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Abstract: Cancer immunotherapy is one of the emerging therapies for cancer treatment where immune
cells are guided to fight against cancer. Clinical immunologists are proposing different ideas to stimulate
the immune cells and dendritic cell therapy is one among them. Like, other treatment modalities, the
challenge in dendritic cell therapy is when and how much dendritic cells should be administered. In this
work we use a mathematical model which elucidates the activation of the helper T-cells and cytotoxic T-
cells by the intervention of dendritic cells. The objective is to minimize the tumor cells for a given input
of dendritic cells. Then multi-objective optimization is applied on the model to design the treatment
planning in order to achieve the objective.
Keywords:  Cancer, Immune system, Dendritic cell therapy, Mathematical model, Multi-objective
optimization
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1. INTRODUCTION

Cancer stands next only to heart disease in the list of most
fatal diseases in the world. From Fig.1, it is obvious that the
decrease in death rate for cancer patients over the years 1950-
2003 has been minimal as compared to other major diseases.
Cancer related deaths have been escalating meteorically - 
according to World Health Organization, 7.6 million people
died of cancer (out of 58 million deaths overall) in 2005.
They speculate that cancer deaths will increase to 18% and
50% by 2015 and 2030 respectively. Recently, the American
Cancer Society reported that around 1.5 million new cancer 
cases and 0.6 million cancer death cases occurred in the US
in 2007. According to another report on worldwide cancer 
rates by the WHO’s International Agency for Research on
Cancer (IARC) (Paola Pisani, 2002), North America leads the
world in the rate of cancers diagnosed in adults, followed
closely by Western Europe, Australia and New Zealand. In
1994, in Britain, almost one in three were expected to 
develop the disease over their survival period and it is 
estimated to increase to one in two by 2010 with reference to
the trends at that time (Imperial Cancer Research Fund).
Another publication from the Australian Institute of Health
and Welfare (1999) projects that, based on the incidence rates
existing in 1999, one in three men and one in four women
would be directly affected by cancer in the first 75 years of 
life. Moreover, a loss of 254,000 potential years of life to the
community each year was estimated as a result of people
dying of cancer before the age of 75. As a whole, cancer is
currently responsible for 29% of male deaths and 25% of 
female deaths in Australia.� In Singapore, the proportion of
cancer deaths among all causes of death rose steadily from
14.8% (in the years 1968-1972) to 27.1% (in the period 1998-
2002) reflecting a worldwide trend. The above mentioned
figures are alarming and have drawn the attention of

researchers to understand the mechanism of cancer and come 
out with better therapies.

�

Fig.1. Change in death rates of different diseases in US from
1950 to 2003

The main characteristics of the cancer cell are its
uncontrolled and unregulated growth (Hanahan and
Weinberg, 2000; Martins et al., 2007). It is caused by the
external factors such as UV radiations, carcinogenic
chemicals as well as transfer of the cancer prone genes from
parents. When a normal cell interacts with these external
factors, its information system (DNA) gets damaged and the
normal cell transforms to a cancer cell. Initially, the clump of 
the cancer cells is confined to particular location and it is 
regarded as being benign. If the cancer is not diagnosed and
treated in the benign stage, it will change into a malignant
form, and the cancer cells could migrate to different parts of
the body and ultimately may lead to the death of the patient.
So, it is better for the cancer patients to be provided suitable



treatment at the early stages itself so as to prolong and
enhance the quality of their life. 

1.1 Cancer treatment modalities

Over the past 50 years, many cancer treatment modalities
have been discovered. The most prominent of these are
surgery, chemotherapy, and radiation therapy. Some of the
emerging therapies are immunotherapy and viral therapy.
However, a specific therapy for all types of cancer is still
missing and the available therapies have their own 
advantages and shortcomings. Surgical techniques to remove
tumors have been in practice even thousand years ago. 
Usually, surgery is favoured to remove the tumors diagnosed
at the very early stages ensuring almost complete cure.
Surgery can be very difficult if the tumor location is near 
critical locations in the body (e.g. brain); furthermore,
surgery is not a preferred option if the cancer had already
metastasized by the time of diagnosis. In any case, complete
clearance of the tumor cells is not assured with surgery.
Radiation therapy is an alternative to surgery in order to kill
the localized tumor cells. In radiation therapy, high energy
radiations are used and its dosage is determined such that the
normal cells near the tumor are spared. Thus, radiation
therapy also depends on the location of the tumor and
sensitivity of the tumor cells to the radiation.

