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Abstract: In oil production waterflooding is a popular recovery technology, which involves
the injection of water into an oil reservoir. Studies on model-based dynamic optimization of
waterflooding strategies have demonstrated that there is a significant potential to increase life-
cycle performance, measured in Net Present Value. However, in these studies the complementary
desire of oil companies to maximize daily production is generally neglected. To resolve this, a
hierarchical optimization structure is proposed that regards economic life-cycle performance
as primary objective and daily production as secondary objective. The existence of redundant
degrees of freedom allows for the optimization of the secondary objective without compromising
optimality of the primary objective.
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1. INTRODUCTION

Oil is produced from subsurface reservoirs. In these reser-
voirs the oil is contained in the interconnected pores of
the reservoir rock under high pressure and temperature.
The depletion process of a reservoir generally consists of
two production stages. In the primary production stage
the reservoir pressure is the driving mechanism for the
production. During this phase, the reservoir pressure drops
and production gradually decreases. In the secondary pro-
duction stage liquid (or gas) is injected into the reser-
voir using injection wells. The most common secondary
recovery mechanism involves the injection of water and
is referred to as waterflooding. It serves two purposes:
sustaining reservoir pressure and sweeping the oil out of
pores of the reservoir rock and replacing it by water.

Due to heterogeneity of the reservoir rock, the flowing
fluids do not experience the same resistance at different
points and in different directions in the reservoir. As
a result, the oil-water front may not move uniformly
towards the production wells, but has a rather irregular
shape as depicted schematically in Figure 1. Due to this
phenomenon - referred to as fingering - the oil-water front
may reach the production wells while certain parts of
the reservoir are not be properly drained. The produced
water must be disposed of in an environmentally friendly
way, bringing along additional production costs. At some
point the production is no longer economically viable and
the wells are closed (shut-in). At the end of the life of
the reservoir all production wells are shut-in, while large
amounts of oil may still be present in the reservoir.

Fig. 1. Process of waterflooding using a (horizontal) in-
jection and production well. The irregular-shaped oil-
water front is a result of the heterogeneous nature of
the reservoir, after Brouwer and Jansen (2004).

Although the injection and production rates of the wells
can be manipulated dynamically, they are generally held
constant at the maximum capacity of the wells until
they are shut-in. Replacing this reactive waterflooding
strategy by a dynamic, more proactive one can vastly
improve sweep efficiency. Different optimization studies
have demonstrated using a numerical reservoir model that
there is a potential increase possible of up to 15%, see
Brouwer and Jansen (2004) and Jansen et al. (2008). In
these optimization studies the objective function is usually
of an economic type, most often Net Present Value (NPV),
evaluated over the life of the reservoir.

Although many oil companies acknowledge the need for
improving economic efficiency over the entire life of the



waterflooding project, many of them adopt maximizing
daily production as objective, due to the uncertainty
in future economic circumstances. These two objectives,
the long-term (life-cycle) objective and the short-term
(daily) objective, lead to different, generally conflicting
waterflooding strategies.

The goal of this paper is to address the problem of mul-
tiple objectives in the optimization of oil recovery from a
petroleum reservoir. To that end, a hierarchical optimiza-
tion structure is proposed that requires a prioritization of
the objectives.

This paper proceeds as follows. In Section 2 the properties
and characteristics of the reservoir model are described. In
Section 3 the life-cycle optimization problem is presented
and a hierarchical optimization procedure is proposed.
Section 4 deals with identifying redundant degrees of
freedom in the optimization problem. The hierarchical
optimization procedure is applied to a 3D reservoir model
in Section 5. Finally, in Section 6 the results are discussed
and alternative approaches are proposed.

2. RESERVOIR MODELING

Reservoir simulators use conservation of mass and momen-
tum equations to describe the flow of oil, water or gas
through the reservoir rock. For simplicity reasons, in the
oil reservoirs models used within this work only the oil and
water phase are assumed to be present.

