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Abstract: This work focuses on data-based fault detection and isolation (FDI) of nonlinear
process systems. Working within the framework of controller-enhanced fault detection and
isolation that we recently introduced, we address and solve an unresolved, practical problem.
We consider the case where only output measurements are available and design appropriate
state estimator-based output feedback controllers to achieve controller-enhanced fault detection
and isolation in the closed-loop system. The necessary conditions for achieving fault detection
and isolation using output feedback control are provided. We use a nonlinear chemical process
example to demonstrate the applicability and effectiveness of the proposed method.
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1. INTRODUCTION

Advanced automation technology has changed how the
chemical process industry operates in many ways. Over the
last few decades, advancements in plant operations have
led to higher efficiency and improved economics through
better control and monitoring of process systems. These
technological advances have resulted in process systems
becoming increasingly automated, no longer requiring op-
erators to open and close valves in order to manually per-
form process control. In general, there is a trend towards
such“smart” plants that are capable of highly automated
control with decision making at the plant level taking
into account environmental, health, safety and economic
considerations (Christofides et al. (2007)). With increased
amounts of sensors and actuators, it becomes possible to
design systems capable of detecting and handling pro-
cess or control system abnormalities through fault-tolerant
control (FTC) (see for example, Mhaskar et al. (2006,
2007)). This is an important area of research as abnormal
situations cost U.S. industries over $20 billion each year
(Nimmo (1995)). A key element of a successful FTC sys-
tem is a fast, accurate method for detecting faulty process
behavior and isolating its cause. The fault detection and
isolation (FDI) problem is the focus of the present work.

In a previous work (Ohran et al. (2008)), we developed an
FDI method that takes advantage of both model-based and
data-based approaches. This method brought together ele-
ments of model-based controller design and statistical pro-
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cess monitoring. In this method, the controller is designed
with the FDI scheme in mind in addition to stability and
performance criteria. By enforcing an isolable structure in
the closed-loop system, it becomes possible to perform FDI
based on statistical evaluation of process measurements.
The purpose of the present work is to further develop
the approach proposed in Ohran et al. (2008) by relaxing
the requirement of full state feedback control. Specifically,
we consider the case where only output measurements
are available and design appropriate state estimator-based
output feedback controllers to achieve controller-enhanced
fault detection and isolation in the closed-loop system.
This is demonstrated using a nonlinear chemical process
example to show the applicability and effectiveness of the
proposed method.

2. PRELIMINARIES

2.1 Process system structure

We consider nonlinear process systems with the following
general state-space description:

ẋ = f(x, u, d) (1)
where x ∈ Rn is the vector of process state variables,
u ∈ Rm is the vector of manipulated input variables and
d ∈ Rp is the vector of p possible actuator faults or
disturbances. Vector d is equal to zero when the system
is under normal operating conditions. When fault k, with
k = 1, ..., p occurs, dk can take any time-varying value. The
approach of controller enhanced FDI was introduced in
Ohran et al. (2008) as a method of dividing the state vector
into a number of partially decoupled subvectors. These
subvectors can be monitored using measured process data.



Based on their responses and the system structure enforced
by the decoupling controller, it is possible to discriminate
between individual faults or groups of faults. In order to
understand the necessary structure to perform isolation,
we review the definitions of the incidence graph, the
reduced incidence graph and the isolability graph (Ohran
et al. (2008)).
Definition 1. The incidence graph of the system of Eq.1
is a directed graph defined by n nodes, one for each state,
xi, i = 1 . . . n, of the system. A directed arc with origin
in node xi and destination in node xj exists if and only if
∂fj

∂xi
�= 0.

The arcs in the incidence graph illustrate dependencies
within the states of the system. A path through more than
one arc that starts and ends at the same node is denoted
as a loop.
Definition 2. The reduced incidence graph of the system
of Eq.1 is the directed graph of N nodes, one for each qi,
i = 1 . . . N , where N is the maximum number of nodes
that satisfy the following conditions:

• Each node qi corresponds to a set of states Xi = {xj}.
These sets of states are a partition of the state vector
of the system, i.e.,⋃

Xi = {x1, . . . xn}, Xi

⋂
Xj = ∅, ∀i �= j.