As a result, surgery is followed by chemotherapy or radiation
therapy to suppress further tumor growth. In the case of
chemotherapy and radiation therapy, precise care should be
taken to avert the damage to normal tissues. Among these
two therapies, chemotherapy is preferred because it is a 
systemic therapy. In systemic therapy, the drug flows
throughout the body and destroys the migrated cancer cells
along with residual cancer cells near the surgery location.
Chemotherapy is always given as a course in cycles based on
the patient health status rather than as a one-time treatment.
This is done so as to maintain the drug concentration within 
the dosage limits in the body and kill the remaining cancer
cells in the subsequent treatments (Dua et al., 2008).
However, the side effects of the chemotherapy are significant
and sometimes they become serious than the disease itself. In
contrast to chemotherapy and radiation therapy,
immunotherapy has fewer side effects, because, typically, the
patient’s own cells are modified and used as therapeutic
agents.  The prime objectives of any therapy are to keep the
number of cancer cells below a lethal level and avoid the side
effects caused by the therapeutic agents. This can be achieved 
by optimal scheduling and the optimal administration of the 
therapeutic agents if the dynamical characteristics of the
system are known.

2. CANCER IMMUNOTHERAPY

From the above discussion, we can infer that key elements for
immunotherapy are antibodies, cytokines, and the natural
immune cells. On this basis, immunotherapy is classified into
three main schemes, monoclonal antibody therapy (MAT),
adoptive cellular immunotherapy (ACI) and vaccines (Adam
et al., 2003). MAT involves the introduction of externally
developed tumor specific antibodies into the patient’s body
using hybridoma technology. ACI constitutes the 

The role of the immune system in cancer treatment was first 
observed by William Coley, a New York surgeon. Cancer 
immunotherapy is the stimulation of immune cells to fight the
tumor cells. The main function of the immune system is to
fight against the abnormal changes in the body, and the

successful functioning of it lies in its ability to distinguish the 
“self” and “non-self” based on the self-marking molecules.
The immune system recognizes the abnormality with the help
of antigens presented by the injured or abnormal cells. If the
immune system exhibits a response based on antigen
recognition, then antigens are called immunogenic. However,
not all antigens are immunogenic. For example, if the tumor
is larger in size, immune cells may not respond to it. Before 
studying the tumor-immune interactions, it is informative to 
take a brief look at the mechanisms of the immune system. In
this regard, the review paper by Adam et al., (2003) provides
a comprehensive discussion on the immune response in
cancer.

In our body, the immune action is carried out by specialized
cells called lymphocytes which are mostly present in the
blood. The common lymphocytes are macrophages, dendritic
cells, natural killer (NK) cells, lymphokine activated killer
cells, B-cells and T-cells.  Immune response is categorized as
natural immunity, humoral immunity and cellular immunity
based on the lymphocytes. Macrophages, dendritic cells, and
natural killer cells are responsible for natural immunity, in
which these cells directly attack the infected cells (cancer
cell) and act as antigen presenting cells (APC). Antigen is an
agent which can easily be recognized by immune cells. Thus, 
APC highlights the infected cells and alerts the T-cells for 
further action against the infected cells. In humoral
immunity, antibodies produced by B-cells encounters the
infected cells. Each B-cell has a specific antibody of a 
particular shape. The concept of antibody-antigen interaction
resembles the mechanism of lock and key. When the shape of
an antibody of a B-cell matches exactly with the shape of the
antigen corresponding to the infected cells, B-cell proliferates 
and produces plasma cells which actively secrete the
antibodies. These antibodies neutralize the activity of the
infected cell by inhibiting their cell division process, by
producing a lethal group of enzymes called complement and 
by opsonization.  In opsonization, antibodies coat the infected 
cells in order to make them easily recognizable by the killer
lymphocytes. This process is known as antibody dependent
cell-mediated cytotoxicity.  In cellular immunity, the key
players are T-cells which are further classified as helper T-
cells (CD4+) and cytotoxic T-cells (CD8+). Helper T-cells
gets activated by the natural immune cells and regulates the
production of the cytokines. Cytokines are the enzymes
which keep the momentum of all the immune cells as per
their requirement. Interleukins and interferons are regarded as
the important cytokines to fulfil the immune action.
Cytotoxic T-cells directly attack the infected cells after its
activation by the cytokines.



modification of the lymphocytes (helper T-cells, cytotoxic T-
cells, NK cells) by using cytokines like interleukin (Kirschner
and Panetta, 1998). This ultimately ameliorates the anti-
tumor activity of the lymphocytes. This is done in two ways
namely, lymphokine-activated killer cell (LAK) therapy and
tumor infiltrating lymphocyte (TIL) therapy. In both 
therapies, the lymphocytes are activated externally and later
they are injected back at the tumor site. In LAK therapy, the
lymphocytes are obtained from the in vitro culturing with
high concentration of IL-2 which is extracted from the
patient’s blood. Conversely, in TIL therapy, lymphocytes are
taken from the patient tumor sites and cultured with the high
concentrations of interleukin in vitro.