The mass balance is expressed as follows:

∇ (ρiui) +
∂

∂t
(φρiSi) = 0, i = o, w, (1)

where t is time, ∇ the divergence operator, φ is the
porosity (volume fraction of void space), ρi is the density
of the phase i, ui the superficial velocity and Si the
saturation, defined as the proportion of the pore space
occupied by phase i.

Conservation of momentum is governed by the Navier-
Stokes equations, but is normally simplified for low ve-
locity flow through porous materials, to be described by
the semi-empirical Darcy’s equation as follows:

ui = −k
kri

μi
∇pi, i = o, w, (2)

where pi is the pressure of phase i, k is the absolute
permeability, kri is the relative permeability and μi is the
viscosity of phase i. The permeability k is an inverse mea-
sure of the resistance a fluid experiences flowing through
the porous medium. The relative permeability kri relates
to the additional resistance phase i experiences when other
phases are present, due to differences in viscosity. As a
result, it is a strongly non-linear function of the satura-
tion Si. In (2) gravity is discarded for simplicity reasons.
However, within the 3D example presented in this paper,
gravity does play a role. For a more complete description
of Darcy’s equation we refer to literature, see Aziz and
Settari (1979).

Substituting (2) into (1) results into 2 flow equations with
4 unknowns, po, pw, So and Sw. Two additional equations
are required to complete the system description. The first

is the closure equation requiring that the sum of phase
saturations must equal 1:

So + Sw = 1 (3)
Second, the relation between the individual phase pres-
sures is given by the capillary pressure equation:

pcow(Sw) = po − pw (4)
Common practice in reservoir simulation is to substitute
(3) and (4) into the flow equations, by taking the oil
pressure po and water saturation Sw as primary state
variables:

∇(λ̃o∇po) =
∂

∂t
(φρo · [1 − Sw]) , (5)

∇
(

λ̃w∇po − λ̃w
∂pcow

∂Sw
∇Sw

)
=

∂

∂t
(φρwSw) , (6)

where λ̃o = k kro

μo
and λ̃w = k krw

μw
are the oil and water

mobilities. Flow equations (5) and (6) are defined over the
entire volume of the reservoir. It is assumed that there is no
flow across the boundaries of the reservoir geometry over
which (5)-(6) is defined (Neumann boundary conditions).

Due to the complex nature of oil reservoirs, (5)-(6) gener-
ally cannot be solved analytically, hence they are evaluated
numerically. To this purpose the equations are discretized
in space and time. The discretization in space leads to a
system built up of a finite number of blocks, referred to as
grid blocks. This results in the following state space form:

V(xk) · xk+1 = T(xk) · xk + qk, x0 = x̄0, (7)

where k is the time index and x is the state vector con-
taining the oil pressures (po) and water saturations (Sw)
in all grid blocks. Vector x̄0 contains the initial conditions,
which are assumed to be known. In the discretization of
(5)-(6), the units are converted from [ kg

m3s ] to [m3

s ]. In (7)
a source vector qk is added to model the influence of the
wells on the dynamic behavior of the reservoir. The source
terms are usually represented by a so-called well model,
which relates the source term to the pressure difference
between the well and grid block pressure:

qj
k = wj · (pj

bh, k − pj
k), (8)

where pbh, k is the well’s bottom hole pressure, j the index
of the grid block containing the well and pj

k the grid block
pressure in which the well is located. The term w is a
well constant which contains the well’s geometric factors
and the rock and fluid properties of the reservoir directly
around the well.

The geological properties inside each grid block are as-
sumed to be constant. The strongly heterogeneous nature
of the reservoir can be characterized by assigning different
property values to each of the grid blocks. Usually a very
large number of grid-blocks is required (103 − 106) to
adequately describe the fluid dynamics of a real petroleum
reservoir.

The reservoir simulations used within this study are per-
formed using the reservoir simulation software package
MoReS, which has been developed by Shell.