• A directed arc with origin qi and destination qj exists
if and only if ∂fl

∂xk
�= 0 for some xl ∈ Xi, xk ∈ Xj .

• There are no loops in the graph.

The reduced incidence graph reveals the partially decou-
pled subsystems within the structure of the states in x.
Definition 3. The isolability graph of the system of Eq.1
is a directed graph made of the N nodes of the reduced
incidence graph and p additional nodes, one for each
possible fault dk. In addition, a directed arc with origin
in fault node dk and destination to a state node qj exists
if and only if ∂fl

∂dk
�= 0 for some xl ∈ Xj .

These definitions present the basic dependencies within a
state vector. In most nonlinear process systems, the states
are fully coupled and the isolability graph contains a single
node representing all of the states in the system. However,
in systems with partially decoupled dynamics these figures
demonstrate graphically the subsets of the state vector.

With the isolability graph of a system, we can perform
fault isolation based upon monitoring the subsystems. For
this purpose, it is necessary to review the definition of a
fault signature given below (Ohran et al. (2008)):
Definition 4. The signature of a fault dk of the system of
Eq.1 is a binary vector W k of dimension N , where N is
the number of nodes of the reduced incidence graph of
the system. The ith component of W k, denoted W k

i , is
equal to 1 if there exists a path in the isolability graph
from the node corresponding to fault dk to the node qi

corresponding to the set of states Xi, or 0 otherwise.

2.2 Process monitoring

For the purpose of monitoring whether or not a state has
deviated from its normal behavior, we use statistical pro-
cess monitoring methods. Specifically, we use Hotelling’s

T 2 statistic developed in Hotelling (1947), a well estab-
lished method in statistical process control that moni-
tors multivariate normal (Gaussian) data using a single
statistic. Because of its suitability for continuous, serially
correlated chemical processes, the method of using single
observations is employed (Tracy et al. (1992)). Given a
multivariate state vector x of dimension n, the T 2 statistic
can be computed using the mean x̄ and the estimated
covariance matrix S of process data obtained under nor-
mal operating conditions (see, for example, Kourti and
MacGregor (1996)), as follows:

T 2 = (x − x̄)T S−1(x − x̄). (2)
The upper control limit (UCL) for the T 2 statistic can
be calculated from its distribution, under the assumption
that the data are multivariate normal, according to the
following formula:

T 2
UCL =

(h2 − 1)n
h(h − n)

Fα(n, h − n) (3)

where h is the number of historical measurements used in
estimating S, Fα(n, h−n) is the value on the F distribution
with (n, h − n) degrees of freedom for which there is
probability α of a greater or equal value occurring.

In order to perform FDI, the T 2 statistic based on the
full state vector x with upper control limit T 2

UCL is first
used to detect the presence of a fault. Subsequently, the
T 2

i statistic is used to monitor the status of each subset of
the state vector with an upper control limit T 2

UCLi where
i = 1, . . . , N that is based on each of the subvectors and
their states xj ∈ Xi. The fault detection and isolation
procedure then follows the steps given below (Ohran et al.
(2008)):

1. A fault is detected if T 2(t) > T 2
UCL ∀t tf ≤ t ≤ tf+TP

where tf is last time when T 2 crossed the UCL and
TP is the fault detection window chosen. Choosing
TP depends on the process time constants and on
historical information of past process behavior.

2. Fault isolation can be performed by comparing fault
signatures with the process signature W (tf , TP )
which can be built as follows:
T 2

i (t) > T 2
UCLi ∀t tf ≤ t ≤ tf + TP → Wi(tf , TP ) = 1.

T 2
i (t) ≯ T 2

UCLi ∀t tf ≤ t ≤ tf + TP → Wi(tf , TP ) = 0.