Generally, cancer vaccines are in the form of cells, molecules
or micro-organisms. They facilitate the quick recognition of 
tumor cells by the immune cells. In other words, tumor
associated antigens (TAA) are made tangible to the immune
cells.  Consequently, tumor-immune interactions are 
enhanced thereby achieving the goal of cancer
immunotherapy.

3. TUMOR-IMMUNE INTERACTION MODELS

Tumor-immune interaction models explain interactions
between different types of immune cells and the tumor. There
are many tumor-immune interaction models and a few of
them will now be described. In the model proposed by De
Boer and Hogeweg (1986), interactions between
macrophages, T-lymphocytes and tumors are considered. The
macrophages and T-lymphocytes are given in different
dosages. This model captures the “sneaking through”
phenomenon i.e. when lower dosages of tumor is introduced,
the immune system may not recognize it and then the tumor 
grows to a bigger size; however, the immune cells reject the
tumor when they are given in higher quantities. Another
successful model (Kuznetsov et al., 1994) was developed 
based on the studies of the B-lymphoma BCL1 in the spleen
of mice. The model is very simple, and considers only two 
states (effector and tumor cells). Effector cells represent any
of the killer immune cells.  In this model, the parameters
were estimated using in vivo data. Then, bifurcation analysis
was performed to find the critical parameters for sneak
through phenomenon. This model was further extended and
modified (Kirschner and Panetta, 1998) by including the
dynamics of the interleukin. Based on bifurcation analysis,
this work emphasized that tumor immunogenicity is an 
important parameter. Their work also discussed about the
effects of immunotherapy (adoptive cellular therapy and
interleukin) through mathematical analysis. Models such as
those by (Castiglione and Piccoli, 2007; de Pillis et al., 2005;
de Pillis et al., 2006), consider the natural killer cells and
cytotoxic CD8+T cells as different states rather than
considering them under the same family as effector cells. In 
de Pillis et al. (2005), the authors focus on the impact of NK
cells and CD8+ T cells on tumor growth. Their model is in the
form of a system of ODEs. Parameters of the model were
estimated and validated with the published mice and human

data. In addition, sensitivity analysis was done on the model.
The sensitivity analysis concluded that the variable to which
model is sensitive is patient-specific. This model was
extended with slight modifications in the functional forms of 
growth and death terms of the immune cells (de Pillis et al., 
2006). The model was also used for understanding the effects
of combination therapy (chemo-immuno and vaccine
therapy) for different patient parameters.  Other models have
included the dynamics of NK cells, B cells, helper and
cytotoxic T-cells , and LAK cells (Szymanska, 2003). In this
work, dendritic cell vaccine (DCV) is considered. DCV is 
produced by the process called dendritic cell transfection. In 
this process, some TAA are configured and cultivated with 
autologous dendritic cells that is extracted from the patient
itself (Cappuccio et al., 2007; Castiglione and Piccoli, 2007;
Piccoli and Castiglione, 2006). The resulting vaccine is
injected back into the patient. Here, we consider the
mathematical model proposed by Piccoli and Castiglione
(2006) because this is the only model which includes the
dynamics of dendritic cells and apply multi-objective
optimization using non-dominated sorting genetic algorithm
(NSGA) to find the optimal scheduling of dendritic cell
vaccine interventions.

4. MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization (MOP) is the optimization of 
two or more conflicting objectives of a system represented in
the form of a mathematical model subjected to certain known 
constraints. Most practical problems such as product and
process design, finance, aircraft design, automobile design,
and medical applications have multiple objective scenarios.
In these problems, an optimal decision needs to be taken in
the presence of trade-offs between the conflicting objectives. 
In MOP, there may be a number of solutions in the feasible
region, and the decision maker has to analyze all the solutions
based on the prior knowledge of the system before a final
solution is adopted (Tamaki et al., 1996).

