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Abstract: For good performance in practice, real-time optimization schemes need to be able to
deal with the inevitable plant-model mismatch problem. Unlike the two-step schemes combining
parameter estimation and optimization, the modifier-adaptation approach uses experimental
gradient information and does not require the model parameters to be estimated on-line. The
dual modifier-adaptation approach presented in this paper drives the process towards optimality,
while paying attention to the accuracy of the estimated gradients. The gradients are estimated
from successive operating points generated by the optimization algorithm. The novelty lies in
the development of an upper bound on the norm of the gradient errors, which is used as a
constraint when determining the next operating point. The proposed approach is demonstrated
in simulation via the real-time optimization of a continuous reactor.
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1. INTRODUCTION

Real-time optimization (RTO) of continuous plants aims
at improving some steady-state performance index (Marlin
and Hrymak [1997]). Since the majority of RTO schemes
uses a model of the plant, reaching optimal performance
in the presence of plant-model mismatch is a difficult
task, which necessitates adaptation based on measured
information. Chachuat et al. [2009] proposed a three-
way classification of RTO schemes. One class includes the
so-called modifier-adaptation approach (Marchetti et al.
[2009]), whereby appropriate terms are added to the opti-
mization problem and identified so that the KKT condi-
tions of the model match those of the plant. In this con-
text, the modifier-adaptation approach requires to be able
to estimate on-line the experimental gradients, i.e., the
derivatives of the plant outputs with respect to the inputs.
This paper investigates the estimation of experimental
gradients and their use in modifier-adaptation schemes.

A comparison of different approaches for on-line gradient
estimation is given in Mansour and Ellis [2003]. Finite-
difference techniques can be used to estimate the gradi-
ents experimentally. The most straightforward approach
consists in perturbating each input individually around
the current operating point to get an estimate of the
corresponding gradient elements. This is the case, e.g.,
when forward finite differencing (FFD) is applied at each
RTO iteration. An alternative approach, which was in-
troduced in the ISOPE (Integrated System Optimization
and Parameter Estimation) literature under the name dual
ISOPE, is to estimate the gradients based on the current
and past operating points (Brdyś and Tatjewski [1994,
2005]). The key issue therein is the ability to estimate
the experimental gradients reliably while updating the
operating point. Indeed, there are two conflicting objec-

tives: the “primal objective” consists in solving the op-
timization problem, while the “dual objective” aims at
estimating accurate gradients. These conflicting tasks can
be accommodated by adding a constraint in the optimiza-
tion problem so as to ensure sufficiently rich information
in the measurements and guarantee gradient accuracy.
Brdyś and Tatjewski [1994, 2005] proposed a constraint
that prevents ill-conditioning in gradient computation.
The present paper goes further and investigates the two
main sources of errors, namely the error introduced by
numerical approximation of a derivative (truncation error)
and measurement noise. A constraint that enforces an
upper bound on the gradient error norm is proposed. Since
the constraint for ensuring sufficient information might
compromise optimality in the vicinity of the optimum, Gao
and Engell [2005] suggested using the ill-conditioning mea-
sure not to constrain the optimization problem but rather
to determine whether an additional input perturbation is
needed. Note that such a scheme could also be used in the
context of the dual-modifier approach proposed here.

The paper is organized as follows. Section 2 formulates the
optimization problem. The modifier-adaptation scheme is
reviewed in Section 3. Analysis of the errors in the gradient
estimates obtained from past operating points is carried
out in Section 4. Based on this analysis, Section 5 proposes
a norm-based constraint, which is incorporated into the
dual modifier-adaptation algorithm presented in Section 6.
The approach is illustrated via the reactor of the Williams-
Otto plant in Section 7, and Section 8 concludes the paper
and presents directions for future work.

2. PROBLEM FORMULATION

For the sake of simplicity, an unconstrained optimization
problem is considered throughout. This way, only the



gradient of the objective function needs to be estimated,
while in the constrained case, the constraint gradients
would need to be evaluated as well. A possible way
of tackling constrained optimization problems will be
sketched in the conclusion section.

