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Abstract: In this paper Principal Components Analysis (PCA) is used for detecting faults in
a simulated wastewater treatment plant (WWTP). Diagnosis tasks are treated using Fisher
discriminant analysis (FDA). Both techniques are multivariate statistical techniques used
in multivariate statistical process control (MSPC) and fault detection and isolation (FDI)
perspectives. PCA reduces the dimensionality of the original historical data by projecting it
onto a lower dimensionality space. It obtains the principal causes of variability in a process. If
some of these causes change, it can be due to a fault in the process. FDA provides an optimal
lower dimensional representation in terms of a discriminant between classes of data, where, in
this context of fault diagnosis, each class corresponds to data collected during a specific and
known fault. A discriminant function is applied to diagnose faults using data collected from the
plant.
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1. INTRODUCTION

Multivariate statistical methods for the analysis of process
data have recently been used successfully for monitoring
and fault detection. The safe operation and the production
of high quality products are two of the main objectives in
industry. Modern control techniques have resolved many
problems, but when a special cause occurs in a process,
it cannot operate under control. The development of an
industrially reliable online scheme for such processes would
be a step toward effectiveness and robustness.

Conventional univariate Statistical Process Control (SPC)
uses typical control charts, such as Shewhart charts, for
monitoring a single variable. When univariate control
charts are applied to multivariate systems, with hundreds
of variables, the results are improper because, when there
is a fault or an abnormality in the operation, several of
these charts set off an alarm in a short period of time
or simultaneously. This situation is because the process
variables are correlated, and a special cause can affect
more than one variable at the same time. Multivariate
Statistical Process Control (MSPC) uses latent variables
instead of every measured variable. All these methods use
historical databases to calculate empirical models that
describe the system’s trend. They are able to extract
useful information from the historical data, calculating
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the relationship between the variables. When a problem
appears, it changes the covariance structure of the model
and can be detected.

Multivariate statistical approaches, and principal compo-
nent analysis (PCA) in particular, have been investigated
to deal with this problem. Jackson and Mudholkar inves-
tigated PCA as a tool of MSPC (Jackson and Mudholkar,
1979) two decades ago. The objective of this approach is
to reduce the dimensionality of the original historical data
by projecting it onto a lower dimensionality space. PCA
finds linear combinations of variables that describe major
trends in a data set. Mathematically, PCA is based on
an orthogonal decomposition of the covariance matrix of
the process variables along the directions that explain the
maximum variation of the data. PCA can be studied from
two perspectives, one is the cited MSPC, and other is the
fault detection and isolation (FDI) perspective, which is
discussed by Venkatasubramanian (Venkatasubramanian
et al., 2003a,b,c). The author divides the fault detection
and diagnosis techniques into three parts: quantitative
model-based methods, qualitative models and search stra-
tegies and process history-based methods. PCA falls into
the third category because it uses historical databases to
derive the statistical model (PCA model) (Hwang and
Han, 1999; Kourti, 2002; Tien et al., 2004).

The charts most commonly used with PCA techniques are
Hotelling statistics, T 2, and the sum of squared residuals,
SPE, or Q statistic. The T 2 statistic is a measure of
the variation in the PCA model and the Q statistic is a



measure of the amount of variation not captured by the
PCA model.

Once the fault is detected using monitoring techniques,
it can be diagnosed by determining the fault region in
which the observations are located. The approach used
in this paper for fault diagnosis is pattern classification.
When the data collected during the out-of-control ope-
rations have been previously diagnosed, the data can be
categorized into separate classes when each class pertains
to a particular fault (Chiang et al., 2000).

Fisher discriminant analysis (FDA) is a linear pattern
classification method used to find the linear combination
of features which best separate two or more classes. It is
an empirical method based on observed attributes over
the collected examples. FDA provides an optimal lower
dimensionality representation in terms of a discriminant
between classes of data, where, for fault diagnosis, each
class corresponds to data collected during a specific, known
fault. FDA has been studied in detail in the pattern
classification literature (Duda et al., 2001), but its use for
analyzing chemical process data had not been explored
until recently (Chiang et al., 2000; He et al., 2005; Fuente
et al., 2008).