Suppose there are ‘n’ decision variables and ‘p’ objectives.
MOP tries to find a point x = (x1,……..,xn ) which minimizes
(or maximizes) the values of the objective functions f =
(f1,…..,fp ) within the feasible region F of x. In contrast to 
single-objective optimization problems, an exact solution
may not exist for the MOP problems because of the trade-off
characteristics among the objectives. Hence a concept of the
Pareto-optimal set was introduced for MOP problems.
Pareto-optimal set is, ’a family of points which is optimal in
the sense that no improvement can be achieved in any
objective without degradation in others’.

Definition (Tamaki et al., 1996): Let x0, x1, x2 �F

1. x1 is said to be dominated by (or inferior to) x2, if f(x1) is
partially less than f(x2), i.e.,

fi(x1) �  fi(x2), i� =1,…..,p, and fi(x1) > fi(x2), 1,...... .i p��



2. x0 is the Pareto-optimal (or non-dominated), if there
doesn’t exist any x�F such that x dominates x0

As Pareto-optimal solution is a logical strategy to the MOP, 
the prime goal of solving the MOP is to obtain a Pareto-
optimal set. The Pareto-optimal solutions can be obtained by
solving on a one-at-a-time basis using single objective
optimization methods like weighted sum method and the � -
constraint method. Unlike the conventional methods,
population-based methods (e.g. evolutionary algorithms) such
as genetic algorithm, particle swarm optimization, simulated
annealing and differential evolution can generate Pareto-
optimal set simultaneously. The searching strategy of
different evolutionary algorithms is different and they are 
based imitating some natural processes. However, the
common theme of all the evolutionary algorithms is to search
the whole hyper-domain of decision variables and find the
best possible solution. Population based methods are further
subdivided into non-Pareto approaches and Pareto
approaches. In non-Pareto approach, the 
selection/reproduction of the new population in the
subsequent generations are based on the objective function
values whereas in Pareto-approaches, the new population is 
generated not only on the basis of the objective value
themselves but also on their dominance property. In this
work, we used the Pareto-based approach known as non-
domination based genetic algorithm (NSGA-II) which was
proposed by Deb et al., (2000) because of its elitism and
minimal computational complexity. Genetic algorithms
(GAs) which imitate the process of natural evolution have
shown successful results in many optimization problems
which are difficult to solve by the conventional methods of 
the mathematical programming (Nemhauser et al., 1989).

4.1 Non-domination based genetic algorithm for multi-
objective optimization

A brief introduction to the NSGA algorithm (Deb et al., 
2000) is provided here. The algorithm is initiated with
suitable values for population size and number of
generations. The stopping criterion of the algorithm is the 
maximum number of generations. Broadly, the prime steps
involved in the algorithm in each generation are selection, 
offspring production and recombination. First, the population
is initialized randomly within the bounds of the decision
variables. Once the population is initialized, they are sorted
into separate fronts based on non-domination as discussed
earlier. Among these fronts, the first front members
completely dominate others in the current population and the
second front members are dominated by only the first front
members and so on. Each individual in the front is given a
rank (fitness) based on the front in which they are present.
The first front individuals are assigned a fitness value of 1 
and second front individuals are assigned fitness value of 2
and so on. Apart from this, a parameter called crowding
distance is calculated for each individual. The interpretation
of the crowding distance is the closeness of an individual to
its neighbours. A larger crowding distance indicates the 
diverse nature of the population. Crowding distance is 

compared only when the individuals belong to the same front.
Thus, best N parent individuals are selected from the current
population based on the rank and crowding distance, where N
is the population size. Then, in the offspring production step,
the selected parent individuals are used to generate offspring
via the crossover and mutation operators.  Finally, in the
recombination step, the offspring population is combined
with the current generation population and the combined
population is used as an initialized population for the next
generation. In this way, the procedure is repeated until the
maximum number of generations. Thus, the important tuning
parameters in this algorithm are the number of generations,
indices for crossover and mutation processes. The schematic
representation of the algorithm is shown in Fig. 2.

