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1. INTRODUCTION

This paper describes a novel method to determine the
optimal controls and parameters for a large class of
engineering systems with varying structure which have
the following characteristics:

(1) The systems evolve according to different ordinary
differential equations depending on the values of the
states, controls and parameters.

(2) The vector field is unique and continuous.
(3) The values of the continuous states, controls and

parameters solely determine the vector field.
Example 1. The liquid level dynamics of a tank with a
weir with multiple inlet and outlet flows is

ḣ(t,p) =
n∑

i=1

Fi(t)/A − FW (h(t,p),p) (1)

FW (h(t,p),p) =
{

0 if h(t,p) ≤ h̄

k(h(t,p) − h̄) if h(t,p) ≥ h̄

p = (h̄, k, A)T

where h is the liquid level; A is the cross-sectional area of
the tank; Fi are volumetric flows; h̄ is the weir height; k is
an equivalent valve constant for the weir. The governing
ordinary differential equations are determined by h and
h̄. At h = h̄, two ordinary differential equations are
applicable but the vector field is unique and continuous.

These systems can be expressed in the form,
ẋ(t,p) = f(x(t,p),u(t),p)

where x represents the continuous-valued states, p is
a finite set of continuous-valued parameters, u(t) are
the bounded controls with possible discontinuities at
finitely many points in time. f is continuous on its
domain. The domain of f is partitioned into finitely
many sets, Dk, such that if (x(t,p),u(t),p) ∈ Dk

then f(x(t,p),u(t),p) = fk(x(t,p),u(t),p) where fk
are continuously differentiable with respect to their
arguments. As a result of this particular structure f is

piecewise continuously differentiable with respect to its
arguments.

In order to formulate a finite dimensional optimization
problem, the controls are reformulated as piecewise
constant functions of parameters and time with finitely
many discontinuities at ti, i = 1, . . . , n with ti < ti+1,
t1 = 0 and tn < ∞. As a result of this reformulation,
the dynamics can be represented by a set of equations
ẋ(t,p) = f i(x(t,p),p) if t ∈ (ti, ti+1]. Note that each f i

has a partitioned domain with finitely many partitions,
{Di

k, k = 1, . . . , ni}, and corresponding continuously
differentiable vector fields {f i

k}.
The mathematical program to be solved is

min
p

J(p) =
n−1∑
i=1

∫ ti+1

ti

h(x(t,p),p)dt + H(x(tn,p),p)

(2)

s.t
n−1∑
i=1

∫ ti+1

ti

g(x(t,p),p)dt + G(x(tn,p),p) ≤ 0

ẋ(t,p) = f i(x(t,p),p), ∀t ∈ (ti, ti+1], (3)

x(0,p) = f0(p), i = 1, . . . , n − 1

where H , h, G, g, f0 are continuously differentiable
functions of their arguments that are used to compute
values of the objective, values of the constraints and the
initial conditions.

Standard numerical methods of dynamic optimization
(Betts, 1998) are not applicable to solve (2) because the
f i are not continuously differentiable. Sensitivity results
(Galán et al., 1999) are also not applicable because
given t ∈ (ti, ti+1], it is not a priori known which f i

k
govern the dynamics of the system. Furthermore, at
t ∈ (ti, ti+1] the governing f i

k depends on the value of
p. The solution of (2) not only determines an optimal
p but prescribes a sequence of f i

k in time. This implicit
selection complicates the solution process.



The mixed-integer (Avraam et al., 1998; Bemporad and
Morari, 1999) and the differential variational inequali-
ties, DVI (Schumacher, 2004; Pang and Stewart, 2008;
Raghunathan et al., 2004) approaches make this selec-
tion explicit using transcription. Given [ti, ti+1], a mesh
of time points {τj : j = 1, 2, . . . ni, τ1 = ti τni = ti+1}
is determined a priori. For each τj , a variable, xj , rep-
resenting the continuous state is created. In order to
make the selection of f i

k explicit, (3) needs to be replaced
with suitable algebraic relationships and additional con-
straints. The governing dynamics need to be determined
in the intervals [τj , τj+1]. Both approaches replace (3)
with a discretization such as the forward Euler method.
Both methods introduce additional variables, μk

j , at each
τj for each f i

k and approximate the dynamics between
time points using the function;

∑
k

μk
j f

i
k(xj ,p). For ex-

ample, if the forward Euler discretization is used, an
algebraic relationship replacing (3) is xj+1−xj = (τj+1−
τj)

ni∑
k=1

μk
j f

i
k(xj ,p), j = 1, . . . , ni − 1. Both approaches

replace the integral terms in (2) by appropriate quadra-
tures.