3. WATERFLOODING OPTIMIZATION PROBLEM

Flooding a reservoir with water to increase oil production
is essentially a batch process, with the additional charac-
teristic that there is no repetition involved. Due to the fact
that performance is evaluated at the end of the process and
the time constants associated with the nonlinear dynamics
are very long, a receding horizon approach will most likely
not result in optimal depletion of a reservoir. Dynamic
optimization over the entire life of the reservoir is required
which can be expressed by the following mathematical
formulation:

max
u

J(u), (9)

s.t. xk+1 = f (xk,uk) , k = 1, .., K, x0 = x̄0, (10)

g(u) ≤ 0 (11)
where u is the input trajectory, f represents the system
equations as described in (7) and x̄0 is a vector containing
the initial conditions of the reservoir. The inequality
constraints g(u) relate to the capacity limitations of the
wells.

The objective function J is of an economic type, generally
Net Present Value:

J =
K∑

k=1

[
ro · qo,k − rw · qw,k − rinj · qinj,k

(1 + b)
tk
τt

· Δtk

]
, (12)

where ro is the oil revenue [ $
m3 ], rw the water production

costs [ $
m3 ] and rinj the water injection costs [ $

m3 ], which
are all assumed constant. K represents the total number of
time steps k of a fixed time span and Δtk the time interval
of time step k in [day]. The term b represents the discount
rate for a certain reference time τt. The terms qo,k, qw,k

and qinj,k represent the total flow rate of respectively
produced oil, produced water and injected water at time
step k in [ m3

day ]. An economic objective functions like
(12) does not necessarily provide a unique solution to
the optimization problem. Although it relates to realistic
business conditions, it may well cause ill-posedness of the
problem.

Several methods are available for dynamic optimization of
large scale problems, see Bryson (1999), Schlegel et al.
(2005) and Biegler (2007). Simultaneous methods have
attractive convergence and constraint handling properties,
but even though their capacity to cope with large-scale
problems has increased considerably over the recent years,
models of order 106 still remain very difficult to handle.
Although sequential methods require repeated numerical
integration of the model equations, only the control vector
is parameterized and as a result can deal with larger
problems. Secondly, due to the fact that the flooding
process is very slow much time is available to perform
the usually large number of required simulations. However,
if the number of control parameters grows the required
simulation time may still become unfeasible at some point,
unless a method is available to efficiently calculate the
gradients of the objective function with respect to the
control parameters. This can be done by integration of the
adjoint equations or directly through sensitivity equations
of model equations.

In the reservoir simulation package used within this work,
the adjoint equations are implemented to calculate the
gradients. For simplicity reasons, a Steepest Ascent (SA)
algorithm is adopted to determine improving control pa-
rameters.

3.1 Hierarchical optimization

In the life-cycle waterflooding problem as expressed by (9)-
(11), the desire of many oil companies to maximize short-
term (daily) production is discarded. A balanced objective
provides a possibility to address both objectives in a single
function. However, finding an suitable weighting between
the objectives may prove to be difficult. Alternatively,
we propose a hierarchical (or lexicographic) optimization
structure that requires a prioritization of the multiple
objectives, as described in Haimes and Li (1988) and
Miettinen (1999). In this structure, optimization of a
secondary objective function J2 is constrained by the
requirement of the primary objective function J1 to remain
close to its optimal value J∗

1 . This structure can be
expressed mathematically as follows:

max
u

J2(u), (13)

s.t. xk+1 = f (xk,uk) , k = 1, .., K, x0 = x̄0 (14)

g(u) ≤ 0 (15)

J∗
1 − J1(u,x) ≤ ε (16)

where ε is an arbitrary small value compared to J∗
1 . Solving

(13) - (16) requires the knowledge of J∗
1 , which is obtained

through solving optimization problem (9) - (11).

