
On A New Approach for Self-optimizing
Control Structure Design

S. Heldt ∗

∗ Linde AG, Linde Engineering Division, Dr.-Carl-von-Linde-Str. 6-14
82049 Pullach (Tel: +498974453536; e-mail:

steffen.heldt@linde-le.com).

Abstract
In this paper, a new method for the identification of self-optimizing control structure designs
(CSDs) based on generalized singular value decomposition (GSVD) is proposed. The method is
primarily dedicated to find optimal CSDs where all controlled variables (CVs) are represented
by a common set of linear combinations of process variables (PVs). It is shown that the
implementation of the GSVD into iterative solution approaches is beneficial in order to find
CSDs where an individual PV subset is mapped to each CV. The developments will be tested
on a simple process.
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1. INTRODUCTION

With more than 4000 completed plant projects, the En-
gineering Division of the Linde AG ranks among the
leading international plant contractors, with focus on the
key market segments olefin plants, natural gas plants, air
separation plants, as well as hydrogen and synthesis gas
plants. This paper relates to new process developments
for liquefied natural gas plants whose steady state and
dynamic behavior are currently under investigation in
order to provide design guidelines and to ensure reliable
and economic operation. In the context of this work, new
methods for the identification of regulatory control struc-
ture designs (CSDs) have been developed. They will be
presented in this paper.

Steady state process optimization by regulation was first
motivated by Morari et al. [1980]. They articulated the
idea that a constant set point policy will lead to optimal
operation if the underlying control structure is properly
designed. Skogestad and Postlethwaite [1996, p. 428-433]
extended this idea and gave an approximate criterion for
finding CSDs with self-optimizing abilities, the so-called
minimum singular value (MSV) rule. Assuming a linear
process model and a quadratic cost function, an exact local
criterion for the worst-case loss of CSDs was developed by
Halvorsen et al. [2003]. Based on the resulting worst-case
loss criterion, a multivariate non-convex problem subject
to structural constraints needs to be solved in order to
obtain a self-optimizing CSD. These structural constraints
refer to limitations on the size of the process variable (PV)
subset and the particular selection of PVs. For instance,
it must be decided whether only PV selection or PV
combination is taken into account. Several methods have
been developed which solve the constrained optimization
problem. An optimal CSD subject to PV selection can be
found by either screening all possible PV combinations or
applying branch and bound (BAB) algorithms in order

to avoid time consuming calculations as proposed by Cao
and Saha [2005], Kariwala and Skogestad [2006/07/09-13],
Cao and Kariwala [2008], Kariwala and Cao [2009]. PV
combination methods have been published by Alstad and
Skogestad [2007], Alstad et al. [2008], Kariwala [2007] and
Kariwala et al. [2008]. They all have in common that the
same PV subset is considered for all CVs.

In Section 2, the mathematical framework of self-optimizing
control theory will be briefly introduced. In the following
sections, two variants of a new PV combination method
will be proposed. In Section 3 the focus is on CSDs where
a common PV subset is considered for all CVs. Section
4 is dedicated to CSDs where individual PV subsets are
mapped to each CV. For illustration, the new develop-
ments will be applied to a process example in Section 5.
Concluding remarks are given in Section 6.

2. MATHEMATICAL FRAMEWORK

The scheme in Figure 1 represents a general regulatory
CSD applied to an arbitrary process plant. Based thereon
the exact local method by Halvorsen et al. [2003] will be
introduced. The vectors u ∈ R

nu , d ∈ R
nd , y ∈ R

ny

and c ∈ R
nu , respectively, correspond to the manipulated

variables (MVs), disturbance variables (DVs), measured
process variables (PVs) and controlled variables (CVs).
A constant set point policy is applied. That is, the MVs
are adjusted by the controller(s) until, feasibility provided,
the CVs equal the set point vector cs. To account for
measurement errors, the PVs and CVs are affected by the
implementation errors ny ∈ R

ny and nc ∈ R
nu .

Morari et al. [1980], the inventors of self-optimizing con-
trol, state that it is desirable “(...) to find a function of
PVs which when held constant, leads automatically to the
optimal adjustments of the MVs, and with it, the optimal
operating conditions.” In other words, self-optimizing con-
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Figure 1. General representation of regulatory CSDs in
chemical plants (after Alstad et al. [2008]).

trol may be achieved by an appropriate mapping of PVs
towards CVs, denoted by c = H (y), where H ∈ R

nu rep-
resents the “combination” block in Figure 1. For deriving
the exact local method, Halvorsen et al. [2003] considered a
linear map H = ∂c

∂yT . The cost function of a plant denoted
by J are usually affected by both, MVs and DVs. In order
to operate the plant optimally (at minimum cost), MVs
need to be adjusted subject to variations in DVs. The
solution to the problem

uopt (d) = arg
(
min

u
J (u,d)

)
s.t. g (y, u, d) = 0 (1)

gives the best input leading to the lowest achievable
cost. Problem (1) will be referred to as feed-forward re-
optimization. Here g ∈ R

ny denotes the steady-state
model equations of the plant. The following simplifying
assumptions are made.