The approaches differ in the way the values of μk
j

are determined. In the mixed-integer approach, μk
j are

binary variables. Additional constraints enforce that a
single μk

j is non-zero at a given τj and that this is
consistent with parameter, p, and state values, xj at
τj . The final formulation is a mixed-integer nonlinear
program. In the DVI approach, μk

j are part of the
solution of an embedded mathematical program of the
states and parameters at each τj . These programs are
replaced with their equivalent KKT conditions.

Both approaches result in large optimization problems
as a result of transcription. Only linear and quadratic
formulations of the mixed-integer approach can be solved
practically. This restricts the underlying ODEs to be
linear and the sets Dk to be polyhedral. The DVI ap-
proach requires that the embedded programs are convex
to guarantee that the KKT conditions are sufficient to
determine an optimal solution. Complementarity con-
straints in the KKT conditions necessitate special solvers
because complementarity conditions violate constraint
qualifications which are necessary for ordinary nonlinear
programming, NLP, algorithms to work. The required
special solvers are not as efficient as usual NLP solvers.

This paper describes a method where the selection of
dynamics is not handled explicitly. The method is based
on single-shooting. In single shooting, the dynamics in
(3) are solved by an initial value solver, IVP. In the
differentiable case, the IVP solver is also used to solve
an auxiliary set of equations to obtain parametric sensi-
tivities. These sensitivities are used to calculate gradient
information for numerical optimization methods. There
are no additional variables or constraints. The resultant
optimization problems do not grow with the number of
time points in the mesh nor the size of the possible set
of ODEs. In addition, the convexity constraints on the
dynamics as in the mixed-integer and DVI approaches
can be relaxed.

In order to use single-shooting on (2), which is a nons-
mooth program, derivative-like information needs to be
obtained. Nonsmoothness also prevents the application
of standard nonlinear programming solvers. In order to
handle these complications, Clarke’s generalized Jaco-
bian (Clarke, 1990) is employed in conjunction with a
class of nonsmooth optimization methods called bundle
methods (Kiwiel, 1985; Mäkelä, 2001) to solve (2).

In the remainder, the necessary mathematical back-
ground is summarized. The method is then described.
The paper ends with an illustrative example and direc-
tions of further research.

2. MATHEMATICAL BACKGROUND

F : R
n → R

m is locally Lipschitz continuous at x if
there exists a neighborhood, Nε(x) and a finite posi-
tive constant, K, such that ‖F(y) − F(z)‖ ≤ K‖y −
z‖ ∀z,y ∈ Nε(x). Rademacher’s theorem states that
locally Lipschitz continuous functions are almost every-
where differentiable on their domain (Rockafellar and
Wets, 1998). The locally Lipschitz continuous property is
preserved under addition and composition of functions.

Let F : R
n → R

m be locally Lipschitz continuous at x,
then the generalized Jacobian (Clarke, 1990) at x is

∂F(x) = co{ lim
xi→x

JF(xi) : xi /∈ S ∪ T } (4)

where co is the convex hull, JF denotes the Jacobian of F
where it exists; S is the set of measure zero nondifferen-
tiable points and T is an arbitrary set of measure zero.
In words, the generalized Jacobian at x is the convex
hull of all the limits of convergent Jacobian sequences
with the Jacobians evaluated at points converging to x.
In finite dimensional Euclidean spaces, the generalized
gradient is the generalized Jacobian when m = 1 and
the elements of the generalized Jacobian are transposed.
Example 2. ḣ(t,p) in (1) is locally Lipschitz continuous
with respect to h̄ and the generalized gradient is:

∂h̄ḣ(t,p) =

⎧⎨
⎩

0 if h(t,p) < h̄

co[0, k] if h(t,p) = h̄

k if h(t,p) > h̄.

