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Abstract: In this work, a dynamic model of a catalytic fixed bed reactor (FBR) based on
partial differential equations (PDE) is introduced and used for the identification of reaction
mechanisms which take place during the oxidation of sulfur dioxide over a vanadium pentoxid
catalyst. The measured data is collected from a pilot plant, which uses commercial sized catalyst
particles. In order to reduce the experimental effort, a developed framework based on the
methods of nonlinear optimal experimental design is applied using a steady state FBR model.
The systematic procedure is improved using a dynamic reactor model. This makes the time
dependent measurement data valuable for the identification procedure.
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1. INTRODUCTION

Catalytic gas phase reactions have a high relevance in
chemical engineering. The majority of chemical processes
will not be profitable and in some cases not even viable
without the usage of catalysts. An important application
represents the utilization of FBR for waste gas treatment
processes. In this work, the oxidation of sulfur dioxide
to sulfur trioxide is considered, which is converted with
water to sulphuric acid. It should be noted that huge
effort is made in the development of new catalysts with a
higher activity. Commonly, new catalysts are designed and
tested at micro scale, i.e. a pulverized catalyst. However,
the catalyst used in industrial plants are much larger and
the previously identified mechanisms and kinetic parame-
ters can not be transferred without further investigations
in a scale up procedure w.r.t. the reactor layout. Thus,
measurements with commercial catalyst particles are in-
evitable implying a high experimental effort. The sized
particles require a larger reactor diameter, and thus, high
gas flow rates are necessary in order to hold the operation
conditions close to the industrial scale reactor. Moreover,
corresponding requirements for process automation and
safety engineering have to be met. Consequently, in order
to reduce the experimental effort while reaching a desired
model quality, methods of nonlinear optimal experimental
design can be applied. In addition, due to the fact that
a good deal of data enhances the mechanism and param-
eter identification, the proposed framework can still be
improved when using a model, which describes the pilot
plant dynamic behavior. In this work, a homogeneous and
a two-phase FBR model are presented. The latter can
be used for dynamic simulations. Both are compared to
each other based on a set of measured data taken from an
identification campaign. The experiments were performed
� This work is supported by the Max-Buchner-Forschungsstiftung.

Fig. 1. Pilot plant set-up: (1) Quality measurement, (2)
Heating section, (3) Reactor, (4) Tube bundle cooler,
(5) Quality measurement, (6) Bubble column.

in a pilot plant (Fig. 1) using a commercially available
vanadium pentoxid catalyst.

2. PILOT PLANT DESCRIPTION

The core of the pilot plant is the tubular reactor which
has a diameter of DR = 0.1 m and a length of LR = 1 m.



Fig. 2. Control structure: (FCR) Flow control and mea-
surement, (TCR) Temperature control and measure-
ment, (PCR) Pressure control and measurement,
(TIR) Temperature measurement, (QIR) Quality
measurement.

The diameter results from the size of the catalyst particle,
which is about DP = 0.005 m for the examined catalyst.
It represents the minimum diameter required in order to
get a uniform particle distribution. The reactor consists
of five beds of catalyst packing, where each is HB = 0.1
m high. The additional length is used to reduce in and
outlet effects. The reactor is operated nearly adiabatic
using an electric heated isolation. The majority of the
available space is occupied by the secondary units such as
the heating, cooling and gas scrubbing. The last two steps
are combined in a bubble column. Fig. 1 gives an idea of
the pilot plant set-up. The pilot plant is automated using
ABB Freelance. Beside the implemented safety engineering
procedures, the reactor inlet variables are controlled using
the structure given in Fig. 2. The gas flow rate V̇ can be
varied between 200 and 400 norm liter per minute at inlet
temperatures up to Tin = 500oC.

3. REACTOR MODELS

Two reactor models are presented, which describe the FBR
behavior, namely the homogeneous model and the two-
phase model. The chemical reaction is modeled with six
different reaction mechanisms for which several steps of
parameter identification and model discrimination are per-
formed in order to find the best suitable mechanism. Be-
sides the kinetic parameters in the reaction rate equations,
the reactor models contain several parameters. Some of
them can be obtained from the particles geometry e.g. the
packing porosity ε, the relative particle diameter DP , the
specific surface area a, and the catalyst density ρC , other
parameters are derived from property functions such as the
component heat capacities cP,i and cV,i, the heat of reac-
tion ΔhR, and the thermodynamic equilibrium constant,
KP . The heat loss can be determined from experimental
runs without reactions and is then calculated with the
estimated heat transfer coefficient, kW , and the measured
wall temperature, TW . Four components are considered in
the model with the indices as given in Tab. 1.