(1) Nonlinearities of the plant are treated as locally
negligible. Then, the steady-state I/O model of the
plant can be represented as

y = Gy u + Gy
d d, (2)

where
[
Gy Gy

d

]
= −

(
∂g

∂yT

)−1 ∂g

∂
[
uT dT

] .

(2) The cost function J is locally approximated by a
second order Taylor series.

(3) The number of MVs might be reduced as some of
them need to be spend in “a priori” controller loops in
order to either stabilize the plant or fulfill optimally
active constraints. It is assumed that u represents
only the remaining MVs available for self-optimizing
CSD. The “a priori” controller loops are considered
part of the model equations g.

Figure 2 shows exemplarily the operational cost of a
process plant versus one DV. The cost of feed-forward re-
optimization is indicated by the solid line and gives the
lower bound for the cost of feedback control with constant
set points. It is thus convenient to define a loss function as

L (d) = J (uH (d) , d) − J (uopt (d) ,d) .

Here uH (d) represents the influence from DVs to MVs for
feedback control, easily derived for the linear case. From
c = H y

!= cs = 0 and (2) it follows that

uH = − (H Gy)−1
H Gy

d d.

According to Halvorsen et al. [2003] the worst-case loss is
given by

Lworst =
1
2

zT z, (3)

J(d)

d

d = 0

Poor
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J(uopt(d),d)
J(uH(d),d)

Loss

Figure 2. Objective functions for a poor and a good
self-optimizing CSD compared with the case of re-
optimized MVs (after Skogestad [2000]).

where the loss variables z are given by

z = M f , (4)
for feedback control with

M = J1/2
uu (H Gy)−1

H F̃

F̃ =
[− (

Gy J−1
uu Jud − Gy

d

)
W d W ny

]
.

Here, the matrices Juu and Jud indicate the second deriva-
tives (Hessians) of the cost function J with respect to u
and d. The disturbance variation Δd and the implemen-
tation error ny are commonly represented by the scaled
variable f , i.e.,[

Δd
ny

]
=

[
W d 0
0 W ny

]
f with ‖f‖2 ≤ 1,

where the matrices W d and W ny are diagonal scaling
matrices. From observation of (3) and (4) it is evident
that a self-optimizing CSD with least worst-case loss may
be obtained by solving the problem

H = arg min
H

σ (M) , (5)

where σ indicates the largest singular value. In a more
recent work, Kariwala et al. [2008] proved that the average
loss given by

Laverage =
1

6 (ny + nd)
‖M‖2

F (6)

is a better estimate of the loss as the worst-case loss (3)
tends to overestimation. Here, ‖.‖F indicates the Frobe-
nius norm also known as the Euclidean norm. Besides,
Kariwala et al. [2008] proved that the average loss is super-
optimal in the sense that it also minimizes the worst-case
loss. According to (6), they suggested solving

H = arg min
H

‖M‖F (7)

instead of (5).

The solution of problems (5) and (7) is nontrivial since the
matrix M depends in a nonlinear fashion on H. Moreover,
the problem may be structurally constrained, as indicated
in Section 1. E.g., the dimension of the PV subset could be
limited or special PVs may be excluded from PV subset
etc. Many authors such as Alstad and Skogestad [2007],
Alstad et al. [2008], Kariwala [2007] and Kariwala et al.
[2008] addressed the problem of finding a global solution to
either (5) or (7) with focus on PV combination. All of these



methods are limited to the structural constraint that the
same PV subset is used for each CV. Based on the method
developed in the next section, iterative solution strategies
will be developed which focus on finding CSDs without
structural limitations except for rank (H) = nu.

3. THE GSVD METHOD

In this section a new solution method is presented for the
worst-case and average loss problem, (5) and (7), subject
to a common PV subset for all CVs. It will be referred to
as the GSVD method. In a first step, (4) is restated as

zT (Gy
z)T

HT = fT F̃
T

HT , (8)
where

Gy
z = Gy J−1/2

uu .

Suppose, that the rank condition

rank

([
(Gy

z)T

F̃
T

])
= ny (9)

is satisfied which will be generally the case if the condition
nu + nf ≥ ny holds (the case nu + nf < ny is discussed
below in Remark 4). Then, according to Hogben [2007,
p. 15.12f], the generalized singular value decomposition
(GSVD) of the matrix pair

{
(Gy

z)T
, F̃

T
}

exists and (8)
can be written as

zT U ΣV T HT = fT Ũ Σ̃V T HT , (10)
where the decomposed matrices have the following prop-
erties.