The unconstrained optimization problem reads:

min
u

Φp(u) := φ(u,yp(u)) (1)

where u ∈ IR
nu are the decision (or input) variables,

yp ∈ IR
ny are the measured (or output) variables, and

φ : IR
nu × IR

ny → IR is the scalar cost function to be
minimized. The notation (·)p will be used for the variables
that are associated with the plant. Also, it is assumed that
φ(u,yp) is a known function of u and yp. On the other
hand, the steady-state input-output mapping of the plant,
yp(u), is typically unknown, and only the approximate
model f(u,y, θ) = 0 is available, where θ ∈ IR

nθ is
the set of model parameters. Assuming that the model
outputs y can be expressed explicitly as functions of u
and θ, the cost function predicted by the model becomes
Φ(u, θ) := φ(u,y(u, θ)).

It is furthermore assumed that the decision variables
u are of the same order of magnitude, which can be
achieved via scaling. For example, if the decision variable
ui remains within the interval [ui,a, ui,b], it can be scaled
as uscaled

i = (ui−ui,a)/(ui,b−ui,a). For notional simplicity,
the superscript indicating a scaled variable will be omitted
in the sequel.

3. MODIFIER-ADAPTATION SCHEME

In the modifier-adaptation scheme, a gradient-correction
term is added to the cost function of the model-based
optimization problem (Marchetti et al. [2009]). At the kth
iteration, the next input uk+1 is obtained as:

uk+1 = arg min
u

Φm(u, θ) := Φ(u, θ) + λT

ku (2)

where λk is the cost-gradient modifier at the kth iteration.
This modifier is adapted at each iteration based on the
difference between the gradient of the plant and that pre-
dicted by the model. For example, upon implementation
of a first-order exponential filter, the gradient modifier is
calculated as:

λT

k = (1 − d)λT

k−1 + d

[
∂Φp

∂u
(uk) −

∂Φ

∂u
(uk, θ)

]
(3)

with the filter gain d ∈ (0, 1]. Computation of the modifier

λk requires the knowledge of the plant gradient
∂Φp

∂u
(uk).

An appealing property of the modifier-adaptation scheme
is that, upon convergence and in the absence of noise, the
optimum u∞ for the modified model-based optimization
problem (2) satisfies the first-order necessary conditions
of optimality of the optimization problem (1) (Marchetti
et al. [2009]). Note that this is the case despite plant-model
mismatch. Note also that the need to match the plant out-
puts yp(u) by means of a parameter estimation problem,
as this is the case for the ISOPE modifier (Roberts [1979]),
is removed. However, the downside of modifier adaptation

lies in the need to estimate the experimental gradient
∂Φp

∂u
.

Time

ψ

δ

Fig. 1. Noisy cost function at steady state.

4. EXPERIMENTAL GRADIENT COMPUTED FROM
PAST OPERATING POINTS

It is assumed that the cost function can be evaluated from
the noisy output measurements as follows:

ψ(u) = φ(u,yp(u) + ν) = Φp(u) + v (4)

where ν is the measurement noise on the outputs and v the
induced noise in the cost estimates. Note that, even if ν
is zero mean, v might have a nonzero mean if the function
φ(u,y) is nonlinear in y.

The forthcoming analysis is conducted assuming that the
cost estimates remain within the interval δ at steady-state
operation, as illustrated in Figure 1. Based on a statistical
description of v, δ could be selected by considering a
desired confidence interval. Values that fall outside the
selected confidence interval can simply be discarded.

Consider the kth iteration and the nu past operating
points, uk−j , j = 0, . . . , nu − 1, and let us evaluate the
cost as a function of the next operating point, which will
generically be labeled u. Using a first-order approximation
of Φp(uk−j) in the neighborhood of u, the value of ψ at
the past operating points is given by:

ψ(uk−j) = Φp(uk−j) + vk−j = (ψ(u) − v) (5)

+
∂Φp

∂u
(u)[uk−j − u] + O

(
‖uk−j − u‖2

)
+ vk−j

and, by neglecting the higher-order and noise terms:

ψ(uk−j) = ψ(u) + β̂(u)[uk−j − u], (6)

where β̂(u) is an estimate of the experimental cost gra-

dient
∂Φp

∂u
(u). β̂(u) can be computed from the nu past

operating points uk, . . . , uk−nu+1 and the corresponding
noisy cost values ψ(uk), . . . , ψ(uk−nu+1) by writing (6) in
the following matrix form (Brdyś and Tatjewski [2005]):

β̂(u) = Y(u) U−1(u) (7)

with

U(u) := [ u − uk . . . u− uk−nu+1 ] ∈ IR
nu×nu (8)

