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Abstract: Fault detection and diagnosis is critical for maintaining the health of process systems.
Common fault signals include process and disturbance parameter changes, as well as sensor
and actuator malfunctions (such as persistent drifts and biases). These may be characterized
by the existence of latent ‘fault’ states. This work examines the effectiveness of a Hidden
Markov Model framework for modeling such fault regimes. The proposed methodology may
be interpreted as a generalization of a commonly-employed Mixture-of-Gaussians (Kesavan and
Lee (1997)) approach and is demonstrated through a shell-and-tube heat exchanger problem.
Furthermore, the flexibility of the method is shown in the context of detecting valve stiction.
This is a significant problem in process industries where a valve’s output suffers from excessive
friction and is unable to track its input leading to degradation in closed-loop performance.
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1. INTRODUCTION

Tracking the closed-loop performance and health of
process systems, although intuitively important, is often-
times overlooked during the design of control solutions.
Maintenance, required to mitigate the effects of system
faults, typically necessitates expert personnel not found
within normal plant situations (Kesavan and Lee (1997)).
For this reason, multiple process monitoring algorithms
have been developed so that such faults may be automat-
ically detected, diagnosed and eventually removed.

Process monitoring methods may be further classified
as i) data-driven ii) analytical and/ or iii) knowledge-
based (Chiang et al. (2001)). The first involves statistical
treatment of large quantities of process data and are
typified by data-mining and machine learning techniques
(such as principal and independent component analysis),
statistical control charts and so on. Knowledge-based
methods employ qualitative reasoning and are oftentimes
rules-based with a strong logic underpinning. A thorough
overview of all three classes is presented by Chiang et al.
(2001) and the references therein.

This work, relying on dynamical models of the process for
fault detection, is a particular type of analytical approach.
Consequently, a necessary standing assumption is the
availability of a mathematical model derived from first
principles or otherwise. Given the wide-spread popularity
of model-based control (such as Model Predictive Control),
the controller’s model can be readily ported over for the
purpose of fault-detection. A model structure, such as in
(1), (2), is therefore relevant in subsequent developments.

xt = f(xt−1, θt−1, ut−1, ωt)

yt = g(xt, θt, vt) (1)

γt = Atγt−1 + Btϕt

θt = Ctγt + et (2)

Here, xt ∈ R
nx represents the state at discrete time index

t, ut ∈ R
nu , the control input, and yt ∈ R

ny , a noise-
corrupted measurement signal. θt ∈ R

nθ represents a fault
vector with potentially time-varying dynamics governed
by matrices (At, Bt, Ct) and noise vectors (ϕt, et)

1 . ωt and
vt are process and measurement noise signals respectively.
f(·), which may represent an integration of the continuous-
time model over a unit sample-time, is the state transition
map. Similarly, g(·) represents the state-to-output map.

Faults are typically manifested (Kesavan and Lee (1997))
as i) process parameter changes, and/ or ii) disturbance
parameter changes, as well as iii) actuator and sensor
problems – all captured by θ. Depending on circumstances,
these may be sudden jumps (e.g. due to an abrupt intro-
duction of significant sensor bias), or slow drifts or random
walk-type changes (e.g. as a result of catalyst fouling) or
even a mixture of both (Fig. 1). Such failure modes, which
cannot be directly observed, and need to be estimated,
are conveniently incorporated into the fault model (2) by
adding the notion of latent states (denoted by r), each of
which modifies the fault model (see (2)) differently. This
work explores the use of a Hidden Markov chain, used
previously to model realistic disturbances in the context
of process control (Wong and Lee (2007)), to describe
the temporal, probabilistic transitions between the latent
states. Furthermore, this work can be interpreted as a gen-
eralization of the popular approach of assuming statistical
independence, from one time period to the next, between
hidden states. For example, at each time step t, Willsky
(1976) and Kesavan and Lee (1997) allowed the statistics

1 In practice, the user would model θ according to disturbance
scenarios of interest.
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Fig. 1. Possible disturbance signals (θ).

of ϕt and et to be described by a Mixture-Of-Gaussians
(MOG) 2 . This captures the situation where faults that
do occur happen infrequently but with significantly larger
magnitudes. Persistent faults like drifts, which are easily
described by the proposed Hidden Markov Model (HMM)
approach, are captured in the MOG context by introduc-
ing additional states or non-linearities in the model.