The purpose of this article is to implement a method for
fault detection and diagnosis using multivariate statistical
methods and to apply it to a wastewater treatment plant
(WWTP). Theoretical aspects of PCA and FDA will be
presented and finally the wasterwater treatment plant, the
considered faults and the results obtained will be explained
and discussed.

2. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a vector space
transformation often used to transform multivariable space
into a subspace which preserves maximum variance of the
original space in a minimum number of dimensions. The
measured process variables are usually correlated to each
other. PCA can be defined as a linear transformation of
the original correlated data into a new set of uncorrelated
data, so, PCA is a good technique to transform the set of
original process variables into a new set of uncorrelated
variables that explain the trend of the process.

Consider a data matrix X ∈ �n×m containing n samples
of m process variables collected under normal operation.
This matrix must be normalized to zero mean and unit
variance with the scale parameter vectors x̄ and s as the
mean and variance vectors respectively. Then next step to
calculate the PCA is to construct the covariance matrix
R:

R =
1

n − 1
XT X (1)

and to perform the SVD decomposition on R:
R = V ΛV T (2)

where Λ is a diagonal matrix that contains the eigenvalues
of R in its diagonal sorted in decreasing order (λ1 ≥ λ2 ≥
. . . ≥ λm ≥ 0). Columns of matrix V are the eigenvectors
of R. The transformation matrix P ∈ �m×a is generated
by choosing a eigenvectors or columns of V corresponding

to a principal eigenvalues. Matrix P transforms the space
of the measured variables into the reduced dimension
space.

T = XP (3)

The columns of matrix P are called loadings and the
elements of T are called scores. Scores are the values of the
original measured variables that have been transformed
into the reduced dimension space.

Operating in equation (3), the scores can be transformed
into the original space.

X̂ = TPT (4)

The residual matrix E is calculated as:
E = X − X̂ (5)

Finally the original data space can be calculated as:
X = TPT + E (6)

It is very important to choose the number of principal com-
ponents a, because TPT represents the principal sources of
variability in the process and E represents the variability
corresponding to process noise. There are several proposed
procedures for determining the number of components
to be retained in a PCA model, such as Zumoffen and
Basualdo (2007) and Jackson (1991):

a) The SCREE procedure (Jackson, 1991): It is a grap-
hical method in which one constructs a plot of the
eigenvalues in descending order and looks for the knee
in the curve. The number of selected components are
the components between the high component and the
knee. An example of this graph is shown in Fig. 2.

b) Cumulative Percent Variance (CPV) approach Zu-
moffen and Basualdo (2007). A measure of the per-
cent variance (CPV (a) ≥ 90%) captured by the first
a principal components is adopted:

CPV (a) =
∑a

i=1 λi

trace(R)
100 (7)

c) Cross validation.

Having established a PCA model based on historical data
collected when only common cause variations are present,
multivariate control charts based on Hotelling’s T 2 and
square prediction error (SPE) or Q can be plotted. The
monitoring can be reduced to these two variables (T 2 and
Q) characterizing two orthogonal subsets of the original
space. T 2 represents the major variation in the data and
Q represents the random noise in the data. T 2 can be
calculated as the sum of the squares of a new process data
vector x:

T 2 = xT PΛ−1
a PT x (8)

where Λa is a squared matrix formed by the first a rows
and columns of Λ.

The process is considered normal for a given significance
level α if:

T 2 ≤ T 2
α =

(n2 − 1)a
n(n − a)

Fα(a, n − a) (9)

where Fα(a, n − a) is the critical value of the Fisher-
Snedecor distribution with n and n−a degrees of freedom



and α the level of significance. α takes values between 90%
and 95%.

T 2 is based on the first a principal components so that
it provides a test for deviations in the latent variables
that are of the greatest importance to the variance of
the process. This statistic will only detect an event if
the variation in the latent variables is greater than the
variation explained by common causes.