Fig.2. Non-dominated sorting genetic algorithm

5. MATHEMATICAL MODEL

The model taken from Piccoli and Castiglione (2006)
describes the interactions among the tumor cells, helper and
cytotoxic T-cells, dendritic cells and interleukin. The model
assumes that tumor cells are immunogenic and do not 
metastasize. In other words, tumor cells are recognized by
dendritic cells and are presented to cytotoxic T-cells. The
interactions between the cytotoxic T lymphocytes and the
tumor cells are described by a kinetic scheme and are
presented in the form of ordinary differential equations. The
states in the system are denoted by

	 H(t), helper T-cells (CD4+)

	 C(t) , cytotoxic T-cells (CD8+)

	 M(t), tumor cells

	 D(t), dendritic cells 

	 I(t) , interleukin

The pharmacodynamics is represented by the term  in 
equation (3) and the pharmacokinetics is captured in equation
(4). In equation (4), ‘u’ is the input rate of the dendritic cells.
Once the dendritic cells are injected, the CD4+ cells, CD8+
cells, and interleukins are triggered as shown in equations (1,
2 & 5) respectively by the following terms. (

2e MC

0 0 0( , )c Dd H f
 ,

, ). The first two terms in 
equations (1) and (2) correspond to the natural evolution of 

1 1 1)( ) ( ,c I M D d C f
� 4a HD



the cytotoxic T-lymphocytes. In the same way, the second
and third terms in equation (5) explain the loss of interleukin
(IL-2) due to its interactions with CD8+ cells and its natural
decay respectively. The model assumes that tumor growth 
follows the logistic equation with the constants ‘d2’ and ‘f2’
in the absence of immune interactions. Another assumption in
the model is that externally administered DCV is the only
source of dendritic cells. The initial value of tumor is M(0) = 
0.1, the initial level of helper and cytotoxic T-cells are taken
to be their equilibrium values H(0) = a0/b0 and C(0) =a1/b1. It
is assumed that there is no immune response before the
treatment and therefore I(0) and D(0) are taken to be zero. 

5.1 Model equations

0 0 0 0 0( , ),dH a b H c Dd H f
dt


� � �  (1)

1 1 1 1 1( ) ( ,dC a b C c I M D d C f
dt
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2 2 2( , ) ,dM d M f e MC
dt


� � (3)
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dt
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5.2 Problem formulation:

Objective 1:
( )

0
min ( , ( )) ( )

f

i

t

i fu t
M t u t dt M t� (6)

Objective 2: (7)
( )

min ( ( ( , ( ))))
i

iu t
Max M t u t

 tf  is the final time i.e. the planning horizon and ti is the ith

time injection of the dendritic cells. 

Constraints:

Equations (1) through (5) i.e. the mathematical model and

1 1 , 1, 2....,9i i it t t i� �� � �
In this paper, two objectives are considered based on the
typical goals sought by oncologists. Objective 1, as given by
equation (6), seeks to minimize the summation of the running
load and final load of tumor cells. Objective 2 (equation (7))
seeks to minimize the maximum possible value of the tumor
cells in the given time horizon. If only objective 1 is taken 
into consideration, it may so happen that the tumor cells may
shoot up to a very high value at a particular time while
remaining at lower values at other times. This sudden shoot

up of tumor cells to a higher value may lead to later stages of
cancer which is very difficult to treat. So, in order to maintain
the tumor in the benign stage, objective 2 is also considered.
The time horizon considered to implement the multi-
objective optimization is 4500 hours (approximately 6
months). In the given time horizon, the plan is to give
injections of DCV ten times. Thus, the decision variables of
the problem are the time of injections. It is assumed that the
duration of injection every time is one hour and total vaccine
quantity given in each injection is 0.5. Thus, u(ti) is equal to
0.5 c mm-3 h-1.

Table 1. Parameter values

Parameter Description Value Units
(c=cells,
h=hours)

a0 CD4 T birth rate 10-4 c h-1 mm-3

b0 CD4 T death rate 0.005 h-1

c0 Max. proliferation of
CD4 T 

10

d0 ½ saturation constant
of CD4 T

10-2 c -1 h-1 mm3

f0 Carrying capacity of 
CD4 T 

1 c mm-3

a1 CD8 T birth rate 10-4 c h-1 mm3

b1 CD8 T death rate 0.005 h-1

c1 Max. proliferation of
CD8 T 

10

d1 ½ saturation constant
of CD8 T 

10-2 h-1 (mm-3/c)2

f1 Carrying capacity of 
CD8 T 

1 c mm-3

d2 ½ saturation constant
of tumor

0.02 h-1

e2 Killing by CD8 of
tumor

0.1 c -1 h-1 mm3

f2 Carrying capacity of 
tumor

1 c mm-3

e3 CD8 T killing of DC 0.1 c -1 h-1 mm3

a4 IL-2 production by
CD4 T 

10-2 c -1 h-1 mm3

c4 IL-2 uptake by CD8
T

10-7 c -1 h-1 mm3

e4 IL-2 degradation rate 10-2 h-1



1680 1700 1720 1740 1760 1780 1800
0.78

0.8

0.82

0.84

0.86

0.88

objective�1

ob
je
ct
iv
e�
2

X�:��1696
Y�:���0.8585

Fig.3. Optimal Pareto solutions for the multi-objective
optimization problem

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

Injection�number

Ti
m
e�
of
�in
je
ct
io
n�
(in
�h
ou
rs
)

