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Abstract: Nearly 20-30% of all process control loops oscillate due to stiction and lead to loss
of productivity. Thus, the detection and quantification of stiction in control valves using just the
raw operating data is an important component of any automated controller performance monitoring
application. Many techniques have been proposed for the detection and quantification of stiction. Pattern
based identification approaches use unique shapes of the PV and OP data to identify stiction. Other
approaches that include some measure of nonlinearity index have also been used to identify stiction.
A solution technique for stiction detection in nonlinear processes with known process models is also
available. In this paper, one possible approach to detect stiction in nonlinear process control loops with
unknown process models is discussed.

1. INTRODUCTION

Research on developing automated controller performance
monitoring systems has been increasing in the past decade.
Control strategies such as Model Predictive Control (MPC) or
other supervisory control are crucial for optimization of pro-
cess operations. Performance gains from such advanced control
techniques depend on how effectively the lowest control ele-
ments in the control strategy track the desired set points. A spate
of surveys on the performance of control loops [Bialkowski,
1993, Ender, 1993, Entech, 2005, Desborough and Miller,
2001] indicate that a majority of control loops in processing in-
dustries perform poorly. Performance demographics of 26,000
PID controllers collected across a wide variety of processing
industries in a two year time span indicate that the performance
of 16% of the loops can be classified as excellent, 16% as
acceptable, 22% as fair, 10% as poor, and the remaining 36%
are in open loop [Desborough and Miller, 2001]. The impact of
this has to be seen from the fact that PID is the dominant control
algorithm in the industry accounting for 97% of the regulatory
loops [Desborough, 2003]. This has led to increasing interest in
automated Controller Performance Assessment (CPA) tools in
recent years. The three major reasons for deterioration of con-
trol performance are: badly tuned controllers, oscillating load
disturbances, or nonlinearities in control valves. 20% to 30% of
all control loops oscillate due to valve problems caused by static
friction or hysteresis [Bialkowski, 1993, Miller, 2000] resulting
in performance deterioration. It was found that over 80% of all
valves adjusted by Entech Control Engineering failed dynamic
performance standards due to stiction, backlash or oversized
design. Thus the task of detecting stiction or other nonlinearities
in valves from routine operating data is a challenging task and
is an important component in any CPA suite.
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2. PROBLEM DEFINITION

A typical process control loop with stiction in the control valve
can best be depicted as shown in the Figure 1. As seen, the
stiction precedes the control valve dynamics and the process
transfer function also includes the valve dynamics. The fun-
damental problem that is being solved in this paper is one of
identifying the root cause of oscillation in the process variable
(PV) as being due to either stiction or external oscillations. In
this work, the focus is on a model-based solution approach to
this problem. There are solutions for stiction detection based
on the analysis of the input-output data such as the shape based
analysis proposed by Rengaswamy et al. [2001], Srinivasan
et al. [2005a] and higher order statistics based approach pro-
posed by Choudhury et al. [2004]. Most of these approaches
rely on the process being linear. For non-linear process Nal-
lasivam and Rengaswamy [2008] proposed a solution strategy
that works when the process model is known. However, there is
no work on detecting stiction in nonlinear control loops when
the process model is not known.

Previous attempts at quantifying stiction were mostly based on
measures developed from the data characteristics such as the
span of controller output (OP) data, apparent stiction, maxi-
mum width of the ellipse fitted by PV-OP plot etc. The first
attempt at quantifying stiction through a joint identification
procedure was by Srinivasan et al. [2005b]. Srinivasan et al.
[2005b] proposed a model-based approach and solved this
problem for a linear process. Their approach is based on the
identification of a Hammerstein model of the system com-
prising of the sticky valve and the process (see Figure 1(b)).
The identification of the linear dynamics is decoupled from
the nonlinear element. The decoupling between the nonlinear
and the linear component is achieved by an iterative procedure.
The solution proposed in Srinivasan et al. [2005b] is shown
in Figure 2. Several stiction quantification attempts based on
this approach have started to appear. A similar approach but