Y(u) := [ ψ(u) − ψ(uk) . . . ψ(u) − ψ(uk−nu+1) ] (9)

The gradient error is defined as ε(u) := β̂(u) −
∂Φp

∂u
(u),

which, from (7) together with (4), can be split as ε(u) =
εt(u) + εn(u), with:

εt(u) = [ Φp(u) − Φp(uk) . . . (10)

. . . Φp(u) − Φp(uk−nu+1) ] U−1(u) −
∂Φp

∂u
(u)

εn(u) = [ v − vk . . . v − vk−nu+1 ] U−1(u) (11)



where εt and εn represent the errors due to truncation
and noise, respectively. Next, we investigate these two
components of the gradient error.

Gradient Error due to Truncation. An upper bound on
the norm of this error is given in the next proposition.

Proposition 1. Let Φp(u) be twice continuously differen-
tiable with respect to u. Then, given the nu past operating
points uk, . . . , uk−nu+1, an upper bound on ‖εt(u)‖ is
given by

‖εt(u)‖ ≤ Et(u), (12)

with

Et(u) :=
d2

2

∥∥∥[
(u− uk)T(u − uk) . . . (13)

. . . (u− uk−nu+1)
T(u − uk−nu+1)

]
U−1(u)

∥∥∥
where d2 is the largest absolute eigenvalue of the Hessian
of Φp(·).

Proof. By Taylor series expansion of Φp(uk−j) at u
and upper bounding of the norm of the Hessian of Φp

[Marchetti, 2009]. �

Note that d2 represents an upper bound on the curvature
of Φp(·).

Gradient Error due to Measurement Noise. For relating
the error norm ‖εn(u)‖ to the location of the new operat-
ing point, the concepts of affine subspaces and distance
between complement affine subspaces will be used (see
Appendix A for a brief review of these concepts).

The largest possible value of ‖εn(u)‖, noted ‖εn(u)‖max,
is computed in the next proposition.

Proposition 2. Given the nu past operating points uk, . . . ,
uk−nu+1 and the interval δ for the noisy function ψ(·), the
largest possible value of ‖εn(u)‖ is

‖εn(u)‖max = δ/lmin(u) (14)

where lmin(u) is the shortest distance between all possible
pairs of complement affine subspaces that can be generated
from S = {u,uk, . . . ,uk−nu+1}.

Proof. The proof proceeds in two parts: (i) the largest
error occurs when the error v is either δ/2 for some of the
operating points and −δ/2 for the other points, with each
set of points defining an affine subspace; and (ii) the error
vector εn(u) is normal to both affine subspaces, which
results in the largest possible error norm given by (14)
[Marchetti, 2009]. �

5. UPPER BOUND ON GRADIENT ERROR

A bound on the condition number of the matrix U(u)
was proposed in Brdyś and Tatjewski [1994, 2005]. This
bound ensures that the new operating point does not
introduce large errors in the gradient estimates due to ill-
conditioning of U(u). However, the bound is not directly
related to the errors resulting from truncation and mea-
surement noise. This section introduces a consistent, al-
though possibly conservative, upper bound on the gradient
error norm.

Consider the desired upper bound EU on the gradient error
norm:

‖ε(u)‖ ≤ ‖εt(u)‖ + ‖εn(u)‖ ≤ EU (15)

Given the nu past operating points uk, . . . ,uk−nu+1, the
following theorem provides a sufficient condition for the
location of u so as to satisfy (15).

Theorem 1. (Sufficient condition for gradient accuracy).
The gradient error norm ‖ε(u)‖ does not exceed the
desired upper bound EU by choosing u that satisfies

E(u) := Et(u) + ‖εn(u)‖max ≤ EU , (16)

with Et(u) and ‖εn(u)‖max given by (13) and (14), respec-
tively.

Proof. The proof follows from (15), inequality (12) and
the fact that ‖εn(u)‖ ≤ δ/lmin(u) from (14). �

For given values of δ and d2, there is a minimal value that
E(u) can take. Hence, EU should be selected larger than
this minimal value for the constraint (16) to be feasible.

