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Abstract: This work proposes a dynamic PCA modeling method for dynamical non-linear
processes. This method uses fault free data to construct data matrix used to compute the
correlation matrix and faulty system data in order to fix the dynamic PCA model parameters
(the time-lag and the number of principal components). It is shown that the sensitivity of
dynamic PCA-based fault detection depends on the parameters used in the model. This method
is tested on a three serial interconnected tanks and subject to fluid circulation faults in its pipes.
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1. INTRODUCTION

The use of multi statistical process control tools also
known as MSPC became frequent for the modeling, control
and diagnosis of complex and over-instrumented processes
(chemicals, microelectronics, pharmaceutical..., see Venk
(2003)). Static principal component analysis (PCA) is
one among the most popular statistical methods, it was
used successfully as a modeling tool for statical and slow
dynamics processes in linear or non-linear cases, (see Qin
(2003)). The extension of PCA for the dynamical model-
ing, called DPCA, was proposed in Ku (1995). Other work
tackled this subject, like in Lee (2004), Li (2003), Mina
(2007), Treasure (2004), Xie (2006). In all methods pre-
sented in scientific litterature, the model used as reference
in the diagnosis procedure is obtained via the minimiza-
tion of a criterion depending on the nominal data of the
process. However, the obtained model can be inadequate
for changes detection purposes since the minimized crite-
rion does not necessarily maximize the changement impact
of the process on the computed model (see Tamura (2007),
Kano (2002)). Many changement types can affect the
process, among them one distinguishes : sensors/actuators
failures (see Huang (2000)), performance degradation (see
Kano (2002)), operating point changes (see Zhao (2004))
and process structure modification or ”system fault” (see
Huang (2007)). These changes can be highlighted by var-
ious statistical tests chosen according to the changement
type to be detected. For further details on these tests (also
called residuals), the reader can consult Harkat (2006),
Kano (2001), Singhal (2005), Guerfel (2008). This work
proposes a modeling method of dynamic, linear or non-
linear processes via DPCA. This method jointly uses
nominal process data to build the correlation matrix to
diagonalize and system fault type data to fix the time-
lag and the principal component number to retain for

the DPCA model. The paper is divided into the following
sections. Section 2 recalls shortly the static PCA modeling
and its structural parameter. Section 3 defines the dynamic
PCA modeling and its structural parameters. The different
changes which can affect a process and the statistical
test used in this work to detect the system fault type
are defined in section 4. The proposed modeling method
permitting the choice of the time-lag and the number of
principal component to retain for the DPCA model in the
case of dynamical non-linear process is presented in section
5. Section 6 illustrates the application of the method on
a three serial tanks subject to fluid circulation faults in
their pipes. Finally, the last section provides a concluding
summary of this work.

2. STATIC PRINCIPAL COMPONENT ANALYSIS

For the vector z(k) = [z1(k) z2(k) . . . zm(k)]
t
, scaled

to zero mean and unity variance and containing the m
observed inputs/outputs of the process in the instant k,
the data matrix ZN resulting from the juxtaposition of
z(k) in different instants is written :

ZN = [ z(k) · · · z(k + N − 1) ]
t

(1)

The subscripts N designates the number of observations
used in the construction of the matrix ZN .
Modeling a process via static PCA consists in seeking an
optimal linear transformation (with respect to a variance
criterion) of the original data matrix ZN into a new one
called T and defined as follows :

T = ZNP ; T = [ t1 · · · tm ] ∈ R
N×m (2)

The vectors tq ∈ R
N , q ∈ {1, . . . ,m}, called principal

components are uncorrelated and arranged in the decreas-
ing variance order. The column vectors pq of the matrix P



represent the eigenvectors corresponding to the eigenvalues
λq obtained from the diagonalization of the correlation
matrix Σ of ZN :

Σ = PΛP t ; PP t = P tP = Im (3)

the notation Λ = diag(λ1 . . . λm) designates the diagonal
matrix of eigenvalues arranged in the decreasing magni-
tude order λ1 ≥ λ2 ≥ . . . ≥ λm. With the triple partition-
ing :

Λ =

[
Λ̂ 0

0 Λ̃

]
, P =

[
P̂ P̃

]
, T =

[
T̂ T̃

]
(4)

The data matrix can be decomposed in the following form :

ZN = ẐN + EN with ẐN = ZN Ĉ ; EN = ZN C̃ (5)

The matrices Ĉ = P̂ P̂ t and C̃ = Im − Ĉ form the static
PCA model of the process (for further details see Jollife

(2003)). The matrices ẐN and EN represent, respectively,
the modeled and the non modeled variations of ZN from
� components (� < m). The first � eigenvectors forming

the matrix P̂ ∈ R
m×� constitute the representation space

whereas the last (m − �) eigenvectors forming the matrix

P̂ ∈ R
m×� constitute the residual space.