New events can be detected by calculating the squared
prediction error SPE or Q of the residuals of a new obser-
vation. The Q statistic (Jackson and Mudholkar (1979),
Jackson (1991)) is calculated as the sum of the squares
of the residuals. The scalar value Q is a measurement of
goodness of fit of the sample to the model and is directly
associated with the noise:

Q = rT r (10)

with:
r = (I − PPT )x

The upper limit of this statistic can be computed as
follows:

Qα = θ1

[
h0cα

√
2θ2

θ1
+ 1 +

θ2h0(h0 − 1)
θ2
1

] 1
h0

(11)

with:

θi =
m∑

j=a+1

λi
j h0 = 1 − 2θ1θ3

3θ2
2

where cα is the value of the normal distribution, with α
being the level of significance.

When an unusual event occurs and it produces a change in
the covariance structure of the model, it will be detected
by a high value of Q.

3. FISHER DISCRIMINANT ANALYSIS

For fault diagnosis, data collected from the plant during
specific faults are categorized into classes, where each
class contains data representing a particular fault. Define
n as the number of observations, m as the number of
measurement variables, p as the number of classes and
nj as the number of observations in the jth class. The
training data for all classes have been stacked into the
matrix X ∈ �n×m. The total-scatter matrix is:

St =
n∑

i=1

(xi − x̄)(xi − x̄)T (12)

where x̄ is the total mean vector whose elements corres-
pond to the means of the columns of X. Let the matrix Xj

be defined as the set of vectors xj which belong to class j,
then the within-scatter matrix for class j is given by:

Sj =
∑

xi∈Xj

(xi − x̄j)(xi − x̄j)T (13)

where x̄j is the mean vector for class j:

x̄j =
1
nj

∑
xi∈Xj

xi (14)

The within-class-scatter matrix is:

Sw =
p∑

j=1

Sj (15)

and the between-class-scatter matrix is:

Sb =
p∑

j=1

nj(x̄j − x̄)(x̄j − x̄)T (16)

The total-scatter matrix is equal to the sum of the
between-scatter matrix and the within-scatter matrix:
St = Sb +Sw. The objective of the first FDA vector, w1, is
to maximize the scatter between classes while minimizing
the scatter within classes:

max
w1 �=0

wT
1 Sbw1

wT
1 Sww1

(17)

with w1 ∈ �m. The second FDA vector, w2, is computed
so as to maximize the scatter between classes while mini-
mizing the scatter within classes on all axes perpendicular
to the first FDA vector, and so on for the remaining FDA
vectors. These vectors are equal to the eigenvectors wk of
the generalized eigenvalue problem:

Sbwk = λkSwwk (18)

where the eigenvalues λk indicate the degree of separability
between the classes. As it is the direction and not the
magnitude of wk which is important, the norm is usually
chosen to be ‖wk‖ = 1. The first FDA vector is the
eigenvector associated with the largest eigenvalue and so
on.

Then, the linear transformation of the data x from the
m-dimensional space to the reduced space a-dimensional
generated by the FDA vectors is:

zi = WT
a xi (19)

where Wa ∈ �a has the a FDA vectors as columns, and
zi ∈ �a. FDA computes the matrix Wa that as the data
x1, . . . , xn for the p classes are optimally separated when
projected into the a-dimensional space.

There are several methods to choose the number of FDA
vectors. These methods are very similar to PCA selection
methods, cited in section 2. For example, cross validation
or the SCREE procedure.

In order to diagnose the faults, FDA takes into account
data collected during different faulty conditions, and uses
a discriminant function that takes into account the simi-
larity between the actual data and the data belonging to
each class. An observation is assigned to the class i when
the maximum discriminant function value, gi, satisfies:

gi(x) > gj(x) ∀j 	= i (20)

where gi(x) is the discriminant function for class i given a
measured vector x ∈ �m. The discriminant function that
minimizes the error rate, when the event vi occurs (for
example, the fault i), is (Duda et al., 2001):

gi(x) = P (vi|x) (21)

where P (vi|x) is the a posteriori probability of x belonging
to class i. It can be shown that identical classification
occurs when the equation (21) is replaced by:

gi(x) = ln p(x|vi) + lnP (vi) (22)



Using the Bayes’ rule, considering that the data for each
class are normally distributed and characterizing the data
to this case, i.e., considering Wa ∈ �m×a containing the
eigenvectors w1, w2, . . . , wa computed from equation (18),
the discriminant function for each class can be derived as:

gj(x) = −1
2
(x − x̄j)T Wa(

1
nj − 1

WT
a SjWa)−1WT

a (x − x̄j)

+ ln(pj) − 1
2

ln[det(
1

nj − 1
WT

a SjWa)] (23)

where Sj , x̄j and nj are defined in equations (13) and (14)
respectively.