Example 1. Consider the two-dimensional case (nu = 2)
with δ = 0.2, d2 = 2 and the past operating points uk =
[0 − 0.5]T and uk−1 = [0 0.5]T. The upper bounds Et(u)
and ‖εn(u)‖max can be evaluated in terms of the location
of the new operating point u = [u1 u2]

T. Figures 2a-c
show the contours of the error norms Et(u), ‖εn(u)‖max

and E(u). It is seen that (i) both Et(u) and ‖εn(u)‖max

increase as U(u) becomes more ill-conditioned (u aligned
with uk and uk−1), and (ii) the two regions generated by
the constraint (16) are nonconvex.

Convex Constraint. The objective being to use the
constraint (16) in the optimization problem (2), the fact
that this constraint is nonconvex creates the possibility
of multiple local solutions. Next, we introduce a tight
relaxation that makes the constraint convex.

It can be seen that, for a given error level c, the ex-
pression Et(u) = c generates two (nu − 1)-dimensional
spheres of radius r = c

d2

. The centers of these spheres
are located symmetrically on each side of the hyperplane
nT

ku = bk generated by the nu past operating points
uk, . . . ,uk−nu+1. Considering the new operating point u
located on the sphere, the center point is given by

uT

c (u) =
1

2

[
uTu − uT

kuk · · · (17)

uTu − uT

k−nu+1uk−nu+1

]
U−1(u).

It can be shown that ‖εn(u)‖max is convex on each side
of the hyperplane nT

ku = bk (see also Figure 2b). Hence,
non-convexity of the constraint (16) is due to the part of
the aforementioned spheres that crosses the hyperplane
nT

ku = bk. The distance (positive or negative) from the
center point uc(u) to the hyperplane nT

ku = bk is given
by:

lC(u) =
bk − nT

kuc(u)

‖nk‖
. (18)

Given the nu operating points uk, . . . ,uk−nu+1, the point
um,k can be obtained by projecting the center point uc(u)
on the hyperplane nT

ku = bk:

um,k = uc(u) +
lC(u)

‖nk‖
nk (19)

It appears that um,k is independent of u. For a given upper
bound EU , it is then possible to define convex feasible
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Fig. 2. Contour maps for the norm of the gradient error due to (a) truncation error, (b) measurement noise, and (c)
total error.
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Fig. 3. Convex regions (in bold) corresponding to the
constraint E(u) ≤ 2.

regions by adding constraints expressing the minimal dis-
tance between the new operating point u and the hyper-
plane, which eliminates the non-convex part of the regions
generated by (16), as illustrated in Figure 3. The minimal
point-to-hyperplane distance �k can be determined numer-
ically by finding the smallest absolute value solution of the
following equation:

E

(
um,k +

�k

‖nk‖
nk

)
= EU

6. DUAL MODIFIER-ADAPTATION SCHEME

The dual modifier-adaptation scheme proposed in this
section uses the upper bound on the gradient error defined
in Section 5 as a constraint in the optimization problem
(2). On each side of the hyperplane nT

ku = bk generated
by the nu past operating points, a modified model-based
optimization problem is solved. The optimization problem
corresponding to the half space nT

ku > bk reads:

u+
k+1 = arg min

u

Φm(u, θ) = Φ(u, θ) + λT

ku (20)

s.t. E(u) ≤ EU , nT

ku > bk + �k‖nk‖

while, for the half space nT

ku < bk, one has:

u−

k+1 = arg min
u

Φm(u, θ) = Φ(u, θ) + λ
T

ku (21)

s.t. E(u) ≤ EU , nT

ku < bk − �k‖nk‖

The modifiers λT

k are adapted as in (3). The next operating
point is chosen as the value of {u+

k+1,u
−

k+1} that minimizes
the augmented cost function Φm(u, θ).

7. OPTIMIZATION OF REACTOR OPERATION

The reactor in the Williams-Otto plant (Williams and
Otto [1960]), as modified by Roberts [1979], is used to il-
lustrate the dual modifier-adaptation scheme. This reactor
example has also been used to illustrate model adequacy
and RTO performance (Forbes et al. [1994], Zhang and
Forbes [2000]). It consists of an ideal CSTR in which the
following reactions occur:

A + B −→ C k̄1 = 1.660× 106e−6666.7/(TR+273.15)

C + B −→ P + E k̄2 = 7.212× 108e−8333.3/(TR+273.15)

C + P −→ G k̄3 = 2.675× 1012e−11111/(TR+273.15)

where the reactants A and B are fed with the mass
flowrates FA and FB, respectively. The desired products
are P and E. C is an intermediate product and G is
an undesired product. The product stream has the mass
flowrate F = FA + FB . Operation is isothermal at the
temperature TR. The reactor mass holdup is 2105 kg.