Table 1. Component indices

Index 1 2 3 4

Component SO2 O2 SO3 N2

3.1 Homogeneous Model

The model equations composed of mass balances, (1),
energy balance, (2), and momentum balance, (3), imply
the assumption of a plug flow profile in the reactor and
an instant heat and mass transfer between the gas and
the solid phase. This means that the temperature of
the catalyst particle is the same as the gas phase bulk
temperature. Due to this issue the model can not be used
for the description of the dynamic behavior, since the
heat capacities of gas and solid differ a lot. A detailed
description and derivation of the homogeneous model can
be found in Arellano-Garcia et al. (2007).
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In the model equations, Fi denotes the component flow
rates, νi the stoichiometric coefficient, and Mi, the molar
mass. T stands for the gas and the catalyst temperature,
P for the gas phase pressure. The viscosity η is calculated
assuming an ideal mixing.

Following the simulation results based on this model, the
pressure drop can be neglected for the given reactor set-up
and is not considered anymore in the two-phase model.

3.2 Two-Phase Model

The key idea of developing a two-phase model is to
perform dynamic simulations of the reactor behavior in
order to include time variant measurement data in the
parameter estimation procedure. Due to the varieties in
the resulting time constants in the energy balances, which
are mainly influenced by the heat capacity and density
in its corresponding phase, a split modeling of the gas
and solid phase becomes inevitable. The resulting equation
system comprises mass and energy balances for the two
phases,(4)- (7), which are coupled via mass and heat
transfer correlations,(8)-(10). Instead of the component
flow rates (see (1)), the concentrations in the gas phase cG,i

and the solid phase cC,i are used here as state variables.

dcG,i

dt
= Daxi

∂2cG,i

∂z2
−

V̇

επ
4 D2

R

∂cG,i

∂z

−a
1 − ε

ε
β(cG,i − cC,i)

(4)

dcC,i

dt
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Fig. 3. Control volume of the two-phase model.

The control volume and the considered state variables
of the two phases are shown in Fig. 3. The transfer
coefficients (α, β, Dax) are calculated with dimensionless
numbers (Nusselt number Nu, Sherwood number Sh,
axial Peclet number Peax) and correlations taken from
literature, see e.g. Fogler (2006). Here, Dab,i stands for the
diffusion coefficient of the component i in nitrogen and λ̄
for the mixtures heat conductivity.
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V̇ DP
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R
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On the one hand, a dynamic simulation becomes possible
with the inclusion of the solid phase, but on the other
hand, new unknown or not well-known parameters are in-
troduced. Three parameters are used in the transport cor-
relations, one for each equation. In addition, two parame-
ters depend on the catalyst particle properties, namely, the
catalyst heat capacity, cP,C , and the specific surface area,
a. These additional parameters are to be determined from
the measurement data, but they are strong correlated with
the reaction rate, and thus, with the kinetic parameters of
the reaction mechanisms. This problem can be overcome
by running experiments without a reaction, i.e. with pure
nitrogen or air. By this means the parameter in the heat
transfer correlation, and the catalyst properties can be
determined independently.

3.3 Reaction Mechanisms

In the open literature, plenty of different reaction mech-
anisms have been published for the oxidation of sulfur
dioxide over vanadium pentoxid, we refer to Mezaki and
Kadlec (1972) for an overview. In this work, the five of
the most promising rate laws are selected. Additionally,
a generic power law mechanism is also considered. All
the rate equations describe the reaction stated in equa-
tion (11). They are functions of the components partial
pressures, Pi, and the temperature, T , which affects the
calculation of the velocity constant k, and the equilibrium
constants KP , and K.

SO2 +
1

2
O2

⇀↽ SO3 (11)

Power Law: In the rate equation for the power law
mechanism (12), the component exponents a, b, and c are
treated as model parameters and have to be determined
from the measurements. The temperature dependent ve-
locity constant k is calculated with equation (13), in which
the kinetic parameters p1 and p2 have to be identified.
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Mechanistic Rate Equations: The rate equations (14)
to (18) can be derived assuming a liquid metal phase on
the catalyst particle formed by vanadium, in which the
supplied oxygen is dissolved. This is a widely accepted
assumption for the oxidation over vanadium pentoxid.
The differences in the reaction rates result from different
mechanisms of the catalyst activation with oxygen.
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All these rate equations utilize the same approach for the
velocity constant k, and the equilibrium of the vacant sites
K, which are given in the equations (19) and (20).
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)
(19)
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)
(20)

3.4 Numerical Solution

In order to keep the computational effort low, both reactor
models were discretized using the orthogonal collocation
(OC), see Schöneberger et al. (2009). In the case of the
homogeneous model this leads to an algebraic equation
system (AE) and in the case of the two-phase model to
a system of ordinary differential equations (ODE). The



Fig. 4. Model identification framework.