4. REDUNDANT DEGREES OF FREEDOM

In Jansen et al. (2009) it was observed that signifi-
cantly different optimized waterflooding strategies result
in nearly equal values in NPV. They concluded that the
flooding optimization problem is ill-posed and contains
many more control variables than necessary. This suggests
that optimality of an economic life-cycle objective in wa-
terflooding optimization does not fix all degrees of freedom
(DOF) of the decision variable space D, i.e. there exist
redundant DOF in the optimization problem. Huesman
et al. (2008) found similar results for economic dynamic
optimization of plant-wide operation.

A consequence of these redundant DOF is that even if ε
in (16) is chosen equal to 0, DOF are left to improve the
secondary objective function J2. A straightforward way of
investigating this is to imbed (16) as an equality constraint
in the adjoint formulation by means of an additional La-
grange multiplier. Unfortunately, the adjoint functionality
in MoReS is not yet capable of dealing with (additional)
state constraints. Alternatively, unconstrained gradient in-
formation can be used to investigate the redundant DOF,
as described in the next section.

4.1 Quadratic approximation of the objective function

A solution u for which no constraints are active is an
optimal solution u∗ if and only if the gradients of J with
respect to u are zero, i.e. ∂J

∂u = 0. As a result, at u∗ the



gradients do not provide any information on possible re-
dundant degrees of freedom under the optimality condition
on J .

Second-order derivatives of J with respect to u are col-
lected in the Hessian matrix H. If H is negative-definite,
the considered solution u is an optimal solution, but no
DOF are left when the optimality condition on J holds. If
H is negative-semidefinite it means that the Hessian does
not have full rank. An orthonormal basis B for the inde-
termined directions of H can than be obtained through a
singular value decomposition:

H = U · Σ · V (17)

The orthonormal basis B consists of those columns of V
that relate to singular values of zero, i.e. B = {vi | σi =
0, i = 1, . . . , Nu}, where Nu is the number of parameters
that represent the DOF in the input.

Not all orthogonal directions spanned by the columns of
B will be redundant DOF. These directions are redundant
DOF, if they are linear and all higher order derivatives
are zero as well, which at this point in time is impossi-
ble to proof for reservoir models. B is however a basis
for redundant DOF for a quadratic approximation Ĵ of
objective function J . As Ĵ can be considered to be an
acceptable approximation for small deviations from u∗, B
can be regarded as an acceptable basis for the redundant
DOF for small deviations from u∗.

Approximate Hessian matrix Unfortunately, no reser-
voir simulation package is currently capable of calculating
second-order derivatives. However, using the gradient in-
formation second-order derivatives can be approximated.
Within this work a forward-difference scheme is adopted:

∂2J

∂ui∂uj
≈ ∇Ji(u + hjej) −∇Ji(u)

2hj
+

∇Jj(u + hiei) −∇Jj(u)
2hi

(18)

Where ei is a canonical unit vector, i.e. a vector with a
1 at element i and 0 elsewhere and hi is the perturbation
step size that relates to parameter ui of u. In total Nu +1
simulations (function evaluations) are required to obtain
the approximate Hessian matrix Ĥ at a particular optimal
solution u∗.

4.2 Hierarchical optimization method

Adopting the approximation of H as described in Subsec-
tion 4.1, the following iterative procedure is proposed to
attack the hierarchical optimization problem (13) - (16)
with ε = 0:

(1) Find a (single) optimal strategy u∗ to primary objec-
tive function J1 and use u = u∗ as starting point in
the secondary optimization problem.

(2) Approximate the Hessian matrix H of J1 with respect
to the input variables at (initial input) u and deter-
mine an orthonormal basis B for the null-space of Ĥ.

(3) Find the improving gradient direction ∂J2
∂u for the

secondary objective function J2.
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Fig. 2. 3D reservoir model with 4 production and 8 injec-
tion wells. The geological structure involves a network
of meandering channels in which the fluids flows ex-
perience less resistance, due to higher permeability.