The identification of the static PCA model thus consists in
estimating its parameters by an eigenvalue/eigenvector de-
composition of the matrix Σ and determining its structural
parameter which is the number of principal components �
to retain. An incorrect choice (too large or too small) of �
could mask the changes occurring in the modeled process
or gives false alarms which affect the change detection
procedure (see Qin (2003)). Many methods were proposed
to fix � in the static PCA model. The reader can find more
details in Valle (1999). Most of these methods are heuristic
and give a subjective number � (see Harkat (2005)). In
order to mitigate the disvantages of the heuristic methods,
Qin and Dunia have proposed to fix � via the minimization
of a criterion called VNR which represents the variance
of the reconstruction error of the process variables (see
Qin (2000)). However, it is noted that the VNR criterion
underestimates the number � exact to retain in real appli-
cations cases (see Valle (1999)). All the methods aiming at
the determination of � seek to find its theoretical or exact
value called (�th) which represents the theoretical number
of linear or quasi-linear relations existing between the
different components of z(k). These methods are sensitive
to the signal noise ratio and depend on the nature of the
process non linearity. It is also noted that � can be different
from �th in the case of models built for diagnosis purposes
provided that the static PCA model (constructed with �
components) can detect changes (see Frank (2000)). From
this idea was born a new process modeling method via
static PCA. Proposed in Tamura (2007), this method uses
nominal process data to build the correlation matrix which
will be diagonalized and faulty data in order to fix �.

3. DYNAMIC PRINCIPAL COMPONENT ANALYSIS

Dynamic principal component analysis proposed in Ku
(1995) and known as DPCA aims at finding dynamical
linear relations between the process variables. The princi-
ple of this method is identical to the static PCA. Starting
from a scaled to zero mean and unity variance data vector

zd(k) = [zt(k) zt(k − 1) . . . zt(k − s)], where s designates
the used time-lag, the data matrix Zd

N (k, s) ∈ R
N×m(s+1)

is built as follows :

Zd
N (k, s) =

⎡
⎢⎢⎢⎣

zt (k) . . . zt (k − s)
zt (k + 1) . . . zt (k − s + 1)

...
. . .

...
zt (k + N − 1) . . . zt (k + N − 1 − s)

⎤
⎥⎥⎥⎦(6)

with N > m(s + 1) and k > s.
The correlation matrix obtained from Zd

N (k, s), noted Σd,
is computed and diagonalized in order to obtain the eigen-
vectors and the eigenvalues matrices noted respectively Pd

and Λd. Each one of these two matrices is divided into two
parts the first corresponding to the representation space
(Λ̂d, P̂d) and the second corresponding to the residual

space (Λ̃d, P̃d). The principal components vector noted
td ∈ R

1×m(s+1), can be computed in an instant k as
follows :

td(k) =
[
t̂d(k) | t̃d(k)

]
= zd(k)Pd = zd(k)

[
P̂d | P̃d

]
(7)

The structural parameters in DPCA modeling are the
number of principal components � and the time-lag s. The
number � can be fixed via the methods used in static PCA
after the choice of s which is a very delicate problem. The
modeling of data obtained from dynamic process via static
PCA constructs an approximate static model of the real
process and does not reveal its exact structure (see Ku
(1995)). It is possible to detect modifications in dynamical
processes via static PCA as in Harkat (2006) and Sharmin
(2008), but the theoretical bases of the method are lost
since the principal components are no longer uncorrelated
and do not follow a normal multivariate statistical dis-
tribution. In this case, it will be very difficult to detect
small changes in the process parameters as long as the
variation domain of the process variales remain the same
before and after the change. For a well chosen time-lag
s = smin, all the static and dynamic relations ruling
the process will be represented by the last eigenvectors
corresponding to the smallest eigenvalues of Σd computed
from Zd