A fault dk is isolated at time tf + TP if W (tf , TP ) =
W k. If two or more faults are defined by the same sig-
nature, further isolation between them is not possible
on the basis of the fault signature.

2.3 Controller design for enhanced FDI

Decoupling controller design The approach to fault de-
tection and isolation discussed in the previous section can
be applied if the signatures of the faults in the closed-
loop system are distinct. The uniqueness of a fault de-
pends on the structure of the closed-loop system and the
faults considered. In general, complex nonlinear systems
are fully coupled (i.e., cannot be broken down into partially
decoupled subvectors). However, an isolable structure in
the closed-loop system may still be achieved through the
application of appropriately designed nonlinear control
laws. As an example, consider a controller that can be



applied to nonlinear systems with the following state space
description:

ẋ1 = f11(x1) + f12(x1, x2) + g1(x1, x2)u + d1

ẋ2 = f2(x1, x2) + d2
(4)

where x1 ∈ R, x2 ∈ Rn, u ∈ R and g1(x1, x2) �= 0 for
all x1 ∈ R, x2 ∈ Rn. With a nonlinear state feedback
controller of the form:

u(x1, x2) = −f12(x1, x2) − v(x1)
g1(x1, x2)

(5)

the closed-loop system takes the form
ẋ1 = f11(x1) + v(x1) + d1

ẋ2 = f2(x1, x2) + d2
(6)

where v(x1) has to be designed in order to achieve asymp-
totic stability of the origin of the x1 subsystem when
d1 = 0. In this case, the controller of Eq.5 guarantees
asymptotic stability of the closed-loop system, as well as
different signatures for faults d1 and d2. For more detailed
results, see Ohran et al. (2008).

Input/output linearizable nonlinear systems Input/output
linearizable nonlinear systems constitute a special class of
nonlinear systems for which it is possible to systematically
design nonlinear controllers to achieve controller-enhanced
fault detection and isolation. Using a feedback-linearizing
control law that takes the following general form,

u(x) =
1

LgL
r−1
f h(x)

[v(x) − Lr
fh(x)] (7)

where Lr
fh(x) is the r-th order Lie derivative, LgL

r−1
f h(x)

is a mixed Lie derivative and v(x) is an external controller
for the purpose of stabilizing the system, the system
under closed loop operation will have linear input-output
dynamics.

If the state-feedback law given in Eq.7 is applied to
an input/output linearizable system, faults affecting the
system can be isolated into two different groups: those
that affect the output and those that do not affect the
output. The induced structure of the closed-loop system
provides different signatures for the faults depending on
the relative degree of the output with respect to the fault
and the relative degree of the output with respect to the
input. Faults with relative degree higher than the relative
degree of the input will not affect the output. Thus, when
a fault occurs, taking into account whether the trajectory
of the output has deviated from the normal case or not, it
is possible to isolate to which group the fault belongs. For
the definitions of relative degree and an in depth discussion
of feed-back linearization in this context, see Ohran et al.
(2008).

3. CONTROLLER ENHANCED FDI USING OUTPUT
FEEDBACK CONTROL

3.1 State estimation

In order to perform controller enhanced FDI using output
feedback control, any unknown process state variable must
be quickly and accurately estimated from the available
output measurements so that the decoupling state feed-
back controller designs of subsections 2.3.1 and 2.3.2 can
be implemented. The state estimation is performed for

the state vector x (or a subset thereof) with the outputs,
or measured states, defined as y = Cx. In this work, we
consider only outputs of the form yi = xi, i = 1, . . . , q < n.
In other words, C is a matrix with one and only one
non-zero entry in each row and that entry is equal to
unity. This set-up is appropriate in chemical process con-
trol applications where measurements of a few states like
temperature and concentrations of a few species, like key
products, are available, but concentrations of some species
are not measured. This set-up also allows obtaining a
clear picture of the use of output feedback instead of full
state feedback in controller enhanced FDI. The theory for
the state estimator design is based upon a linear system,
but can also be applied to nonlinear systems, using a
local stability analysis around the operating point (origin).
Specifically, the linearized model of the nonlinear system
of Eq.1 takes the following form:

ẋ = Ax + Bu + Wd
y = Cx

(8)

where A is the Jacobian matrix of the nonlinear system
at the operating point, u is the manipulated input vector
and d is the fault vector. The matrices B and W can be
computed from the linearization of Eq.1 around the origin.
Under the assumption that (A, C) forms an observable
pair, each state variable x can be estimated by the fol-
lowing dynamic equation:

˙̂x = Ax̂ + Bu + L(y − Cx̂) (9)
where x̂ is the state estimate and L is the estimator gain
that can be chosen so that all the eigenvalues of the matrix
(A − LC) are placed at appropriate locations in the left-
half of the complex plane to guarantee a desirable rate of
convergence of the estimation error to zero. The compu-
tation of L can be done using standard pole placement
techniques or via a Kalman filtering framework by adding
process and measurement noise in the linearized model of
Eq.8. In either case, the linearized state estimation error
equation with d(t) = 0 takes the form:

ė = (A − LC)e. (10)
where e = x − x̂ is the estimation error. While it is
possible to perform state estimation using the full state
vector in the state estimator of Eq.9 when d(t) ≡ 0, it
becomes necessary to use a reduced-order process model
when designing a state estimator-based output feedback
controller to enhance FDI. This need for a reduced-order
model arises due to faults that affect the state estimator
and introduce error into the estimate (i.e., the full state
estimation scheme of Eq.9 works when d(t) = 0, but not
when d(t) �= 0). Specifically, if the error vector d on the
right-hand side of Eq.8 is nonzero, the new equation for the
estimator error becomes ė = (A−LC)e+Wd. Thus, in the
presence of a fault, the state estimates no longer converge
to their actual values, and the isolable structure attained in
the closed-loop system under state feedback control cannot
be maintained. However, it is possible in some process
systems to perform the state estimation task using a subset
of the states that are not directly affected by the expected
faults, i.e., effectively eliminating d in the estimation error
system. The general structure of the model in Eqs.8-10
remains the same for the reduced-order system, but it is
based on a subset of the full state vector, xr ⊂ x. To
mathematically realize this notion, consider a system with
the following structure, where time derivatives of the states



xr are not functions of d and include all unknown states
to be estimated along with some measured states, and xd

includes the remaining measured states, whose dynamic
equations may be functions of d. Specifically, we consider
the following decomposition of the vectors and matrices of
the linearized system of Eq.8

x =
[

xr

xd

]
, A =

[
Ar Ard

Adr Ad

]
, W =

[
0

Wd

]

B =
[

Br

Bd

]
, C =

[
Cr 0
0 Cd

]
, y =

[
yr

yd

]
.

(11)

Provided that the pair (Ar, Cr) is observable, the state
estimator based on the reduced-order system then takes
the form:

˙̂xr = Arx̂r + Ardxd + Bru + Lr(yr − Crx̂r) (12)
Eq.12 uses the actual measured values for all of the states
in xd. We can break xr down further into measured states
and unmeasured states, xr = [xT

rm xT
ru]T . Note that xrm

must include enough measured states independent of d
for the system to be observable. Given the restrictions
on C, this implies that yr = Crxr = xrm and Cd = I
(i.e., yd = xd). Finally, we define a vector with full state
information by combining the measured and estimated
data, x̂ = [xT

rm x̂T
ru xT

d ]T . Note that x̂rm is only used
as the driving force for convergence of the state estimator.
With these definitions, the reduced-order state estimator
of Eq.12 is not a direct function of d and the dynamics
of the estimation error, er = xr − x̂r, take the form
ėr = (Ar −LrCr)er which implies that er(t) will converge
to zero even in the presence of a change in d.