Fig.4. Plot of time of injections of the dendritic cell vaccine 
for the chosen solution

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time�(in�hours)

Tu
m
or
�c
el
ls
�(�
pe
r�m

m
3 )

 

 

Dendritic�cell�therapy
No�therapy

X:440.6
Y:0.3244

Fig.5. Dynamics of tumor cells for no therapy and dendritic
cell therapy 

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time�(in�hours)

T�
ce
lls
�(p

er
�m

m
3 )

 

 

H
C

X:349.7
Y:0.1613

X:202
Y:0.8254

Fig.6. Dynamics of helper T-cells and cytotoxic T-cells

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

Time�(in�hours)

IL
�2
�(p

g�
pe

r�
m
m
3 )

X:�223.9
Y:�0.1931

Fig.7. Dynamics of interleukin

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

Time�(in�hours)

D
en

dr
it
ic
�c
el
ls
�(p

er
�m

m
3 )

x:�2
Y:0.4995

Fig.8. Dynamics of dendritic cells



6. RESULTS AND DISCUSSION

We used MATLAB’s implementation of NSGA-II to solve
the multi-objective optimization problem as outlined above.
The algorithm starts with an initial population of possible
solutions within their mentioned bounds and in each 
generation, the solutions are updated based on the genetic
principles. In this work, we considered the population
number to be 40 and the maximum number of generations as
40.

Finally, the algorithm provides the best Pareto curve as 
shown in Fig.3. It can be seen from the Fig.3 that there are
gaps in the Pareto curve in spite of the problem being
continuous. These gaps can be filled by increasing the
population number and the number of generations of the
genetic algorithm, but at the cost of higher computational
effort.  Then, one of the solutions can be chosen from the 
Pareto curve as per the requirement. Here, solution marked in
Fig 3. is chosen because it corresponds to the least value of
objective 1 (tumor burden) among all points of the Pareto 
curve. The time of injections for the chosen point from the
Pareto curve is given in Fig 4. According to this treatment
plan, DCV is injected and the evolution of the tumor cells, T-
cells, interleukin, and dendritic cells are shown in figures 5
through 8 respectively.

From Fig.4, it is observed that injection timings are almost
close during (1700-1800 hours, 2850-2900 hours, and 3700-
3750 hours).  The reason is the increase of tumor cells during 
these periods. So, in order to bring them down immediately,
the frequency of injection times is increased. Thus, the
treatment planning seems to be reasonable and logical.

From figures 5 through 8, the first intervention of dendritic
cells is considered. This intervention is given in the second
hour. Because of this intervention, the helper T-cells, 
interleukin, and cytotoxic T-cells reach their highest value at 
around 200 hours (8 days), 221.9 hours (9 days), 349.7 hours
(15 days) respectively from the time of intervention of DCV. 
At the same time, tumor cells reach a lower value at around
440.6 hours (19 days) due to the first intervention. Similarly,
tumor cells took around 15 days to reach its lower value after
second intervention of DCV. Thus, for the given input of
DCV, the time gap between the interventions should not be
more than 3 weeks in order to avoid the peak value of the
tumor cells. Moreover, it takes more time for the helper T-
cells and cytotoxic T-cells to get activated before reacting to 
the tumor cells. This activation time can be reduced by
injecting more DCV (but within the threshold range) or by
introducing the interleukin therapy (approved by FDA) where
interleukin is also given externally. One of our future plans is 
to consider a combination of dendritic cell therapy and
interleukin therapy.

7. CONCLUSIONS

We have applied multi-objective optimization to find the
optimal schedule of dendritic cell therapy for a given input of

dendritic cells. The freedom of choice of any one solution as
per the requirements is a major advantage of multi-objective
optimization strategy. The obtained treatment planning seems
to be reasonable in controlling the tumor cells from reaching
a higher value. Further analysis suggests that the time gap
between the interventions should be less than 3 weeks in 
order to achieve the objective.  Thus, the obtained protocol
design can guide caregivers in treating cancer subjects.
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