The objective is to maximize profit, which is expressed as
the cost difference between the products and the reactants:

φ(u,y) = 1143.38XPF +25.92XEF −76.23FA−114.34FB

The flowrate of reactant A is fixed at 1.8275 kg/s. The
flowrate of reactant B and the reactor temperature are
the decision variables, thus u = [FB TR]T.

In this example, the aforementioned reaction scheme cor-
responds to the simulated reality. However, since it is
assumed that the reaction scheme is not well understood,
the following two reactions have been proposed to model
the system (Forbes et al. [1994]):

A + 2B −→ P + E k1 = 2.189× 108e−8077.6/(TR+273.15)

A + B + P −→ G k2 = 4.310× 1013e−12438/(TR+273.15)

The material balance equations for the plant and the
approximate model can be found in Zhang and Forbes
[2000].

The inputs are scaled using the intervals [3, 6] for FB , and
[70, 100] for TR. In this range, the maximal value of d2

obtained with the scaled inputs is d2 = 1030 for the model,
whereas the (unknown) plant value is d2 = 1221. The
simulations are carried out assuming that the noise v has
a Gaussian distribution with standard deviation σφ = 0.5.
The noise interval δ = 3 is chosen. The exponential filter
(3) is implemented with d = 0.5.
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Fig. 4. Input trajectories for 45 operating points. The
dotted lines represent the contours of the plant cost
function. (a) Modifier adaptation using FFD. (b)
Dual modifier adaptation with bound on gradient
error.

Modifier Adaptation using FFD. First, modifier adap-
tation is applied using the FFD approach, which consists
in perturbing the inputs one at the time from the current
operating point with the fixed step size h. The gradient
error norm, which is a function of h, is found to be minimal
for h� = 0.0763 (scaled value). The corresponding gradi-
ent error norm Et(h�) + ‖εn(h�)‖max is 111.2 (Marchetti
[2009]). Figure 4a shows a resulting input trajectory. The
observed offset with respect to the plant optimum results
mainly from the gradient error due to truncation.

Dual Modifier Adaptation with Bound on Gradient Error.
Dual modifier adaptation is applied with EU = 111.2

(same value as above). The algorithm is initialized using
FFD. Figure 4b shows a resulting input trajectory. Com-
pared with modifier adaptation using FFD, significantly
fewer operating points are required to approach the opti-
mum.

Figure 5a shows the evolution of the plant profit and the
gradient error norm for 20 noise realizations. At iteration
20, the flowrate FA is increased from 1.8275 kg/s to 2.2
kg/s. Modifier adaptation tracks the change in the plant
optimum. It can be seen in the upper plot of Figure 5a
that the neighborhood of the new optimal profit is reached
within 6 iterations for all 20 realizations. Also, the lower
plot of Figure 5a shows that the gradient error norm is kept
below EU . The observed peak in gradient error occurring
at iterations 21 and 22 is due to the fact that, at these
points, the gradient is inconsistent in that it is estimated
using operating points with different values of FA.

Dual Modifier Adaptation with Bound on Condition Num-
ber. For the sake of comparison, dual modifier adap-
tation is also applied with a lower bound on the inverse
condition number of U(u), as proposed in Brdyś and Tat-
jewski [1994, 2005]. The results are shown in Figure 5b.
A lower bound of 0.4 gives an adaptation that is similar
to that using the gradient error bound in the first itera-
tions. However, as soon as the neighborhood of the plant
optimum is reached, the distance between the operating
points decreases, and the gradient estimates become much
less accurate. Furthermore, the feasible regions given by
the condition number constraint decrease proportionally
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Fig. 5. Optimization for 20 noise realizations; there is a
flowrate change at iteration 20. (a) Dual modifier
adaptation with bound on gradient error norm. (b)
Dual modifier adaptation with bound on the condition
number. Dashed line: Optimal profit for the plant.
Dash-dotted line: EU = 111.2.

to the distance between points. This appropriately pre-
vents taking large steps in the wrong direction, but it also
appears less suitable for tracking a changing optimum.