Chain rules can be derived for generalized gradients
and Jacobians. Implicit function theorems can be formu-
lated. Necessary conditions of optimality for mathemati-
cal programs with locally Lipschitz continuous functions
can be defined in terms of generalized gradients. For
numerical methods, if the generalized gradient at a point
is known, a direction of descent can be obtained by using
the element of minimum norm.

In general, it is not possible to calculate all the elements
of the generalized gradient at a point to determine
directions of descent. Bundle Methods (Kiwiel, 1985;
Mäkelä, 2001) use an approximation to the generalized
gradient to solve

min
z∈Z

f(z) s.t: gm(z) ≤ 0, m = 1, . . . , M

where f and gm are locally Lipschitz continuous func-
tions. Bundle methods require that only an element of
∂f(z) and of each ∂gm(z) are available. The generalized
gradient at an iterate is approximated by the convex



hull of a set of generalized gradients of nearby points
called the bundle. The element of minimum norm of the
approximation is used as the descent direction. Using a
specialized line search procedure, either the next iterate
is determined or another element is added to the bundle
to change the direction of descent.

Bundle methods converge to stationary points satisfying
KKT type conditions under a semismoothness (Mifflin,
1977; Qi, 1993) assumption on f and gm. Semismooth-
ness guarantees that the iterative line search algorithm
in bundle methods terminates after finite number of
iterations. Similar to local Lipschitz continuity, semis-
moothness is conserved under addition, multiplication
and composition. Piecewise continuously differentiable
functions, finite convex functions and continuously dif-
ferentiable functions are all examples of functions that
are semismooth and locally Lipschitz continuous.

3. METHOD DESCRIPTION

In this section, the theoretical discussion focuses on the
dynamic systems,

ẋ(t,p) = f i(x(t,p),p), ∀t ∈ (ti, ti+1] (5)
x(t1,p) = f0(p), p ∈ P, i = 1 . . . n − 1

where f i : R
nx × R

np → R
nx are piecewise continuously

differentiable with respect to their arguments, f0 :
R

np → R
nx is continuously differentiable and P is

a compact set with non-empty interior. In order to
develop a numerical method, the following assumptions
are made:
Assumption 1. Equation (5) has a solution on [ti, ti+1],
i = 1, . . . , n − 1 for each p ∈ P .
Assumption 2. The domain of each f i is partitioned
into a finite set of subdomains with nonempty interior,
{Di

k, k = 1, . . . , ni} and Di
k = {(v,p) : di

k,j(v,p) ≤
0, j = 1, . . . , ni,k} where di

k,j are continuously differ-
entiable. In other words, the partitions have boundaries
that can be expressed using continuously differentiable
functions and di

k,j(v,p) = 0 represent continuously dif-
ferentiable manifolds of dimension nx×np−1. There ex-
ists a corresponding set of {f i

k} such that f i(x(t,p),p) =
f i
k(x(t,p),p) if (x(t,p),p) ∈ Di

k and f i
k are continuously

differentiable with respect to their arguments.

x(t,p) is a locally Lipschitz continuous (Coddington and
Levinson, 1955) and semismooth function of p (Pang and
Stewart, 2009) as a result of continuity and piecewise
continuous differentiability of f i. The constraints and
objective of (2) are composite functions of semismooth
and locally Lipschitz functions and x(t,p). As a result,
the constraints and objective of (2) are locally Lipschitz
and semismooth functions.

In order to calculate the necessary generalized gradient
information for optimization, an element of the general-
ized gradient of the states with respect to p, ∂px(t,p), is
required. The next theorem provides a sufficient condi-
tion to detect points where an element can be calculated.
It can be deduced from Theorem 7.4.1 in Clarke (1990)
using appropriate chain rules and the definition of the
Jacobian.

Theorem 1. Let x(t, p̄) be a solution of (5). If the set-
valued mapping, ∂(x,p)f i

p(x(t, p̄), p̄) is a singleton for
almost all t ∈ (t1, tn], then for each i = 1, . . . , n − 1,
there exist unique solutions to the matrix differential
inclusions:

Ẏp(t) ∈ ∂f i
x(x(t, p̄), p̄)Yp(t) + ∂f i

p(x(t, p̄), p̄),
∀t ∈ (ti, ti+1]

Ẏx(t) ∈ ∂f i
x(x(t, p̄), p̄)Yx(t), ∀t ∈ (ti, ti+1]

Yp(t1) = 0, Yx(t1) = I.