Fig. 1. (a) General process control loop, (b) Process control
loop with stiction element

with a two parameter model to quantify stiction is discussed
in Choudhury et al. [2008]. Another work using a Hammer-
stein ID approach with a two parameter model can be found
in Jelali [2008]. The difference between Choudhury et al.
[2008] and Jelali [2008] seem to be that while a gird search,
similar to Srinivasan et al. [2005b], is used in Choudhury
et al. [2008], genetic algorithms (GAs) are used to identify the
stiction parameters in Jelali [2008]. However, all these methods
assume that the process is linear. Nallasivam and Rengaswamy
[2008] have shown that these approaches fail if the underlying
process is nonlinear and solved this problem for the nonlinear
case when the process model is known. The present work is on
detecting stiction in nonlinear control loops when the process
model is unknown.

Figure 3 depicts the control loop that is being addressed in this
work. From this figure,

y= yp+ yd
y=N(u)+ yd
y=N(V (v))+ yd (1)

where y is the measured process variable pv, which includes
the process component yp and the disturbance component yd ,
which are additive. N is the non linear process transfer function
and u is the valve output, which might not be a measured vari-
able. The valve output u is a function (V ) of the op (v) dictated
by the stiction phenomenon. In this paper, the detection, quan-
tification and isolation of stiction from external disturbances for
the system given in equation 1 is addressed.

x(t) = { x(t−1) i f |u(t)− x(t−1)| ≤ d,u(t) otherwise (2)

3. SOLUTION APPROACH

A single parameter stiction model is given by equation 2. In
this model, the value of the parameter d goes to zero when
stiction is absent in the valve. Thus a non-zero value for
this parameter d indicates the presence of stiction and also
quantifies the stiction level. The estimation of this parameter is
achieved by decoupling the stiction parameter estimation from
the estimation of the process dynamics. This is achieved by

Fig. 2. Solution algorithm proposed by Srinivasan et al.
[2005b]

Fig. 3. Nonlinear control loop in presence of stiction

an iterative process in which a value for d is assumed in an
outer loop and the best fit model for the remaining dynamics in
the inner loop is identified. From Figure 3, since the controller
parameters θc are known, v (op) can be calculated from y.
Using the equation 2 for a given selected value of d, u can be
calculated. Thus the identification problem becomes,

y= yp+ yd
y=N(u)+ yd



Since the process model is not known, by considering yd as a
moving average process, we can write

A(q)y(t) = B(u,q)+C(q)e(t) (3)

where

A(q) = [1+a1q−1+ ...+anaq
−na ]

C(q) = [1+ c1q−1+ ...+ cncq
−nc ]

B(u,q) represents a general nonlinear process. As before u is
known based on the actual output, the controller parameters
and the assumed d value. A predictor form can be obtained for
the system given by equation 3. In the linear model case, this
will lead to a pseudolinear regression problem. One approach to
retain the pseudolinear regression framework in the nonlinear
case would be to parameterize the nonlinear function using a
Nth order discrete Volterra series approximation as below

B(u,q) =
N

∑
n=1

M1
∑
i1=1

...
Mn
∑
in=1

hn(i1, ..., in)

q−i1u(k)...q−inu(k)

With this expression, equation 3 now represents a Volterra MA
model. By considering only the first and second order terms in
the above Volterra series,

B(u,q) =
nb
∑
i=1
h1(i)q−iu(k)+

nb
∑
i=1

nb
∑
j=1
h2(i, j)q−iu(k)q− ju(k)

Now the predictor for equation 3 can be derived as

y(k/k−1) = B(u,q)+ [1−A(q)]y(k)+ [C(q)−1]e(k)

which is

y(k/k−1) =
nb
∑
i=1
h1(i)q−iu(k)+

nb
∑
i=1

nb
∑
j=1
h2(i, j)q−iu(k)q− ju(k)

−a1y(k−1)−a2y(k−2)− ...−anay(k−na)
+c1e(k−1)+ c2e(k−2)+ ...+ cncy(k−nc)

When this predictor is applied to n samples, one would get n
equations which results in the following equation in the matrix
form

Y = XH

This equation can be solved iteratively till the solution con-
verges for a given given selected model order of na, nb and nc
using the following relationship.