Once the estimator gain obtained from the linearized
model of the system is calculated, it can then be used
to estimate the states of the process using the nonlin-
ear model dynamics. Once again, for the nonlinear sys-
tem, the state vector, x, decomposes into the one of the
reduced-order system (independent of d) and the remain-
ing states, i.e., x = [xT

r xT
d ]T and f([xT

r xT
d ]T , u, d) =

[fr(xr, xd, u)T fd(xr, xd, u, d)T ]T . The nonlinear dynamic
equations for the reduced-order system are then combined
with the estimator gain and the output error to create a
nonlinear state estimator as follows:

˙̂xr = fr(x̂r, xd, u) + Lr(yr − hr(x̂r)) (13)
where the measured values are used for the states in
xd, i.e., by assumption yd = xd. Note that following
the previous assumption, hr(xr) = Crxr. Combining the
nonlinear state estimator of Eq.13 with a nonlinear state
feedback controller, u = pDC(x), that enforces an isolable
structure in the closed-loop system and can be designed
following the approaches presented in subsections 2.3.1
and 2.3.2, we obtain the following dynamic nonlinear
output feedback controller:

˙̂xr = fr(x̂r, xd, pDC(x̂)) + Lr(yr − Crx̂r)
u = pDC(x̂) (14)

Due to the effect of estimation error, it is not possible
to achieve complete decoupling. However, it is possible
to achieve a near isolable structure that is sufficient for
practical purposes. In this sense, we consider a near
isolable structure to be one where the closed-loop system
under output feedback control can be seen as an O(er)
regular perturbation of the closed-loop system under state

feedback control which is locally exponentially stable and
has an isolable structure. Thus, the estimation error can be
viewed a small perturbation error that will be accounted
for by the FDI thresholds designed to filter out normal
process variation. Theorem 1 below summarizes the main
analysis and controller design result of this section as well
as the closed-loop FDI properties.
Theorem 1. Consider the closed-loop system of Eq.1 under
the nonlinear output feedback controller of Eq.14 and
assume that the pair (Ar, Cr) is observable and Lr is de-
signed such that the matrix (Ar−LrCr) has all of its eigen-
values in the left-half of the complex plane. Then, there
exist δ, ε and Ty such that if f is continuously differentiable
on D = {x ∈ Rn| ‖x‖2 < δ}, the Jacobian of f is bounded
and Lipschitz on D and max{‖x(t0)‖2, ‖x̂r(t0)‖2} < δ then
‖xr(t) − x̂r(t)‖2 < ε, ∀t > t0 + Ty, and a near isolable
structure is enforced in the closed-loop system.

Proof. Under the control law of Eq.14, the closed-loop
system of Eq.1 takes the form,

ẋ = f(x, pDC(x̂), d), y = h(x)
˙̂xr = fr(x̂r, xd, pDC(x̂)) + Lr(yr − hr(x̂r)).

(15)

Linearizing the closed-loop system of Eq15 around the
equilibrium point (origin) yields,

ẋ = Ax + BpDC(x̂), y = Cx (16)
˙̂xr = Arx̂r + Ardxd + BrpDC(x̂) + Lr(yr − Crx̂r).(17)

The error between the actual and estimated states of the
reduced-order, linearized system is then er = xr − x̂r with
the dynamics ėr = (Ar − LrCr)er. Assuming that the
pair (Ar, Cr) is observable and that Lr is chosen such
that the matrix Ar − LrCr has eigenvalues in the left-
half of the complex plane, the estimation error, er, in the
linearized system has exponentially stable dynamics. If
the vector field of the nonlinear system, f(x, pDC(x̂), d),
is continuously differentiable and the Jacobian matrix is
bounded and Lipschitz on D = {x ∈ Rn| ‖x‖2 < δ},
then the nonlinear system dynamics are also locally, ex-
ponentially stable within some region around the equi-
librium point Khalil (1992). For some initial condition
max{‖x0‖2, ‖xr0‖2} < δ, the state estimation error, er,
will be bounded such that ‖xr − x̂r‖ < ε ∀t > t0 + Ty,
where Ty is a time interval of O(ε). Thus, the output
feedback control approaches state feedback control with
error of order ε, i.e., xr = x̂r + O(ε) ∀t > t0 + Ty. For
sufficiently small ε, this leads to a near isolable structure in
the closed-loop system for almost all times since the state
feedback controller pDC(x) enforces an isolable structure
in the closed-loop system.