The following relations hold for all t ∈ (ti, ti+1] except
on set of measure zero,

Ẏp(t) = Jf i
x(x(t, p̄), p̄)Yp(t) + Jf i

p(x(t, p̄), p̄) (6)

Ẏx(t) = Jf i
x(x(t, p̄), p̄)Yx(t) (7)

where Jf i
x and Jf i

p are the partial derivatives of f i with
respect to x and p respectively.

Finally, ∂px(tn, p̄) = Yx(tn)Jf0(p̄) + Yp(tn).
Definition 1. A trajectory, x(t,p), is called singleton
if ∂f i

(x,p)(x(t,p),p) is a singleton for almost all t ∈
[ti, ti+1]. Otherwise, it is called non-singleton.

Note that due to assumption (2) and the piecewise
continuous differentiable nature of f i, the points where
∂f i

(x,p)(x(t,p),p) may not be a singleton are where
di

k,j(x(t,p),p) = 0 holds for some k and j. Trajectories
that are not singleton have arcs that lie on the surfaces
defined by di

k,j(x(t,p),p) = 0.

The next theorem is a result on the occurrence of
non-singleton trajectories for autonomous systems with
piecewise continuously differentiable vector fields.
Theorem 2. Consider the dynamic system

˙x(t) = f(x(t)), t ∈ (0, tf ], x(0) = x0, x0 ∈ X0 ⊂ D (8)
where X0 is an open set in R

nx , D is the bounded domain
where all solutions with initial conditions in X0 remain
for t ∈ (0, tf ]. Let f : R

nx → R
nx be piecewise con-

tinuously differentiable on D. Let assumptions (2) hold
where all di

k,j are continuously differentiable functions
of x. Then the set of initial conditions producing non-
singleton trajectories is a measure zero subset of X0.

Proof. Since f is locally Lipschitz continuous on D,
the set of points where it is not differentiable is a set
of measure zero in D. In addition, due to piecewise
continuous differentiability, the generalized Jacobian is a
singleton where f is differentiable. The only points where
the generalized Jacobian is not a singleton are on the
boundaries of the subdomains which constitute a set of
measure zero in D. The solutions of (8) are unique due to
the Lipschitz continuous property of f on D. Due to the
autonomous nature of the dynamics, no two solutions
intersect for any t ∈ (0, tf ]. Now consider trajectories
that pass through boundary points. Since points on the
boundaries are a set of measure zero in D, the set of
initial conditions producing these trajectories are a set
of measure zero in D. Since the set of initial conditions
that produce non-singleton trajectories is a subset of the
set of initial conditions that produce trajectories passing
through boundary points, the set of initial conditions
producing non-singleton trajectories is a set of measure



zero in D. Finally the intersection of X0 which is open in
R

nx with this set of initial conditions is a set of measure
zero.

If the initial conditions of (8) are functions of a set of
parameters, then the result of the previous theorem may
not hold. It is possible that the functions always map
the parameters to initial conditions resulting in non-
singleton trajectories. Sufficient conditions to determine
functions that map parameters to sets of initial condi-
tions for which theorem (2) holds is under investigation.

In the remainder of the paper, the following statement
is assumed to hold.
Assumption 3. Let P̃ the set of parameters such that
x(t,p) with p ∈ P̃ is not a singleton trajectory. The set
P̃ has measure zero in P .

The equations (5), (6) and (7) have to be solved nu-
merically. The solution of (5) poses no problems and
can be accomplished with an ordinary IVP solver be-
cause f i are Lipschitz continuous vector field on their
domains. On the other hand, solutions of (6) and (7)
require further discussion. Since f i are only piecewise
continuously differentiable, Jpf i and Jxf i are not con-
tinuous on the domain of f i. As a result (6) and (7) are
differential equations with discontinuities in time. These
discontinuities need to be detected for an efficient and
correct solution. By virtue of assumption (2), the points
where f i are not differentiable are on the boundaries of
the partitions and satisfy di

k,j(x(t,p),p) = 0 for some
values of k and j. Event detection algorithms (Park
and Barton, 1996) are used to determine t∗ such that
di

k,j(x(t∗,p),p) = 0. The event detection algorithm
tracks the signs of di

k,j(x(t,p),p) for each i and j. A
sign change implies that the state trajectory, x(t∗,p)
crossed a boundary of discontinuity. The event detection
algorithm finds the earliest time when the boundary
crossing occurred. The integration of (6) and (7) are
restarted at t∗.