The main contribution is to show that the aforementioned
faults (abrupt jumps/ biases and drifts) can be better
modeled and detected by the proposed method. Another
novel application is in the context of detecting valve
stiction, where it is demonstrated that the output of the
valve (which is not normally measured) can be effectively
tracked using the same proposed framework.

Section 2 provides the details behind an HMM, its subse-
quent use for fault detection and relevance to prior work.
Section 3 demonstrates the effectiveness of the proposed
method in the context of a heat exchanger. Section 4
explores the valve stiction issue before concluding remarks
regarding future research are presented in Section 5.

2. FAULT MODELING USING HIDDEN MARKOV
MODELS

HMMs represent a useful class of statistical models where
a latent state, taking values from an alphabet J ∈
{1, 2, . . . , J ∈ Z

+} of cardinality J , transitions probabilis-
tically in a Markovian 3 fashion from one sampling time
to the next. Mathematically, a finite-state Markov chain
is a sequence of random variables (r0, r1, ..., rt, ...), where
the transition probability matrix Π = (πij) = (pr(rt =

j|rt−1 = i), i, j ∈ J) :
∑J

j=1 πij = 1,∀i ∈ J , governs
the probabilistic temporal transitions. The term ‘Hidden’
signifies that the actual regime label is usually not known
with complete certainty and must be inferred from avail-
able noisy measurements of itself or other related states.
In the simplest case, each latent state has a probability
distribution over a finite set of possible output symbols.
All Markov chains under consideration are ergodic. For
simplicity, the Markov chain is assumed to be at steady
state, satisfying π = Π′π, where π is a column vector
containing the unconditional and initial probabilities of
each regime. HMMs have found widespread applications in
2 i.e., at each time step, a member from a set of Gaussians, from
which the noise signal is to be sampled, is selected with some time-
invariant probability.
3 transitions depend only upon the immediate past.

science and engineering - ranging from speech recognition
(Rabiner (1989)) to bioinformatics and diverse fields such
as econometrics.

HMMs and their generalizations have been used in fault
detection, with significant differences to our proposed ap-
proach. Smyth (1994), for example, did not consider an
explicit fault model (i.e., (2)). Instead, the process para-
meters are continuously estimated (in batch mode) and
treated as output of an underlying Markov chain. This
necessitates linking the process parameter vector to fault
modes, which is not always possible. A recursive maximum
a posteriori filter is then used for fault-mode detection.
Huang (2008) suggested a similar (see Section 2.1) HMM
approach to sensor problem diagnosis but limited con-
siderations to faults in the output channels and input
signals taking values from a finite, discrete set. Almeida
and Park (2008) learned an HMM corresponding to each
operating condition and, unlike the approach proposed in
this work, does not make use of the process model. There,
fault detection is achieved by a classification scheme that
chooses the HMM that maximizes the probability of a
given sequence of observations.

2.1 Proposed Fault Model: Intermittent Drifts & Abrupt
Jumps

Following the successes in other fields, a generalization of
(2) is considered by allowing the statistics of (ϕt, et) (and
potentially the fault model parameters (A, B, C)) to vary
according to a hidden Markov chain.