N (k, smin). Taking a time-lag s higher than smin

in the construction of Zd
N (k, s) used for the computation

of the DPCA model will not bring any supplementary
information but will add redundant relations which were
obtained from the construction of the DPCA model using
the matrix Zd

N (k, smin) (see Ku (1995)). Many methods
were proposed for the choice of s. They seek to find the
theoritical s = smin, most of them are heuristic as in
Ku (1995) or resulting from the identification techniques
as AIC, see Akaike (1974), Larimore (1990), Li (2003)
and MDL, see Simoglou (2002), Rissanen (1978) which
privilege the approximation of the data matrix. None of
those methods was built in the purpose of minimization of
s compared to fault detection.

4. STATISTIC USED FOR SYSTEM FAULT
DETECTION

The physical processes are subject to changes in their op-
erating conditions. In the case of non stationary processes,
these changes can be sensors/actuators failures (see Huang
(2000)), operating point changes, performance degrada-
tion or process structure modification. The operating point



changes are characterized by an augmentation in the mean
of one or many inputs (see Zhao (2004)). The process
performance degradation can be expressed as an augmen-
tation in the variance of one or many process variables
under the hypothesis of independent and identically dis-
tributed noise (see Kano (2002)). The process structure
modifications known as ”system fault” appear as changes
in the structure or a modification in its model parameters
(see Huang (2007)). All these changes can be highlighted
by various statistical tests chosen according to the change-
ment type to be detected. Only the system fault type is
included in this work. The best indices for the detection
of such modification are the ones based on the residual
space (see Guerfel (2008)). For this reason, one proposes
the use of the Di statistic, i = 1, 2, . . . , (m(s + 1) − �),
which is defined in Harkat (2006) as the sum of squared
last principal components. This statistic is computed every
instant k :

Di(k) =

m(s+1)∑
j=m(s+1)−i+1

(
t̃dj (k)

)2
(8)

The variable t̃dj (k) designates the jth principal component
obtained at the instant k. The index Di represents an
SPE (see box (1954)) computed from a DPCA model with
(m(s+1)−i) components, its detection threshold τ2

i,α, can
be computed in the following way :

τ2
i,α = g(i)χ2

h(i),α
(9)

The notation χ2 designates the Chi-square distribution,
α designates the used confidence limit, g(i) and h(i) are
defined as follows :

g(i) =

m(s+1)∑
j=m(s+1)−i+1

λ2
j

m(s+1)∑
j=m(s+1)−i+1

λj

h(i) =

(
m(s+1)∑

j=m(s+1)−i+1

λj

)2

m(s+1)∑
j=m(s+1)−i+1

λ2
j

(10)

The quantities λj , j ∈ {m(s + 1) − i + 1, . . . , m(s + 1)},
designate the jth eigenvalues of Σd. A system fault is
detected if the Di index is higher than its threshold τ2

i,α.

5. PROPOSITION FOR DYNAMICAL PROCESSES
MODELING

The proposed method is similar to the one defined in
Tamura (2007) and called MDM abreviation of Multi
Dimensionnal Monitoring. Contrary to the MDM, the
proposed method allows not only the choice of � but
also the choice of the minimum time-lag s to retain for
the data matrix Zd

N (k, s) used in the construction of the
DPCA process model. The principle of the method is the
following :

(1) Begin method
(2) Initialization Sinit = 0 and � = 0
(3) Build Zd

N (k, Sinit), Compute Σd, Pd and Λd

(4) Compute Di from system fault data for i varying from
1 to the number of column in Zd

N (k, s) minus 1
(5) If the fault is detected with any of Di then go to step

7 else go to step 6
(6) Sinit = Sinit + 1 go to step 3

(7) s = Sinit and � is equal to the difference between the
number of column in Zd

N (k, s) and the largest value
of i which permits the fault detection.

(8) End method

The disadvantage of the proposed method lies in the fact
that a knowledge of information on the system fault is
necessary to ensure the choice of structural parameters
(s and �) to be retained for the DPCA model. From
another point of view, if information on the system fault
is available, this method becomes very attractive because
it determines the simplest model allowing the system fault
detection. Figure (1) summarizes the algorithm of the
method in the case of a single system fault ”j” affecting
the modeled process.
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Fig. 1. Algorithm of the proposed method for the deter-
mination of s and � in the DPCA model

In order to supress false alarms, the process is considered in
failure mode (Di > τ2

i,α), if Di has shown eight succeeding

values larger than τ2
i,α. The value ”eight” is determined in

an empirical way and must be adjusted according to the
treated application.