3.2 Application to a CSTR example

The example considered is a well-mixed CSTR in which a
feed component A is converted to an intermediate species
B and finally to the desired product C, according to the
reaction scheme

A
1� B

2� C.

Both steps are elementary, reversible reactions and are
governed by the following Arrhenius relationships:



r1 = k10e
−E1
RT CA, r−1 = k−10e

−E−1
RT CB (18)

r2 = k20e
−E2
RT CB , r−2 = k−20e

−E−2
RT CC (19)

where ki0 is the pre-exponential factor and Ei is the
activation energy of the ith reaction where the subscripts
1,−1, 2,−2 refer to the forward and reverse reactions of
steps 1 and 2. R is the gas constant, while CA, CB and
CC are the molar concentrations of species A, B and C,
respectively. The feed to the reactor consists of pure A at
flow rate F , concentration CA0 and temperature T0. The
state variables of the system include the concentrations of
the three main components CA, CB , and CC as well as the
temperature of the reactor, T . Using first principles and
standard modeling assumptions, the following mathemat-
ical model of the process is obtained

ĊA =
F

V
(CA0 − CA) − r1 + r−1 + d1

ĊB = −F

V
CB + r1 − r−1 − r2 + r−2

ĊC = −F

V
CC + r2 − r−2

Ṫ =
F

V
(T0 − T ) +

(−ΔH1)
ρcp

(r1 − r−1)

+
(−ΔH2)

ρcp
(r2 − r−2) + u + d2

(20)

where V is the reactor volume, ΔH1 and ΔH2 are the
enthalpies of the first and second reactions, respectively, ρ
is the fluid density, cp is the fluid heat capacity, u = Q/ρcp

is the manipulated input, where Q is the heat input to the
system, d1 denotes a disturbance in the inlet concentration
and d2 denotes a fault in the control actuator. The
system of Eq.20 is modeled with sensor measurement
noise and autoregressive process noise. For details on noise
generation and for complete system parameter values,
please refer to Ohran et al. (2008).

In order to obtain the estimated trajectory for CB , a state
estimator as in Eq.13 was implemented using the reduced-
order system x̂r = [ĈB ĈC ]T . The process measurements
for CA and T were used in computing the dynamics of
x̂r. Note that although CC is measured, it is used in the
reduced-order state estimator so that the reduced-order
system is observable. The control input was updated at
each sampling interval with the measured values for CA, T
and CC and the estimated value of ĈB . As discussed
in subsection 3.1, CA and T should not be modeled as
dynamic states in the estimator since they are directly
affected by the faults d1 and d2. Thus, the measured data
for CA and T must be used in modeling the estimator, and
the final form of the state estimator based on the reduced
subsystem x̂r = [ĈB ĈC ]T is as given below:

˙̂
CB = −F

V
ĈB + r1 − r−1 − r2 + r−2 + L1(CC − ĈC)

˙̂
CC = −F

V
ĈC + r2 − r−2 + L2(CC − ĈC)

(21)
with

r1 = k10e
−E1
RT CA, r−1 = k−10e

−E−1
RT ĈB

r2 = k20e
−E2
RT ĈB , r−2 = k−20e

−E−2
RT ĈC

where L is the filter gain obtained using Kalman-filtering
theory based on the reduced-order system.The resulting
value for Lr is [Lr1 Lr2]T = [0.0081 0.0559]T .