Intermittent Drifts. In the case of one-dimensional inter-
mittent drifts (Fig. (1a)), one has:

γt+1 = γt + ϕrt+1

θt = γt + et

rt ∈ 1, 2

π11 ≈ 1, π11 < 1

π22 ≈ 1, π22 < 1 (3)

Here, ϕrt
and et are uncorrelated, zero-mean Gaussian

signals with covariances (that may depend on rt) of Qϕ
rt

and Qe
t . The abuse of notation on the subscript of ϕ

emphasizes the dependence of the covariance of the noise
signal on the underlying Markov chain. When rt = 1 (i.e.,,
the white-noise regime), Qϕ

rt=1 ≈ 0. Random-walk type
behavior occurs when the hidden state switches to rt = 2,
where Qϕ

rt=2 >> 0; Qe
t is invariant to the hidden regime

and of appropriate magnitude. Since it is common that
there is low probability of switching once the system enters
a particular regime, a diagonally-dominant Π is employed.

Abrupt Jumps. In the case of modeling abrupt jumps, (3)
is adjusted such that π11 = π12 = p ≈ 1, p < 1, so that
Π = [p, 1 − p; p, 1 − p]. This ensures that the jump state
(the second one, in this case) is infrequently accessed and
when it is, a significant step-change occurs.

In this latter case, since it is assumed that the Markov
chain is at steady state, this form of the transition matrix
implies that the probability of entering a particular regime
is independent of the current mode. It is thus clear that
the HMM framework subsumes an MOG description.



Fault detection and diagnosis is performed via state esti-
mation (in particular to track θ) without the knowledge
of the latent state trajectory. Hence, a brief mention of
state estimation, based on a model resulting from the
concatenation of (1), and (2) is necessary.

2.2 Fault Detection via State Estimation of Jump Markov
Systems

Equations (1) and (2) can be merged to yield:

[

xt+1

γt+1

]

=Frt+1

(

[

xt

γt

]

, ut, ξrt+1

)

yt = Grt

(

[

xt

γt

]

, nrt

)

pr(rt = j|rt−1 = i) = πij (4)

Here, F is implicitly understood to include model struc-
tures and parameters from {f, A, B, C} and the hidden
Markov chain. A similar remark is extended to G. Besides
F and G, the statistics of the noise ξ (a concatenation
of (ω, ϕ, e)) and n (a concatenation of (v, e)) can depend
on r. The system represented by (4) is also termed a
Markov jump system. Without knowledge of the sequence
(r0, . . . , rt), the optimal filter involves averaging over an
exponentially growing number of linear filters. The number
of filters scales as J t, where J is the cardinality of the set
containing all possible realizations of r.

The following paragraphs outline the Generalized Pseudo
Bayesian estimation algorithm of order 2 (GPB2), a pop-
ular sub-optimal method, developed by Bar-Shalom and
Li (1993). The main idea to have trajectories whose last
2 terms differ be merged (via moment-matching) into a
single Gaussian. Using the law of total probability and
Bayes’ Rule, it can be shown that:

xt+1|t+1 =
∑

rt+1

p(rt+1|t + 1)xt+1|(t+1,rt+1)

xt+1|(t+1,rt+1) ,
∑

rt

xt+1|(t+1,rt+1,rt)p(rt|rt+1, t + 1)

Pt+1|t+1 =
∑

rt+1

{(xt+1|t+1 − xt+1|(t+1,rt+1))(·)
′

+Pt+1|t+1,rt+1
}p(rt+1|t + 1)

Pt+1|t+1,rt+1
=

∑

rt

{(xt+1|t+1,rt+1
− xt+1|(t+1,rt+1,rt))(·)

′

+Pt+1|t+1,rt+1,rt
}p(rt|rt+1, t + 1)

p(rt|rt+1, t + 1) =
1

c1
p(yt+1|t, rt+1, rt)p(rt|rt)p(rt|t)

p(rt+1|t + 1) =
1

c2

∑

rt

p(yt+1|t, rt+1, rt)p(rt+1|rt)p(rt|t)