(4) Project ∂J2
∂u onto the orthonormal basis B to obtain

projected direction d, such that d is an improving di-
rection for J2, but does not affect J1. The projection is
performed using projection matrix P, see Luenberger
(1984):

d = P ·
(

∂J2

∂u

)T

(19)

P = B · (B ·T B
)−1 · BT (20)

(5) Update u using projected direction d in a SA method.
unew = uold + τ · d, (21)

where τ is an appropriately small step size such
that the quadratic approximation of J1 is justified.

(6) Perform steps 2 through 6 until convergence of J2.

In the next section a numerical example is presented where
the iterative hierarchical optimization structure is tested
on a 3D heterogeneous reservoir model.

5. NUMERICAL EXAMPLE

The hierarchical optimization procedure is applied to a 3-
dimensional oil reservoir model, introduced in Van Essen
et al. (2006). The life-cycle of the reservoir covers a period
of 3,600 days and is chosen such that all oil can be
produced within that time frame. The length of the life-
cycle is in this example not incorporated as additional
optimization parameter. The reservoir model consists of
18,553 grid blocks, as depicted in Figure 2, and has
dimensions of 480×480×28 meter. Its geological structure
involves a network of fossilized meandering channels in
which the flowing fluids experience less resistance, due to
higher permeability. The average reservoir pressure is 400
[bar].

The reservoir model contains 8 injection wells and 4
production wells. The production wells are modeled using
a well model (8) and operate at a constant bottom hole
pressure pbh of 395 [bar]. The flow rates of the injection
wells can be manipulated directly, i.e. the control input u
involves injection flow rate trajectories for each of the 8



injection wells. The minimum rate for each injection well
is 0.0 [ m3

day ], the maximum rate is set at a rate of 79.5 [ m3

day ].

The control input u is re-parameterized in time using a
zero-order-hold scheme with input parameter vector θ.
For each of the 8 injection wells, the control input u
is re-parameterized into 4 time periods tθi

of 900 days
over which the injection rate is held constant at value θi.
Thus, the input parameter vector θ consists of 8 × 4 = 32
elements.

5.1 Life-cycle optimization

The objective function for the life-cycle optimization is
defined in terms of NPV, as defined in Equation (12), with
ro = 126 [ $

m3 ], rw = 19 [ $
m3 ] and ri = 6 [ $

m3 ]. The discount
rate b is set to 0. Thus, the life-cycle objective relates to
undiscounted cash flow.

The optimal input - denoted by uθ
∗ - obtained after

approximately 50 iterations, is shown in Figure 3. None
of the input constraints (11) are active for uθ

∗. The value
of the objective function corresponding to input uθ

∗ is
47.6 × 106 $.

5.2 Hierarchical optimization

A secondary objective function J2 was defined to empha-
size the importance of short-term production. To that end,
J2 is chosen identical to the primary objective function
but with the addition of a very high annual discount rate
b of 0.25. As a result, short-term production is weighed far
more heavily than future production. Note that due to the
very high discount rate, the actual value of J2 no longer
has a realistic meaning in an economic sense.

The hierarchical approach as presented in Subsection 4.2
is applied. The total number of simulation runs needed to
approximate the Hessian (Ĥ) is 33. However, the required
simulation time was vastly reduced by parallel processing
the simulations.
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Fig. 3. Input trajectories for each of the 8 injection wells
for the initial optimal solution uθ

∗ to J1 (dashed
line) and the optimal solution ũ∗

θ after the constrained
optimization of J2 (solid line)
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Fig. 4. Values of the secondary J2 and primary J1 objective
function plotted against the iteration number for the
constrained secondary optimization problem.
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Fig. 5. Values of the secondary J2 and primary J1 ob-
jective function plotted against the iteration number
for the secondary optimization problem, no longer
constrained by the orthonormal basis B.