The controlled output of the system, for the purpose
of feedback linearization, is defined as the concentration
of the desired product y = h(x) = CC (although, the
measured output vector is ym = [CA T CC ]T .) We consider
only faults d1 and d2, which represent undesired changes
in CA0 (disturbance) and Q (actuator fault), respectively.
In this process, the manipulated input u appears in the
temperature dynamics and the output, y = CC , has
relative degree 2 with respect to u. The fault d1 appears
only in the dynamics of CA and the output, y = CC , has
relative degree 3 with respect to d1. Finally, the output has
relative degree 2 with respect to d2. Based on the relative
degrees of the output with respect to the input and with
respect to the faults, under feedback linearizing control
the system structure will be such that the state vector
can be separated into two subsets: X1 = {CA, ĈB , T} and
X2 = {CC}. Thus, the fault signature for d1 = [1 0]T
and for d2 = [1 1]T . During the simulation, the T 2 for
the full state vector is monitored in order to perform fault
detection (substituting the estimate ĈB for the unknown
state CB .) Each of the subsystems is monitored to compute
the system signature upon detection of a fault. Based
on observation of the system dynamic behavior, a fault
detection window, TP , of 1 min is used.

The control objective is to regulate the system at the
equilibrium point

CAs = 2.06
kmol

m3
, CBs = 1.00

kmol

m3
, CCs = 0.937

kmol

m3
,

Ts = 312.6K, us = 0K/s

(22)
where the subscript s refers to the steady state values of
the variables. It should be noted that the CSTR system
of Eq.20 belongs to the class of systems of Eq.1 with
x = [CA −CAs, T −Ts, CB −CBs, CC −CCs]T where CB

is replaced with ĈB in the definition of x̂. This implies that
we can apply the output feedback scheme presented using
the controlled output y = CC . Using Eq.7, the feedback-
linearizing controller takes the following form:

u =
v − L2

fh(x̂)
LgLfh(x̂)

(23)

with
v = [−2ζ1 − 2ζ2].

where

ζ1 = CC , ζ2 = −F

V
CC + r2 − r−2

r2 = k20e
−E2
RT ĈB , r−2 = k−20e

−E−2
RT CC .

The state variables are in the transformed space and are
shifted so that the origin represents the desired set-point.

The closed-loop system was simulated for each of the two
faults considered. Each simulation was run for a process
time of 1 hour with the fault occurring at t = 40 min.
The values for the faults were each zero prior to the fault
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Fig. 1. Plot of measured state values for the CSTR under
output feedback decoupling control with fault d1.
CB shows both actual (solid) and estimated (dotted)
values.

occurring and took constant values of d1 = 1 kmol/m3min
and d2 = 10 K/min at t = 40 min. The state estimator
was initialized far from the operating point at ĈB(0) =
1.5 kmol/m3 and ĈC(0) = CC(0) = CCs in order to
demonstrate convergence.
Figure 1 shows the trajectories for each of the states in the
simulation with a failure in d1. The fault is apparent at
approximately t = 40 min (0.667hr). We can readily see
from the state trajectories, that the decoupling scheme
was effective as evidenced by the fact that the output,
CC , is unaffected by the fault. Also, we see that the state
estimator converged at around t = 3 min.

For the system with a failure in d1, Figure 2 shows the
Hotelling’s T 2 statistic for the two subvectors X1 and X2

as well as for the full state vector. From the graph, we can
see that a fault is clearly detected at the expected time
t = 40 min as shown in the plot of the T 2 statistic for the
full state vector (T 2

3 ). Although there were a few single
incidents of data breaching the upper control limit, none
of them represented sustained departures for the length
of the fault detection window, TP . Also note that values
above the upper control limit before t = 0.1hr were due to
the state estimator not having converged. Upon detection
of the fault, the system signature can be computed as W =
[1 0]T due to the fact that the T 2 statistic for the subvector
X1 exceeded the upper control limit for a sustained period
and the T 2 for the subvector X2 remained within the
bounds of normal operation. Because the system signature
matches that of the fault signature for d1, a fault in d1

is declared at time t ≈ 41 min. In Figure 3, we see the
simulation results for the same system with a failure in d2.
Again, the failure is evident around t = 40 min. However,
in this case we see that both subsystems are affected.
The process signature obtained from the T 2 statistics in
Figure 3 shows that both subvectors were affected and this
process signature matches the fault signature of d2.
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