The term p(yt+1|t, rt+1, rt) refers to the probability density
of the corresponding one-step ahead output prediction.
xt+1|(t+1,rt+1) refers to the estimate of xt+1 given output
measurements {y0, . . . , yt+1} and a certain realization of
rt+1; Pt+1|(t+1,rt+1) denotes the corresponding error co-
variance matrix. The pair (xt+1|(t+1,rt+1,rt), Pt+1|(t+1,rt+1,rt))
are similarly defined. It is noted that starting from

(xt|(t,rt), Pt|(t,rt)), a single application of the time and
measurement update steps of the (extended) Kalman filter
yields these latter quantities. c1 and c2 are normalizing
constants such that the merging probabilities p(rt|rt+1, t+
1) and p(rt+1|, t + 1) sum to unity.

2.3 A-posteriori Regime Estimation

If required, a prediction and/ or filtered estimate of the
hidden regime can be obtained viz:

r̂t+1|t = arg max
rt+1

{

p(rt+1|t) ,
∑

rt

pr(rt+1|rt) · pr(rt|t)

}

r̂t|t = arg max
rt

{p(rt|t)} (5)

3. EXAMPLE 1: FAULT TRACKING IN A SHELL &
TUBE HEAT EXCHANGER

In this example, the usefulness of the proposed method
in detecting faults is studied in the context of a shell
and tube heat exchanger (6) also considered by Kesavan
and Lee (1997). In particular, we contrast the proposed
HMM approach against an MOG method (Kesavan and
Lee (1997)) in modeling the latent states that govern the
fault signals (see Section 3.1 for simulation details). The
main difference is that the latter framework assumes that
each latent state occurs with a (time-invariant) probability
that is independent of the previous realization. The gov-
erning non-linear ordinary differential equations used for
simulation but not estimator design, are:

dTc

dt
=

qc

Vc

(Tci − Tc) +
αc

Vc

(Th − Tc)

dTh

dt
=

qh

Vh

(Thi − Th) −
αh

Vh

(Th − Tc)

y =

(

Tc

Th

)

+ µv + v (6)

Here, the measured state variables are the temperatures
of the hot and cold streams respectively: [Tc;Th]. [Tci;Thi]
are the temperatures of the incoming cold and hot streams
respectively. [αc;αh] are system parameters reflecting the
heat transfer coefficient, heat transfer area, density, spe-
cific heat capacity of the cold and hot streams respectively.
Similarly, [qh; qc] are the flow rates of the hot and cold
streams and represent the degrees of freedom available to
a controller. [Vc;Vh] are the volumes of the cold and hot
sides. Steady-state values are reported in Table 1. v refers
to zero-mean measurement noise of covariance R , E[vv′].
µv is nominally a null vector but might be subject to
changes due to disturbances.

3.1 Simulation Conditions

Although a variety of fault types may be considered (e.g.
those affecting the various input and output channels and/
or changes in parameters (αc, αh), as discussed in Section
1), for clarity of exposition, only two different fault types
are assumed. Furthermore, these affect only the cold side.
Given initially quiescent conditions (see Table 1), one
considers:



(1) An abrupt step that is normally distributed with zero
mean [L/min] and variance qhi

u [L2/min2] affecting the
input channel on the cold side (qc) at some unknown
time tu. This may be thought of as a sudden bias
developing in the input channel:

qct = qct−1 + ϕu
t · δ(t, tu), ϕu

t ∼ N (0, qhi
u ) (7)

δ(·, ·) is the Dirac delta function. qhi
u has a value of 2

in the following experiments.

(2) A sudden drift (see Fig. 1a) affecting the sensor relay-
ing Tc (i.e., y1) measurements between an unknown

time span: T , [ty,1, ty,2]. Namely, one has:

µv,1t
= µv,1t−1 + ϕy

t (8)

where E[ϕtϕ
′
t] = qhi

y = 0.5 if t ∈ T and E[ϕtϕ
′
t] =

qlo
y = 10−10 ≈ 0, for other time periods. µv,2 remains

at the origin for all time.