Event detection algorithms are also used to detect trajec-
tories that are non-singleton. Once t∗ is detected where
di

k,j(x(t∗,p),p) = 0 for some k and j, ḋi
k,j(x(t∗,p),p)

is checked. If ḋi
k,j(x(t∗,p),p) = 0 for some k and j,

this implies that the state trajectory may not leave the
surface defined by di

k,j(x(t∗,p),p) = 0 resulting in a
trajectory that is possibly non-singleton. Integration is
continued until t + δt where δt is a small quantity. If
there exists any k and j such that di

k,j(x(t∗,p),p) = 0
and di

k,j(x(t∗+δt,p),p) = 0, the trajectory is considered
to be not a singleton trajectory.

In case p̄ does not correspond to a singleton trajectory,
the definition of the generalized Jacobian (4) can be used
to approximate an element of the generalized Jacobian.
Random parameter values in an ε neighborhood, Nε(p̄),
can be used to find a nearby singleton trajectory and
calculate an approximate generalized Jacobian.

The necessary generalized gradient information for the
objective and constraint functions of (2) is obtained by
applying the chain rules for generalized gradients once an
element or an approximation of ∂px(t,p) is calculated.

The calculated generalized gradient information is used
in conjunction with a bundle method to obtain a sta-
tionary point of (2).

4. ILLUSTRATIVE EXAMPLE

In this section, a modified version of the cell cycle specific
chemotherapy model introduced in Pannetta and Adam
(1995) is used to determine an optimal chemotherapy
drug schedule. The dynamics,

α = a − m − n

Ṗ = αP + bQ − FA(vA, P ) (9)

FA(vA, P ) =
{

0 if vA − v̄A ≤ 0
kA(vA − v̄A)P if vA − v̄A ≥ 0

Q̇ = mP − bQ − FB(vB , Q) (10)

FB(vB , Q) =
{

0 if vB − v̄B ≤ 0
kB(vB − v̄B)Q if vB − v̄B ≥ 0

Ẏ = σY (1 − Y/K) − kAvAY − kBvBY (11)
v̇A = uA − γAvA (12)
v̇B = uB − γBvB (13)

represents the behavior of tumor cells and healthy cells
in human tissue under chemotherapy. The tissue com-
prises healthy cells, Y , proliferating tumor cells, P , and
quiescent tumor cells, Q. Chemotherapy comprises two
drugs; A and B. uA and uB are the chemotherapy drug
schedules. vA and vB are the exponentially decaying
drug concentrations in the tissue. Tumor cells develop re-
sistance to drugs. As a result, drugs are effective against
the tumor cells only if their concentrations in the tissue
are above v̄A and v̄B. A fraction, n, of proliferating
cells die of natural causes and and a fraction, m, of
proliferating cells become quiescent cells. The increase
in proliferating cell population by cell division is rep-
resented as another fraction, a, of the proliferating cell
population. In addition, a fraction, b of quiescent cells
become proliferating cells. The tumor cell dynamics are
in (9) and (10).

A logistic equation (11) governs the healthy cell popula-
tion to ensure that the number of healthy cells does not
exceed the carrying capacity, K. Numerical values for
the various parameters are displayed in Table 1. Most
of the values are obtained from (Dua et al., 2008) where
cell cycle specific chemotherapy with a single drug and
without drug resistance is considered. Note that [D] is a
unit of drug concentration. The program,

min
uA,uB

P (tf ,uA,uB) + Q(tf ,uA,uB) (14)

s.t: Y (tf ,uA,uB) ≥ Ymin (15)
umin ≤ uA,j ≤ umax, j = 1, . . . , nf ,

umin ≤ uB,j ≤ umax, j = 1, . . . , nf ,

P (1,uA,uB) = P0, Q(1,uA,uB) = Q0,

Y (1,uA,uB) = Y0, vA(1,uA,uB) = 0,

vB(1,uA,uB) = 0
where uA = {uA,j} and uB = {uB,j} are the set of daily
drug doses for an nf -day treatment, is solved to minimize
the tumor cell population without totally destroying the
healthy cell population. The numerical values used are
in Table 2.