8. CONCLUSIONS

This study has demonstrated the potential of dual modifier
adaptation, which pays attention to the accuracy with
which the gradients are estimated. The results of the case
study indicate that this approach, wherein the gradient
error norm is bounded, produces more accurate gradient
estimates than with simply bounding the condition num-
ber of U(u), i.e. a measure of the relative position of the
successive inputs. In addition, the proposed scheme seems
more capable of tracking a changing optimum. The perfor-
mance depends on the amount of plant-model mismatch,
the noise level, the estimated curvature of the cost function
d2, and the filter parameter d.

Future work will consider the extension of this approach
to constrained optimization problems. In this case, mod-



ifier adaptation will require an estimate of the cost and
constraint gradients of the plant to be available at each
iteration. In order to be able to use the upper bound on
the gradient error developed in this paper, a possible way
is to associate the parameters δ and d2 to a Lagrangian
function, which represents a linear combination of the cost
and constraint functions.
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Appendix A. AFFINE SUBSPACES

In a nu-dimensional space, a point is an affine subspace of
dimension 0, a line is an affine subspace of dimension 1,
and a plane is an affine subspace of dimension 2. An affine
subspace of dimension (nu − 1) is called an hyperplane.

Hyperplane. An hyperplane in nu-dimensional space is
given by

n1u1 + n2u2 + · · · + nnu
unu

= b, or: nTu = b (A.1)

and divides the space into two half-spaces: nTu > b, and
nTu < b.

Complement affine subspaces. Given a set of (nu + 1)
points in a nu-dimensional space, S := {u1, . . . ,unu+1},

a proper subset SA, i.e. SA � S, of nA
u ∈ {1, . . . , nu}

points generates an affine subspace of dimension (nA
u − 1):

u = u1 + λ1,2
u1 − u2

‖u1 − u2‖
+ · · · + λ1,nA

u

u1 − unA
u

‖u1 − unA
u
‖

(A.2)

where the parameters λ1,2, . . . , λ1,nA
u

represent distances
from the point u1 in the directions u1 −u2, . . . ,u1 −unA

u
,

respectively. The complement subset SC := S \ SA of
(nu + 1 − nA

u ) points, generates the complement affine
subspace of dimension (nu − nA

u ):

u = unA
u +1 + λnA

u +1,nA
u +2

unA
u +1 − unA

u +2

‖unA
u +1 − unA

u +2‖
+ . . . (A.3)

· · · + λnA
u +1,n+1

unA
u +1 − unu+1

‖unA
u +1 − unu+1‖

Distance between complement affine subspaces.

Definition 1. (Distance between complement affine sub-
spaces). Given a set of (nu +1) points in a nu-dimensional
space, S := {u1, . . . ,unu+1}, a proper subset of S, SA � S
of nA

u ∈ {1, . . . , nu} points, and its complement SC := S \
SA of (nu + 1 − nA

u ) points, the distance between com-
plement affine subspaces is defined as the (orthogonal)
distance between the affine subspace of dimension (nA

u −1)
generated by all the points in SA, and the affine subspace
of dimension (nu − nA

u ) generated by all the points in SC .

The total number of possible pairs of complement affine
subspaces that can be generated from S is nb = 1 +∑nu−1

s=1 2s.

Definition 2. (Nearest complement affine subspaces). The
shortest distance between complement affine subspaces is
given by lmin := min{l1, l2, . . . , lnb

}, where l1, l2, . . . , lnb

are the distances between all possible pairs of complement
affine subspaces that can be generated from S.

In the 2-dimensional case (nu = 2), the number of
distances to evaluate is nb = 3, which corresponds to the
3 point-to-line distances. In the 3-dimensional case, there
are nb = 7 distances to evaluate, which correspond to 4
point-to-plane distances, and 3 line-to-line distances.

In order to compute the distance between the complement
affine subspaces (A.2) and (A.3), a vector n that is normal
to both subspaces is required:

[ u1 − u2 . . . u1 − unA
u

unA
u +1 − unA

u +2 · · · (A.4)

unA
u +1 − unu+1 ]Tn = 0, or, Un = 0.

The matrix U ∈ IR
(nu−1)×nu is of rank (nu−1). The vector

n can be obtained by singular-value decomposition of U.

Given a point ua that belongs to the affine subspace
(A.2), a point ub that belongs to the complement affine
subspace (A.3), and a vector n that is normal to both
complement affine subspaces, the distance lAC between the
two complement affine subspaces is:

lAC =
|nT(ub − ua)|

‖n‖
(A.5)