The above non-linear model is not available for state
estimation. Instead, a version linearized about the nominal
operating conditions is available. With a sampling time of
0.5 min, A = [0.91, 0.03; 0.03, 0.91], B = [-0.12, 0.002; -
0.002, 0.12], C = diag([1, 1]). Measurement covariance, R,
is set to diag([0.5, 0.5]) and known. Since estimation is the
focus of this example, the system is run in the absence of
feedback control.

3.2 Proposed HMM Method to Handle Abrupt Jumps &
Intermittent Drifts

The following Markov jump linear model, a specialization
of (4), is employed:

xt+1 = Axt + But + bθu
t + ωt+1

θu
t+1 = θu

t + ϕu
rt+1

θy
t+1 = θy

t + ϕy
rt+1

yt = Cxt + θy
t + vt (9)

where xt, the state variable at discrete time index t
are deviations from [T ∗

c ;T ∗
h ]. Similarly, the vector ut ∈

R
2 represents deviations from [q∗c ; q∗h]. b represents the

first column of matrix B, consistent with the fact that
disturbances enter the qc channel. [θu; θy] are input and
output disturbance state variables respectively. Both θu

and θy are modeled as integrators but distinguished by
the effects of the hidden Markov regime on the second
moments of ϕu and ϕy. Consistent with the assumption
of an abrupt jump, the covariance of ϕu is assumed to
be large with a small probability, and vice versa. θy

Table 1. Nominal steady state operating con-
ditions

Variable Value Units

q∗c = q∗
h

10 L/min
T ∗

ci
25 oC

T ∗

hi
100 oC

T ∗

c 43.75 oC
T ∗

h
81.25 oC

α∗

c 5 m3/min
α∗

h
5 m3/min

V ∗

c = V ∗

h
75 L

is naturally modeled as an intermittent drift (see (3)).
Details are given in the following paragraphs.

A four-regime Markov chain is considered. These regimes
represent the following scenarios:

(1) No disturbance in input channel, No disturbance in
output channel (‘LO-LO’)

(2) No disturbance in input channel, Drifting disturbance
in output channel (‘LO-HI’)

(3) Abrupt disturbance in input channel, No disturbance
in output channel (‘HI-LO’)

(4) Abrupt disturbance in input channel, Drifting distur-
bance in output channel (‘HI-HI’)

Accordingly, a simple method for determining the values
of the transition probability matrix (Π) is proposed. Per
the earlier discussion (Section 2.1), two (sub) transition
probability matrices are appropriate for the input (Πu)
and output channels (Πy) respectively, the first state being
the ‘normal’ regime in both cases.

Πu =

(

0.99 0.01
0.99 0.01

)

; Πy =

(

0.99 0.01
0.01 0.99

)

(10)

An overall transition probability matrix (Π) accounting for
the four scenarios can be obtained by assuming statistical
independence between the input and output channels. For
example in computing π23, one has transitions between the
‘normal’ to ‘abnormal’ state for the input channel and the
opposite transitions for the output channels so that

π23 = πu
21π

y
12 (11)

The overall Π 4 is:






0.98 0.01 0.01 0.01
0.01 0.98 0.01 0.01
0.98 0.01 0.01 0.01
0.01 0.98 0.01 0.01







In accordance to the noise statistics of the possible fault
scenarios, the covariance of the overall noise vector ξt ,

[ωt, ϕu
t , ϕy

t ] for the 4 regimes are:

(1) ‘LO-LO’: E[ξtξ
′
t] = diag([10−10, 10−10, 10−10, qlo

y ])

(2) ‘LO-HI’: E[ξtξ
′
t] = diag([10−10, 10−10, 10−10, qhi

y ]

(3) ‘HI-LO’: E[ξtξ
′
t] = diag([10−10, 10−10, qhi

u , qlo
y ]

(4) ‘HI-HI’: E[ξtξ
′
t] = diag([10−10, 10−10, qhi

u , qhi
y ]

Process noise ω is negligible compared to θu and will be
assumed to be absent for simplicity.