6. APPLICATION IN THE MODELING OF THREE
TANK SYSTEM

The modeled process illustrated in figure (2), is formed
by three identical serial tanks. It contains two inputs :
flows q1, q2 and three outputs H1, H2 and H3 representing
respectively the heights in the first, second and third tanks.



These tanks are interconnected at the bottom by pipes.
Two valves V3 and V2, separating respectively tank 2 from
tank 3 and tank 2 from the outside are introduced in
order to model the flows perturbations in the pipes. For a
sampling period equal to one second, the discrete process
equations are :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1(k) = A−1 (q1(k) + q31(k) − q10(k)) + H1(k − 1)
H2(k) = A−1 (q2(k) − q23(k) − q20(k)) + H2(k − 1)

H3(k) = A−1 (q23(k) − q31(k)) + H3(k − 1)

q10(k) = K1

√
H1(k)

q20(k) = K2

√
H2(k)

q31(k) = K31f (H3(k) − H1(k))
q23(k) = K23f (H2(k) − H3(k))

(11)

where A equal to 0.01539m2, designates the tank section.
The constants K1, K2, K31 and K23 respectively equal
to 1.816 e−4, 9.804 e−5, 1.005 e−4 and 7.804 e−5 are the
process characteristics. The term f (�) designates a non
linear function defined as follows :

f (x)
Δ
= sign (x)

√
|x| (12)

The measured process variables are the inputs zb
1, zb

2 and

10q
31q 23q 20q

1H
3H

2H

2q1q

3V
2V

Fig. 2. Three tanks system

the outputs zb
3, zb

4 and zb
5. Theses measures are related

in the instant k to the physical values via the following
equations : ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zb
1 (k) = H1 (k) + ε1 (k)

zb
2 (k) = H2 (k) + ε2 (k)

zb
3 (k) = H3 (k) + ε3 (k)

zb
4 (k) = q1 (k) + ε4 (k)

zb
5 (k) = q2 (k) + ε5 (k)

(13)

The quantities εr (k) , r ∈ {1, . . . , 5} designate gaussian
centered measurement noise. Its standard deviation is
equal to 3% of that of the entries. The flows q1 and q2

are expressed in m3/s. They are chosen to be random
durations crenels with variable amplitudes respectively
in [3.20, 6.71] × 10−5 for q1 and in [5.73, 9.57] × 10−5

for q2. The tanks initial heights are expressed in meter.
Their values are 0.147, 0.276 and 0.195 respectively for
the first, second and third tank. The system is firstly
simulated under nominal operation during 4000 samples.
After centering and reducing the inputs/outputs measures,
the vector z is built at each instant k as follows :

z(k) = [ z1(k) z2(k) z3(k) z4(k) z5(k) ]
t

(14)

where zr(k) designates the centered and reduced value of
zb
r(k). The data matrix is constructed via (1). It will be

used in the computation of the matrices Λ and P .
In the dynamical case, the vector zd is constructed in

an instant k for a time-lag s using time-lagged vectors
z obtained in the static case as following :

zd(k) =
[
zt(k) zt(k − 1) . . . zt(k − s)

]
(15)

The data matrix Zd
N (k, s) is built via (6). It will be used

for the computation of the matrices Λd and Pd.
Figure 3 shows the process scree plot for a time-lag s
respectively equal to zero, one and two. The eigenvalues
of Σ (built for s = 0) are not null and do not indicate the
presence of any linear or quasi linear relation between the
measured process variables at the same instant. The last
three eigenvalues of Σd built for s = 1 are quasi null and
show the existance of three quasi linear relations verified
by the measured process variables between two sampling
instants. The correlation matrix Σd built for s = 2 shows
six quasi null eigenvalues. They indicates the presence of
six quasi linear relations verified by the measured process
variables between three sampling instants. The approxima-
tion of the non linear relations verified by the measured
process variables may be better if one uses time-lags higher
than two but the computation complexity will increase as
well.
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Fig. 3. Scree plots for s = 0, s = 1 and s = 2