Due to the fact that this example involves a numer-
ical model and an approximation of the second-order
derivatives, the selection criterion for B is relaxed. Those
columns vi of V were selected that correspond to singular
values for which σi

σ1
< 0.02 instead of σi = 0. The projected

gradients d were again used in a steepest-ascent scheme.
For the quadratic approximation of J1 to be justified,
uθ,new must remain close to uθ,old. To achieve that, d was
normalized and a constant step size τ of 1 was used. Due to
time restrictions, the hierarchical optimization of J2 was
terminated after 210 iterations with final control input ũ∗

θ.
To evaluate the results of the hierarchical optimization, a
second optimization case was carried out, where optimiza-
tion of J2 was performed without projection on B. As a
result, the obtained control input - denoted by ũθ - does
in this case not ensure optimality of J1.

Figure 4 displays the values of J1 and J2 plotted against
the iteration number for the hierarchical optimization
problem. It shows a considerable increase of J2 of 28.2%
and a slight drop of J1 of -0.3%. In Figure 3 the input
strategy after the final iteration step is presented. It can
be observed that the injection strategy shows a substantial
increase in injection rates at the beginning of the produc-
tion life and a decrease at the end. The values of J1 and J2

plotted against the iteration number for the unconstrained
optimization of J2 are shown in Figure 5. Again an increase
of J2 of 28.2% is realized, but now at a cost of a decrease
of J1 of -5.0%. Finally, Figure 6 shows the value of the
primary objective function J1 over time until the end of
the producing reservoir life for uθ

∗, ũ∗
θ and ũθ. Input ũ∗

θ
shows a steeper ascent of J1 than uθ

∗, while their final
values are nearly equal. Input ũθ shows initially the same
steep ascent as ũ∗

θ, but J1 drops at the end of the life of
the reservoir.
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6. CONCLUSION

Model-based optimization is a relatively new approach
to oil recovery from petroleum reservoirs. Optimization
studies have shown a considerable potential increase in
life-cycle performance. However, increased understanding
of the optimal control problem and characteristics of the
optimal solutions is necessary to take the next step towards
a real-life application.

Within this work the issue of multiple objectives in oil
production is addressed. A hierarchical approach is in-
vestigated by means of a simulation experiment. For the
presented experiment we conclude that:

• There exist redundant DOF in the input strategy
u with respect to the optimality of the life-cycle
objective. This implies the existence of an optimal
subset S of connected optimal solutions within the
solution space D.

• The redundant DOF create enough freedom to sig-
nificantly improve the secondary objective function.
Moreover, the difference between the initial and final
input strategy to the secondary optimization problem
is substantial. This suggest that S occupies a consid-
erable space within decision variable space D.

• The presented hierarchical optimization procedure
provides a method to incorporate short-term perfor-
mance objectives into problem setting of maximiz-
ing life-cycle performance of oil recovery. Using the
hierarchical structure, optimization of the secondary
objective may be executed without significantly com-
promising the primary objective.

Under which conditions these conclusions also apply to
different life-cycle waterflooding problems and/or different
reservoir models will be subject for further investigation.

6.1 Discussion

The presented hierarchical optimization approach is com-
putationally very demanding and becomes infeasible for

more realistic reservoir models with an increased number
of input parameters. A different method to approximate
the Hessian requiring less simulation runs may be con-
sidered to resolve this, e.g. the secant method. However,
calculating second-order derivatives may be avoided al-
together when the hierarchical optimization problem is
imbedded in the adjoint formulation, as mentioned in Sec-
tion 4. This approach will be the focus of future research.

Within this work, uncertainty - of the model and/or
the objective function parameters - was neglected. In
literature, a number of methods are presented to attack the
problem of life-cycle optimization under uncertainty, using
a closed-loop approach. For a good overview see Jansen
et al. (2008). Without considerable effort, the presented
hierarchical optimization structure can be integrated into
this closed-loop framework.
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