3.3 Alternative MOG Description

If one were to be restricted to an MOG description of the
latent regime, then an additional state (θβ) is required:

xt+1 = Axt + But + bθu
t + ωt+1

θu
t+1 = θu

t + ϕu
t+1

θβ
t+1 = θβ

t + ϕβ
t+1

θy
t+1 = θy

t + θβ
t

yt = Cxt + θy
t + vt (12)

Similar to (9), θu refers to the input channel disturbance
and is modeled as an abrupt jump. However, the output
4 the rows do not sum to unity due to rounding errors



disturbance (θy) is now modeled as a double integrator
(driven by θβ). θβ itself may be interpreted as a velocity
term and is driven by ϕβ which is set to have a small
covariance (10−10) with large probability and a large
covariance (of qhi

y ) with small probability. This captures
the (rare) event of a velocity change when the output
disturbance transitions from the white-noise regime to the
random-walk mode and vice versa (see Fig. 1(a)). In this
case, the sub transition matrices for the input and output
channels are:

Πu = Πy =

(

0.99 0.01
0.99 0.01

)

The overall transition matrix may be obtained as before,
per (11). The covariance of the overall noise vector ξt ,

[ωt, ϕu
t , ϕβ , ϕy

t ] for the 4 regimes are:

(1) E[ξtξ
′
t] = diag([10−10, 10−10, 10−10, qlo

y , 10−10])

(2) E[ξtξ
′
t] = diag([10−10, 10−10, 10−10, qhi

y , 10−10]

(3) E[ξtξ
′
t] = diag([10−10, 10−10, qhi

u , qlo
y , 10−10]

(4) E[ξtξ
′
t] = diag([10−10, 10−10, qhi

u , qhi
y , 10−10]

3.4 Example 1: Results

Table 2 presents a summary (average over 100 realizations)
of the state-estimation error for both the input and output
channel. A typical realization is depicted in Fig. 2.

Table 2. 2-norm of state-estimation error (Av-
erage of 100 realizations)

Channel Proposed MOG approach
see (9) see (12)

Input 11.4 12.9
Output 13.3 19.7

Due to the similarities in modeling the abrupt jump in
the output channel, it can be seen from Fig. 2(a) and
the first line of Table 2 that the performance of the
state estimator corresponding to both approaches yield
similar performances. However, the MOG approach fares
significantly worse than the proposed HMM approach in
tracking the fault signal (which is an intermittent drift)
corresponding to the output channel (see Fig. 2(b) and
the second row of Table 2).

4. EXAMPLE 2: VALVE STICTION

Valve stiction is a common problem in control valves, the
latter being widely used in process industries (Choudhury
et al. (2005)). Due to the effects of friction, the output
(ux) of the control valve does not track its input (uc) (i.e.,
the control signal prescribed by the controller) instanta-
neously. Instead, ux has been observed to demonstrate
a delayed and sluggish response to uc, where the valve
‘sticks’ to its current position if changes in the control
signal (and/ or the absolute magnitude itself) are insuf-
ficiently large to overcome friction effects. This is usually
to the detriment of closed-loop performance. It is assumed
that the plant is linear and therefore parameterized by
matrices (A,B,C), where A is the state-transition map,
B, the input-to-state map and C, the state-to-output map.
Technical definitions, first-principles and empirical models
of stiction can be found in the articles by Choudhury et al.
(2005, 2008) and the references therein. For simplicity,
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Fig. 2. Tracking θu and θy. Comparing the proposed HMM
vs. MOG approaches. Legend: solid line - actual fault
signal; Dots (·) - HMM; Crosses (x) - MOG

an efficient single-parameter model employed by Stenman
et al. (2003) and Srinivasan and Rengaswamy (2005) for
stiction detection is used for simulations in the sequel:

ux
t =

{

ux
t−1, if |uc

t − ux
t−1| ≤ d

uc
t , otherwise

(13)

where d represents the valve stiction band. The larger the
value of d, the more severe the stiction problem.