Twenty measures representing a system fault are generated
in order to fix the time-lag s used for the construction
of Zd

N (k, s). This system fault represents a variation of
1.1 of K2 from its nominal value. The application of the
algorithm in section 5 gives that s = 1 and � = 7 are
sufficient to detect such a fault.
A second simulation shown in figure 4 is realized during
4000 instants and perturbations in flows circulation are
introduced by varying K2 in the following way. For the
first 1000 instants, K2 is equal to its nominal value. In
the second 1000 instants, K2 is equal to 1.1× its nominal
value. In the third 1000 instants, K2 is equal to 1.2× its
nominal value. For the latest 1000 instants, K2 is equal to
1.3× its nominal value.
The evolution of the statistics Di, i ∈ {i, . . . , 4}, respec-

tively for s = 0 and s = 1 in the case of the second simu-
lation are shown in figure 5 and 6. On one hand, the flows
perturbations are not detectable with the statical PCA
model. The statistics Di obtained from its application on



0 500 1000 1500 2000 2500 3000 3500 4000
5

6

7

8

9

10 x 10−5

z5
b

Seconds

m3 /s

0 500 1000 1500 2000 2500 3000 3500 4000
3

3.5

4

4.5

5

5.5

6

6.5

7 x 10−5

z4
b

Seconds

m3 /s

0 500 1000 1500 2000 2500 3000 3500 4000
0.12

0.14

0.16

0.18

0.2

0.22

0.24
z3

b

Seconds

me
ter

0 500 1000 1500 2000 2500 3000 3500 4000
0.15

0.19

0.23

0.27

0.31

0.35
z2

b

Seconds

me
ter

0 500 1000 1500 2000 2500 3000 3500 4000
0.08

0.1

0.12

0.14

0.16

0.18

0.2
z1

b

Seconds

me
ter

Fig. 4. Evolution of flows zb
5, zb

4 and heights zb
3, zb

2 and zb
1

in the second simulation

the current process data are always under their thresholds
(figure 5) excepting some aberrant values. On the other
hand, the flows perturbations are well detected with a
DPCA built with s = 1. The statistics Di, i ∈ {1, . . . 3},
obtained from its application on the current process data
allow the detection of all the system faults that were
simulated. The maximal dimension of the residual space
that can detect the perturbations is equal to three. The
time-lag s used to construct the data matrix from which
the DPCA model is built depending on the magnitude
of the system fault to be detected. Increasing the value
of s may lead to a better linear approximation of the
real non linear relations existing between the time-lagged
process measurements which can reduce the magnitude of
the system fault to be detected.

7. CONCLUSION

The proposed method permits the estimation of the time-
lag s and the choice of the principal component number �
used in the process modeling via DPCA. Contrary to the

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

D1

Seconds
0 500 1000 1500 2000 2500 3000 3500 4000

0

0.5

1

1.5

2

2.5

3

3.5
D2

Seconds

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8
D3

Seconds
0 500 1000 1500 2000 2500 3000 3500 4000

0

2

4

6

8

10

12
D4

Seconds

Fig. 5. Evolution of Di, i ∈ {1, . . . , 4} in the case of s = 0

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 x 10−4

D1

Seconds
0 500 1000 1500 2000 2500 3000 3500 4000

0

0.5

1

1.5

2

2.5

3

3.5 x 10−4

D2

Seconds

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5 x 10−4

D3

Seconds
0 500 1000 1500 2000 2500 3000 3500 4000

0

1

2

3

4

5

6
D4

Seconds

Fig. 6. Evolution of Di, i ∈ {1, . . . , 4} in the case of s = 1

majority of the existing methods which use data gathered
during nominal operation conditions to estimate s and
�, the proposed method uses data representing nominal
process operating condition to build the data matrix which
is used in the computation of DPCA model and other
process data belonging to the system fault type to compute
the structural parameters s and �. The suggested method
proves to be interesting if information relating to the
system fault mode is a priori available. In this case, the
method determines the least complex model allowing the
detection of the considered system fault. Built around a



particular operating point, this method can be sensitive
to operating point changes. In the abscence of a system
fault, the obtained model presents a risk of generating
false alarms due to a shift of the current process variables
operating point. The extension of the method to multiple
system fault cases and the minimization of the false alarms
due to the operating point shift will be considered in
forthcoming works.
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