H = [XTX ]−1XTY

Based on this second order approximation of the Volterra series,
an approach similar to the one that was used by Nallasivam
and Rengaswamy [2008] for the known model case can be
followed. However, now the model parameters and the MA
process parameters have to be jointly estimated and evaluated
through the AIC criteria. The overall best fit could then be
chosen based on the d parameter that results in the minimum
TSE. This approach is shown in Figure 4.

Fig. 4. Proposed approach

4. CASE STUDY

In this case study, a nonlinear polymerization reactor process
from Doyle et al. [1995] is used. In this nonlinear process a
polymerization reaction takes place in a jacketed CSTR where
the controlled variable is the number-average molecular weight
and the manipulated variable is the volumetric flowrate of
the initiator. A second-order Volterra model in the frequency
domain as given below describes this non-linear process.

P1 = cT1 (sI−A11)−1b1
P2 = cT [(s1+ s2)I−A]−1N(s1−A)−1b (4)

Details on the matrices c,A,N,b can be found in Doyle et al.
[1995].

4.1 Data for testing of the solution approach

This case study is used to demonstrate the effectiveness of
the proposed solution approach in three different scenarios for
stiction detection. These are:

(a) No stiction case
(b) Stiction alone case
(c) Stiction and external oscillation case

Three datasets were generated by using equation 4 as the non-
linear process in Figure 3 to address all the above three scenar-
ios. A PI controller with Kp = 0.3, Ti = 1.0 was used. Data were



100 150 200
38

39

40

41

42

P
V

100 150 200
30

35

40

45

50

100 150 200
30

35

40

45

50

100 150 200
8

10

12

14

16

t
(a)

O
P

100 150 200
11

12

13

14

15

t
(b)

100 150 200
8

10

12

14

16

18

t
(c)

Fig. 5. Data for (a) No stiction (b) Stiction alone (c) Stiction
and external oscillation
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Fig. 6. Result for the approach of Srinivasan et al. [2005b]

simulated for scenario (a) using an external sine oscillation
disturbance of amplitude 20 at a frequency of 0.3142rad/sec
as yd . For scenario (b), a stiction value of d = 1.5 was used.
For scenario (c), both the sine oscillation of scenario (i) and a
stiction value of d = 1.5 were used. The data that are generated
are shown in Figure 5.

4.2 Discussion on the existing approaches

The existing techniques based nonlinearity detection as in
Choudhury et al. [2004] and qualitative pattern matching ap-
proaches as the one proposed in Rengaswamy et al. [2001] will
not work for this dataset. As shown in Nallasivam and Ren-
gaswamy [2008], the model-based approach proposed by Srini-
vasan et al. [2005b] is also not likely to work for this dataset.
To verify this, the data shown in Figure 5(a) for the no stiction
case is tested using the approach suggested in Srinivasan et al.
[2005b] (approach shown in Figure 2). The resulting d vs TSE
plot is shown in Figure 6. As expected, the value of d is incor-
rectly identified. In other words, stiction is detected where it is
not actually present.

5. RESULTS

The dataset (Figure 5(a)), where the approach of Srinivasan
et al. [2005b] failed is used to test the performance of the
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Fig. 8. Result for the stiction alone case
proposed approach shown in Figure 4. Figure 7 shows the result
and as seen, it is clear that the scenario is correctly diagnosed
as being a no stiction case. The minimum TSE is achieved at
d = 0.