4. APPLICATION

The approach presented in this paper has been tested
in a simulated wastewater treatment plant (WWTP).
This plant is based on the COST benchmark (Copp, -;
Alex et al., 2008). This benchmark was developed for the
evaluation and comparison of different activated sludge
wastewater treatment control strategies. The model is
implemented using MATALAB c© and SIMULINK c©.

Fig. 1 shows an overview of this plant. It is composed of
a two-compartment activated sludge reactor consisting of
two anoxic tanks followed by three aerated tanks. This
type of plant combines nitrification with predenitrification
in a configuration that is usually built for achieving
biological nitrogen removal in full-scale plants. The reactor
is followed by a secondary settler. The settler is modeled
as a 10 layer non-reactive unit. The 6th layer is the feed
layer. Table 1 shows the physical parameters of the plant.

Fig. 1. General overview of the wastewater treatment plant
(WWTP)

Table 1. Physical parameters

Elements Values Units

Volume - Anoxic section 2000 (2 × 1000) m3

Volume - Aerated tank 4000 (3 × 1333) m3

Volume - Settler (10 layers) 6000 m3

Area - Settler 1500 m2

Height - Settler 4 m

The influent used was the dry influent data file Copp (-
). In this file, the variation of influent flow is between
15000 − 35000 m3/d. The plant, as Fig. 1 shows, has
two reflux: external refluxes, from settler to input, which
is approximately equal to the influent flow, and internal
reflux, from the last aerated tank to input, which is
approximately equal to three times the influent flow, but
which is a controlable variable.

The objective of the control strategy is to control the dis-
solved oxygen level in the aerated reactor by manipulation
of the oxygen transfer coefficient (KLa5) and to control
the nitrate level in the anoxic tank by manipulation of the
internal recycle flow rate. The controllers are of PI type.
Tab. 2 shows the principal controller settings.

Table 2. Controllers settings

Variables Oxygen loop Nitrate loop

Controller type PI PI
Controlled variable DO [g/m3] SNO [gN/m3]
Manipulated variable KLa5 [1/hr] Qint [m3/d]
Setpoint 2 [g/m3] 1 gN/m3

The model of the plant is formed by 13 state variables.
The variables involved are concentrations of:

1. Alkalinity (SALK).
2. Soluble biodegradable organic nitrogen (SND).
3. Ammonia nitrogen (SNH).
4. Nitrate (SNO).
5. Dissolved oxygen (SO).
6. Readily biodegradable substrate (SS).
7. Active autotrophic biomass (XB,A).
8. Active heterotrophic biomass (XB,H).
9. Particulate biodegradable organic nitrogen (XND).

10. Particulate products from biomass decay (XP ).
11. Slowly biodegradable substrate (XS).
12. Particulate inert organic matter (XI).
13. Soluble inert organic matter (SI).

In this case, three faults have been considered. They are
not sensors or actuators faults, they are faults in the
process. The faults considered are:

• Toxicity shock. This fault is due to a reduction in
the normal growth of heterotrophic organisms. This
type of fault can be produced by toxic substances in
the water coming from textile industries or pesticides.
This fault is simulated by reducing the maximum
heterotrophic growth rate (μH).

• Inhabitation. This fault can be produced by hos-
pital waste that can contain bactericides, or meta-
llurgical waste that can contain cyanide. This type of
fault is due to a reduction in the normal growth of
the heterotrophic organisms and an increase in the
decay factor of this type of organisms. This fault is
similar to toxicity shock but is more drastic. In this
case, the fault is caused by reducing the maximum
heterotrophic growth rate (μH) and increasing the
heterotrophic decay rate (bH).