AE is solved with a Newton-Raphson step and the ODE is
integrated with an OC based Runge-Kutta algorithm. The
use of the numerical solution in an optimization framework
requires a very robust solution algorithm, in particular,
when the free variables are positioned in exponential terms
such as in the case of kinetic parameter estimation. There-
fore, specialized initial value generation algorithms and
step size control algorithms are required, see Schöneberger
et al. (2007). Anyhow, the solution of the homogeneous
model is more robust. Consequently, the first parameter
estimation is performed with this model in order to get
good initial parameter values for the two-phase model.

4. MECHANISM IDENTIFICATION FRAMEWORK

The proposed framework in Fig. 4 is based on the meth-
ods of nonlinear experimental design. It is similar to the
model building framework proposed by Franceschini and
Macchietto (2008), but with some improvements regard-
ing the specific problem. There is only one experiment
designed for model discrimination, and this is performed
in the beginning of the identification procedure. Further
experiments are exclusively designed in order to improve
the parameter accuracy until the parameter spreading is
in an acceptable region. Please note that all six reaction
rates are considered in the steps ’Parameter estimation’
and ’Model discrimination’ of the loop in Fig. 4, but the
’Nonlinear optimal experimental design’ is only performed
for the actually best rate model.

4.1 Parameter Estimation Problem

The objective of the parameter estimation procedure is to
find the parameter values which set the numerical solution
of the model equations (e.g. (1), (2), and (3) for the
homogeneous model) as close as possible to the measured
data. For this purpose, the problem (21), here stated for
the homogeneous model, has to be solved. In this work,
a weighted least square functional is used as objective
function and it’s final value is named LSQ. High values
are related to a high lack of fit.

min
p1,p2,a,b,c

LSQ =

NM∑
j=1

(Tns,j − Tmd,j)
2

σ2
Tj ,Tj

(21)
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Fig. 5. Initial experiment.

In equation (21) the subscripts ns and md denote nu-
merical solution and measured data, respectively, NM is
the number of measured data points, and σ2

Tj ,Tj
is the

standard deviation of the measured quantity (here the
temperature T ) at the measured point j. The calculated
temperature profiles for the different rate laws after the
parameter estimation are compared to the measured tem-
perature data in Fig. 5. In Tab. 2, the LSQ values for
the different rate models are given. All models are able to
describe the measured data. This is not surprising, because
4 parameters (5 for rate 1) are fitted to only 5 measured
points. Anyhow, the structure of the rate equations does
not allow the same good fit for all rates. The best fit is
reached with rate 5.
The parameter estimation problem becomes more difficult
when more data points are available. The model equations
have to be solved separately for each new experiment,
making the parameter estimation the most expensive step
regarding the computational effort.

Table 2. LSQ values for different rate models.

Rate 1 2 3 4 5 6

LSQ 0.488 0.688 0.821 0.916 0.461 1.901

4.2 Model Discrimination Problem

It is difficult to choose the best suitable rate model from
Fig. 5. The discrimination step normally is performed
taking the model with the lowest LSQ value. But, after
only one experiment the models LSQ values are still
close together, see Tab. 2. Thus, in a second step an
experiment is designed that drift apart from the calculated
temperature profiles for the estimated set of parameters.
To do this, the optimization problem given in equation (22)
is solved. By this means, the obtained inlet conditions are
optimal for the discrimination step. Due to the fact that
only one measured variable is considered, here a simpler
formulation is chosen as proposed by Akaike (1974) and
other authors.

min
V̇ ,cSO2,in,cO2,in,Tin

ΦDisc. , with

ΦDisc. =

6∑
m=2

6∑
i=m

5∑
j=1

(Tns,Mod=m,j − Tns,Mod=i,j)
2

(22)

The temperature profiles calculated with the solution of
(22) are plotted in Fig. 6. After the experiment is per-
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Fig. 6. Model discrimination experiment.

formed and the new parameters for each model are found,
the profiles are not separated anymore. However, the ex-
periment forces the rate models parameter values to move,
and thus, the models flexibility and arbitrariness is reduced
considerably.
Only one experiment is designed for a better model dis-
crimination. After the discrimination experiment the rates
1, 2, and 3 are the most promising candidates. The other
rates are still considered in the calculations but not plotted
anymore in this paper. Further designs for discrimination
are not performed because the focus on the parameter
accuracy forces also an increasing difference in the models
LSQ values. This means that after the convergence of the
loop in Fig. 4 a good distinguishability between the rates
is reached in addition.