DSL48SE is the IVP solver (Tolsma, 2001; Tolsma and
Barton, 2002; Feehery et al., 1997) used to integrate the
dynamics and the corresponding auxiliary equations to
obtain an element of the generalized Jacobian. The event
detection algorithm of DSL48SE (Park and Barton,
1996) is used to detect non-singleton trajectories. The
necessary Jacobians for the auxiliary system of equations
are obtained using automatic differentiation algorithms
implemented in DAEPACK (Tolsma and Barton, 2000).
The differential equations are integrated with an abso-
lute tolerance of 1 × 10−7 and a relative tolerance of
1 × 10−9.

A modified proximal bundle method based on the al-
gorithm in (Lukšan and Vlček, 2001) is used to solve
(14). A penalty approach to handle (15) is used because
the algorithm in (Lukšan and Vlček, 2001) is handles
only linear constraints on the decision variables. The
objective of (14) is augmented with (15) to obtain

J(uA,uB) = P (tf ,uA,uB) + Q(tf ,uA,uB)+
μk max(Ymin − Y (tf ,uA,uB), 0)

where μk is the penalty parameter. The modified pro-
gram is successively solved three times with increasing
penalty parameter to an optimality tolerance of 1×10−5.
The solution of the preceding programs are used as the
initial guesses for the following programs. For the first
program, the drug schedules are assigned random values
between 0.0 and 5.0. The penalty parameter values are
5000, 25000 and 125000.

The cell population numbers at the beginning and end of
the treatment are in Table 3. The tumor cell population
is reduced to one percent of its initial size. The drug
schedules are shown in Figure 1 and Figure 2. The
preference to use drug B is clearly seen. The effects
of the drugs are proportional to the corresponding cell
populations. Therefore using drug B results in more
effective treatment as the population of quiescent cells is
greater than that of proliferating cells. In addition, the
ratio of tumor cells killed to the ratio of healthy cells
killed per unit drug concentration is larger for drug B.

The drug B schedule has four distinctive phases. The
initial four-day treatment reverses the increase in the
tumor cell population by using drug B as much as
possible. In the next week, the drug B concentration
is allowed to decay to a tolerable level for the patient.
The treatment until the last three days keeps the drug
B concentration at that tolerable level. In the last days
of the treatment, the drug dose is increased to kill the
maximum number of tumor cells. This spike in the
drug concentration shows its effect on the healthy cell
population after the treatment is over and does not affect
(15) significantly.

5. CONCLUSION

In this document, a novel method to optimize the per-
formance of a class of systems with varying structure
has been introduced. The theoretical basis and an ini-
tial implementation has been described. An illustrative
numerical example has been presented.

The implementation of the optimization method will be
streamlined in the future. There are different variants of

Table 1. Parameters of equations (9)-(13)

a 0.500 day−1 v̄A 10.000 [D]

m 0.218 day−1 v̄B 10.000 [D]

n 0.477 day−1 kA 8.400 × 10−3 day−1[D]−1

b 0.100 day−1 kB 8.400 × 10−3 day−1[D]−1

σ 0.100 day−1 K 10000M cells

γA 0.100 day−1 γB 0.100 day−1

Table 2. Parameters of the mathematical
program (14)

tf 31 days Ymin 100M cells

nf 30 Y0 10000M cells

umax 20.00 [D]day−1 Q0 8.00 × 105M cells

umin 0.00 [D]day−1 P0 2.00 × 105M cells

Table 3. Cell Populations at the beginning
and end of treatment

Beginning of Treatment End of Treatment

Y 10000M cells 100M cells

Q 8.00 × 105M cells 4.80 × 104M cells

P 2.00 × 105M cells 4.60 × 104M cells
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bundle methods available (Mäkelä, 2001). These variants
will be investigated in addition to different methods to
handle nonlinear constraints. In this paper, a penalty ap-
proach is described. Improvements to this approach will
be considered and the improvement function approach
will be investigated (Mäkelä, 2001).

The performance of the proposed algorithm will be com-
pared to the performance of the available transcription-
based algorithms. It is expected that the method intro-
duced in this document can be advantageous in problems
with a large number states and candidate dynamics.
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