The dataset for the other two scenarios (Figures 5(b) and 5(c))
are also tested using this proposed approach. The results are
shown in Figures 8-9. It can be seen from Figure 8, the case of
stiction is also correctly identified with an accurate estimation
of the stiction level. The more difficult third scenario is where
both stiction and an external oscillating disturbance are present,
with the process being nonlinear. The result for this case is
shown in Figure 9. In this case also, not only is stiction detected
but the magnitude of stiction is also accurately estimated.
From these observations, it clear that the proposed solution
approach works well in detecting and isolating the root cause
of oscillation in nonlinear SISO loops.

6. VALIDATION USING DATA FROM PHYSICAL
STICTION MODEL

The aim of this section is to verify how the proposed approach
works when process data is generated by considering physical
stiction model instead of single parameter stiction model. The
physical stiction model that was used for this simulation is the
same as the one used by Srinivasan et al. [2008]. The various
parameters that were used for the physical stiction model are
given in Table 1.
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Table 1. Valve Parameters

Parameter Description Value
P Applied Actuator Pressure psi
A Effective Diaphragm Surface area 100 in2
m Mass of Stem and Plug 3 lb
K Spring rate 300 lbf/in
b Viscous coefficient 0.15 lb/s
Fc Coulomb friction 24 lbf
Fs Static friction 34 lbf
vs Stribeck constant 0.01 in/s

100 150 200
38

39

40

41

42

P
V

100 150 200
20

30

40

50

60

100 150 200
20

30

40

50

60

100 150 200
11.5

12

12.5

13

13.5

14

t
(a)

O
P

100 150 200
8

10

12

14

16

t
(b)

100 150 200
8

10

12

14

16

18

t
(c)

Fig. 10. Data set 2 for (a) No stiction (b) Stiction alone (c)
Stiction and external oscillation

Data were simulated for scenarios (a) and (c) using an external
sine oscillation disturbance of amplitude 5 at a frequency of
0.3142rad/sec as yd . A PI controller with Kp = 0.01, Ti = 0.5
was used for this data generation. The data that are generated
are shown in Figure 10.

This data are tested using the proposed approach and the
results are given in the Table 2. As seen, the absence or
presence of stiction is predicted correctly in all the scenarios as
indicated by a zero or non zero d value respectively. However
the d parameter estimated for scenarios b and c are not the
same as one would expect because of the use of the physical
stiction model in generating the data. The reason for this is
that the single parameter stiction model used in the detection

algorithm is only an approximation of the physical stiction
model. Nonetheless, stiction detection is not compromised.

Table 2. Validation Results

Scenario Predicted stiction
No stiction case d=0
Stiction alone case d=3

Stiction and disturbance case d=0.5

7. DISCUSSION

The proposed approach takes advantage of the fact that the stic-
tion nonlinearity is discontinuous, whereas the process transfer
function is continuous for stiction detection. It was shown that
it might be possible to detect and isolate stiction in some cases
in nonlinear SISO control loops when the process model is not
known. However, extensive studies are needed before any defi-
nite conclusions can be drawn. There are several possible exten-
sions to the proposed approach. The obvious ones include the
use of two parameter stiction model for stiction quantification,
the use of optimization algorithms such as GA for estimating
the stiction parameters and validation with industrial data. Also,
further theoretical work is needed to formalize the approach
proposed in this paper.

8. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of detection of stiction and isolation
of stiction from external oscillations in nonlinear process con-
trol loops was addressed for the unknown model case. While
Nallasivam and Rengaswamy [2008] have demonstrated the
solution strategy for known nonlinear model case, almost no
work exists in the case of unknown nonlinear processes. A
solution approach for the unknown model case was proposed.
The advantages and the limitations of the proposed approach
were discussed.

It is essential to analyze the theoretical basis of the proposed
method for using Volterra models. In addition, it would be
interesting to study the use of Volterra second-order models to
higher order nonlinear systems or linear systems. The former
results in under-modeling of the original process while the latter
results in over-modeling of the underlying linear process. We
are in the process of developing a theoretical basis to ana-
lyze these interesting phenomena [Nallasivam et al. [2009]]. In
future, the efficacy of the proposed approach along with the
underlying theory needs to be further validated with other ex-
amples for different types of disturbances and different stiction
models.
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