The detection, diagnosis and compensation-for valve stic-
tion has received much attention in academia and industry.
Based on (13), Stenman et al. (2003) proposed a suitable
model for detecting stiction:

ux
t = δ̃t · u

x
t−1 + (1 − δ̃t) · u

c
t

where δ̃t is a binary (0/1) mode parameter occurring with
a certain (i.i.d) probability.

For the same purpose of stiction detection and estimating
the typically unmeasured ux

t , we allow δ̃t to have sta-
tistics governed by an underlying Markov chain so that
observations reflecting persistent ‘stickiness’ can be more
effectively modeled. Also, instead of identifying the seg-
mentation sequence {δ̃1, . . . , δ̃t} that maximizes the pos-

terior quantity pr(δ̃1, . . . , δ̃t|y1, . . . , yt) through dynamic
programming, we propose a novel Markov jump linear
description that is consistent with (13) to be used by a
GPB2 state-estimator:



(

xt

ux
t−1

)

=

(

A Bx
rt−1

0 δ̃rt−1

) (

xt−1

ux
t−2

)

+

(

Bc
rt−1

1 − δ̃rt−1

)

uc
t−1

yt = ( C 0 )

(

xt

ux
t−1

)

+ vt (14)

When r = 1, stiction is absent, δ̃ = 0, Bx = 0, Bc = B.
Conversely, when r = 2, stiction is present, δ̃ = 1, Bx = B,
Bc = 0.

4.1 Simulation Studies: Mixing Tank

For simulation studies, we consider a simple isothermal
mixing-tank (of cross-sectional area A) with an outlet
stream whose flow-rate is controlled by a valve (with
resistance R):

dm

dt
=

1

A
(q1 + q2 −

m

R
) (15)

The controlled (and also measured) variable is the liquid
level (m). The flow-rate of the first stream, q1, is a
measured disturbance whereas that of the other stream
(q2) represents the manipulated variable. A PI controller
(with gain Kc, and integral time constant τI) is given by:

uc
t = uc

t−1 + Kc[et − et−1 +
h

τI

et], et , l − yt

Here l is the set-point, nominally calibrated to a value of
6. For ease, A, R, Kc, τI and the measured disturbance
signal q1, are all set to nominal values of 1. A relatively
large value for the stiction band is employed: d = 0.5. A
sampling time of h = 0.05 is employed, resulting in the fol-
lowing parametrization to be used by the state estimator:
A = 0.951, B = 0.0488 and C = 1. Measurement noise is
set to have a known covariance of R , E[vtv

′
t] = 10−4. To

reflect the high degree of stiction, the transition probabil-
ity matrix Π is:

(

0.01 0.99
0.01 0.99

)

(16)

4.2 Results: Estimating Valve Output & Detecting Stiction

Tracking results for a typical closed-loop realization are
shown in Fig. 3. The existence of the cycles in uc and ux

(Fig. 3(a)) is due to the presence of integral action as well
as the valve stiction phenomenon. From Fig. 3(a), it can
be seen that the proposed methodology is able to estimate
ux. Observing the (a-posteriori) probability (see (5) and
Fig. 3(b)) of the first mode (or equivalently the second)
via reveals the time instances where a switch occurs (by
means of the probability peaks). Doing so represents an
effective way for detecting stiction.

5. CONCLUSIONS & FUTURE WORK

The main contribution of this work is to show that the
common faults (abrupt jumps/ biases and drifts) can be
better modeled and detected by the proposed HMM-based
method. Another novel application is in the context of
detecting valve stiction, where it is demonstrated that the
output of the valve (which is not normally measured) can
be effectively estimated. Future work involves extending
the problem to large scale systems (e.g. a network of unit
operations) of industrial interest.
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Fig. 3. Tracking unmeasured valve output in mixing-tank
example.
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