4.3 Nonlinear Optimal Experimental Design Problem

In this work, the A-Criterion is used in order to increase
the parameter accuracy, leading to the objective function
given in equation (23). A detailed description of the
nonlinear optimal experimental design and the different
criteria so as a reason for the selection of the A-Criterion
can be found in Schöneberger et al. (2008).

min
V̇ ,cSO2,in,cO2,in,Tin

ΦA, with

ΦA =
trace (C)

dim (C)

(23)

The covariance matrix of the model parameters C is
approximated with the inverse of the Fisher information
matrix F which can be calculated with equation (24), see
Bard (1974). The rate model parameters are summarized
in the parameter vector P.
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The parameter’s standard deviations σpn,pn
=

√
C(n, n))

can be calculated with the diagonal elements of the covari-
ance matrix. The framework is stopped, when a maximal
standard deviation of σpn,pn,max ≤ 0.02 is reached. This
was accomplished after 8 experiments. The development
of the A-Criterion and the maximal parameter standard
deviation w.r.t. the experiments is shown in Fig. 7. The de-
velopment of the LSQ values for the first three rate models
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are depicted in Fig. 8. The experiments 1 and 2 and so 3
and 4 are repeated experiments used for the determination
of the measured variables standard deviation σTj ,Tj

.

5. RESULTS

In this section, the measured dynamic reactor behavior
and the results obtained with the two-phase model are
presented.

5.1 Catalyst Properties and Heat Transfer

The specific heat capacity of the catalyst phase cP,k is
a model specific property, which has to be determined
from experimental data. It should be noted that it is not
equal to the heat capacity of the catalysts bulk material
since the modeled catalyst phase contains also the particle
pores. It can be estimated together with the parameter
in the heat transfer correlation from experiments without
reaction. This saves reactant gases and reduces the exper-
imental effort because no off-gas treatment is necessary.
The transient temperature profiles during the reactor heat
up procedure can be used for this issue. They allow the
independent estimation of the two parameters because
they contain also the initial steady state, when the reactor
inlet temperature is reached. These steady state profiles
are independent of the catalyst phase heat capacity, but
a function of the heat transfer coefficient. In Fig. 9 the
numerical solution (surface) is fitted to the measured
temperature data (black lines) based on the procedure
described in section 4.1.



Fig. 9. Time-space surface without reaction.
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Fig. 10. Steady state comparison of the reactor models.

5.2 Parameter Transfer

Under the assumption of an instantaneous heat and mass
transfer and a neglecting of axial dispersion, the model
equations of the two-phase model can be rearranged to the
form of the homogeneous model in the case of steady state.
To show this, the profiles of a solution with the homoge-
neous model are compared to the steady state solution of
the two-phase model in Fig. 10. The differences arise from
the stated assumptions, which are not completely fulfilled.
However, a steady state examination of a catalyst would
not justify the use of the more complex two-phase model.

5.3 Dynamic Reactor Behavior

In Fig. 11, the transient temperature data is plotted. The
temperatures after the first and the second bed show
a strong overshooting. This behavior can be explained
with the two-phase model. The coupled balances for gas
and solid phase lead to a PT2 behavior when linearized.
This second order element has the potential to produce
a swinging solution. The effect is reduced in relation to
the distance from the reactor inlet. The last two profiles
show inflexion points instead. This can be explained with
the increasing reactor wall temperature, which is also
disturbing the system as well.

6. CONCLUSIONS

First calculation results show that the two-phase model
is able to describe the dynamic reactor behavior. It has
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Fig. 11. Transient temperature data with reaction.

been demonstrated that for steady state experiments with
a FBR the more complex two-phase model is not required.
However, the information content of the transient profiles
is much higher than the one from the steady state profiles.
The effect on the parameter accuracy still has to be
examined, in particular, because of the inclusion of the
additional parameters. The knowledge of the dynamic
reactor behavior enables the design of optimal transient
experiments and their implementation in the proposed
identification framework.
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