formal design technique for integrat-
ing RTO and MPC for constrained nonlinear uncertain
systems. The solution is based upon the tools and strate-
gies developed in the previous chapters. A single layer and
two-layer approaches are presented.
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Appendix A. ALGORITHMS

Algorithm 3. Let E(σ) = λmin (ΓQ(σ)), beginning from
time ti−1 = t0, the parameter and set adaptation is
implemented iteratively as follows:

(1) Initialize zθ(t0) = z0
θ , Θ(t0) = B(θ̂(t0), zθ(t0)),

Ē = E(t0) = 0
(2) Implement the following adaptation law over the

interval τ ∈ [ti−1, ti)
żθ(τ) = −Ēzθ(τ) (A.1)

(3) At time ti, perform the updates

Ē =
{
E(ti), if E(ti) ≥ E(ti−1)
E(ti−1), otherwise (A.2)

(
θ̂, Θ

)
=


(
θ̂(ti), Θ(ti)

)
, if zθ(ti)− zθ(ti−1)

≤ −‖θ̂(ti)− θ̂(ti−1)‖(
θ̂(ti−1), Θ(ti−1)

)
, otherwise

(A.3)
(4) Iterate back to step 2, incrementing i = i+ 1.