• Bulking. This type of fault is produced by the
growth of filamentous microorganisms in the active
sludge. This phenomenon causes the impossibility of
decantation in the settler. To simulate this fault the
settling velocity in layer (vsj) is reduced.

More information about these parameters and mathema-
tical models can be consulted in Copp (-). But in this
example the benchmark has been modified in order to
introduce the fault parameters.

There are several groups working on fault detection in was-
tewater treatment plants using PCA (Rosen and Lennox,
2001) or using other fault detection approaches (Genovesi
et al., 2000).



Using this dynamic model, the results were obtained in
steady state. For this, the plant model has to simulate
100− 150 days in open-loop configuration and determines
this steady state. Then, the simulation in closed-loop is
simulated for 14 days and faults are caused on the 7th day.
The samples for monitoring experiments were taken 100
times per day.

The selected variables to calculate principal components
analysis (PCA) and Fisher discriminant analysis (FDA)
are the first eleven state variables and the effluent flow
rate (Q0). The concentration of particulate inert organic
matter (XI) and soluble inert organic matter (SI) are not
relevant to this study (Tomita et al., 2002).

The number of principal components, calculated using the
CPV approach with 95% maximum variance level, are five,
but Fig. 2 shows that seven principal components can be
a better option because they capture more variability of
the process.
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Fig. 2. SCREE graph for principal component selection

The process monitoring under toxicity shock fault can be
seen in Fig. 3. The thresholds of both statistics T 2 and
Q rise when the fault occurs. In this case, the Q statistic
detects this fault better than the T 2 statistic, as this figure
shows.
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Fig. 3. Toxicity shock fault detection. Logarithmic scale
for Q statistic.

The inhabitation fault detection is more effective than the
detection of the toxicity shock fault because this type of
fault is more drastic, as can be seen in Fig. 4. Finally, the
bulking fault detection using PCA is shown in Fig. 5.

The number of selected FDA vectors for fault diagnosis
tasks was two using the the SCREE graph method. Fig. 6
shows the discriminant functions (gi, eq. 23) when a toxi-
city shock fault has been caused. The solid line corresponds
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Fig. 4. Inhabitation detection. Logarithmic scale for T 2

and Q statistics.
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Fig. 5. Bulking fault detection. Logarithmic scale for T 2

and Q statistics.

to the discriminant function for toxicity shock fault, the
dotted line corresponds to the discriminant function for
inhabitation fault and the dashed line corresponds to the
discriminant function for the bulking fault. In this case,
once the fault has been detected (7th day) the discriminant
function for the toxicity shock fault is greater than the
rest of the discriminant functions, so the fault is correctly
diagnosed. The experimented faults used to find results are
different from the considered faults used in the training
data.
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Fig. 6. Toxicity shock fault diagnosis

Fig. 7 shows the discriminant function graphs in the
case where the inhabitation fault has occurred. In this
situation, the discriminant function for the inhabitation
fault is the greatest, so the fault is correctly diagnosed.

Finally, Fig. 8 shows the evolution of the discriminant
function for the bulking fault. In this case, the evolution
for the bulking fault is always greater than for the rest of
the discriminant faults.
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Fig. 7. Inhabitation fault diagnosis
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Fig. 8. Bulking fault diagnosis

5. CONCLUSIONS

This paper proposes an approach to deal with the fault
detection and diagnosis using statistical techniques, con-
cretely, the principal component analysis (PCA) is used
in detection tasks and the Fisher discriminant analysis
(FDA) is implemented in diagnosis tasks.

The approach has been proved in a simulated wastewater
treatment plant (WWTP) based on the COST benchmark.
The considered faults are critical process faults that affect
some plant parameters. Data are collected from the plant
for normal conditions in order to calculate the PCA model
and the thresholds of the T 2 and Q statistics, used to
detect the faults. Data for different classes (parameter
faults) are also collected to calculate the FDA models for
diagnosis. The used approach shows good results because
the faults was detected and correctly diagnosed.

A useful update to this work can be to obtain data when
two or more faults occur simultaneously. New discriminant
functions can be calculated using this data and these new
situations could be diagnosed.
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