The matrices U ∈ R
nu×nu and Ũ ∈ R

nf×nf are unitary,
i.e., UT U = Inu and Ũ

T
Ũ = Inf

. The matrix V ∈
R

ny×ny is regular. The matrix Σ ∈ R
nu×ny is tailing

diagonal, with ΣT Σ = diag
(
α2

1, α
2
2, ..., α

2
ny

)
and 0 ≤

αi ≤ αi+1 ≤ 1. The matrix Σ̃ ∈ R
nf×ny is leading

diagonal, with Σ̃
T

Σ̃ = diag
(
β1, β2, ..., βny

)
and 1 ≥ βi ≥

βi+1 ≥ 0. Note that the number of r = max (0, ny − nu)
leading αi and βi are 0 and 1, respectively, and that the
number of s = max (0, ny − nf ) tailing αi and βi are 1
and 0, respectively. For more information on GSVD and on
how the resulting matrices can be computed, the reader is
referred to standard linear algebra textbooks, e.g., Golub
and VanLoan [1996, pp. 465-467].
Theorem 1. If ny ≥ nu, the minimum worst-case and
average loss are given by

Lworst =
1
2

(
βr+1

αr+1

)2

(11)

and

Laverage =
1

6 (ny + nd)

ny∑
i=r+1

(
βi

αi

)2

, (12)

respectively. They may be obtained by selecting

H = Mn

[
pr+1 . . . pny

]T
,

where pi is the ith column of P = V −T and Mn ∈
R

nu×nu is an arbitrary regular matrix.

Proof. By selecting H = Mn

[
pr+1 . . . pny

]T it fol-
lows that

V T HT = V T
[
pr+1 . . . pny

]
MT

n =
[
0r×nu

Inu

]
MT

n.

(13)
and

ΣV T HT = diag
(
αr+1, ..., αny

)
MT

n

Σ̃V T HT =

⎡
⎣ 0r×nu

diag
(
βr+1, ..., βny

)
0s̄×nu

⎤
⎦ MT

n,

where s̄ = max (0, nf − ny). Inserting these results into
(10) yields

zT = fT Ũ

⎡
⎣ 0r×nu

diag
(
σr+1, ..., σny

)
0s̄×nu

⎤
⎦ UT

︸ ︷︷ ︸
=MT

,

where σi = βi/αi indicate the ith largest generalized
singular value of the matrix pair

{
(Gy

z)T
, F̃

T
}

. Note that
the maximum singular value and the Frobenius norm of a
matrix are invariant to unitary transformations thereof.
Thus, the worst-case loss (3) and the average loss (6)
depend only on the selected generalized singular values and
the derivation of (11) and (12) is trivial. As the minimum
generalized singular values were selected, both, the worst-
case loss and the average loss are minimal.
Remark 2. The GSVD method is written in terms of the
complete PV set Y. Note that it work as well for a selected
PV subset Yc ⊆ Y. Then, in all formulas stated above the
respective rows in Gy

z and F̃ must be extracted and ny

must be substituted by nYc .
Remark 3. For perfect disturbance rejection, i.e., M = 0,
it is required that at least nu tailing βi are 0. As indicated
above, the number of s = max (0, ny − nf ) tailing βi are
in fact 0. Thus, perfect disturbance rejection occurs if the
inequality

s ≥ nu

is satisfied. The necessary condition therefore is s > 0, i.e.,
nf < ny, which can only be satisfied if the implementation
error is disregarded, i.e., W ny = ∅ and nf = nd. The
sufficient condition for perfect disturbance rejection is then
ny ≥ nu + nd. This is in agreement with the combination
methods from Alstad and Skogestad [2007], Alstad et al.
[2008] and Kariwala [2007], Kariwala et al. [2008].
Remark 4. If nu + nf < ny, the rank condition (9)
is violated and the GSVD as stated above cannot be
performed. Note that this is only a formal issue and will
not be treated here for the sake of brevity.
Remark 5. The GSVD method is related to the method
by Kariwala et al. [2008] and the “constrained average loss
minimization” method by Alstad et al. [2008]. It can be
shown that all three methods minimize the average loss
subject to the same structural constraint and thus provide
the same results. However, it will be omitted here for the
sake of brevity.

4. BEYOND COMMON PV SUBSETS

For better legibility of this section, definitions for CSDs
will be introduced.



Definition 6. A CSD is said to be column-structured, if all
CVs are linear combinations of the same PV subset Yc of
size nYc = dim (Yc). A common-sized CSD refers to a CSD
in which the ith CV is a linear combination of an individual
PV subset Yi with the constraint that all PV subsets have
the same set size ns = dim (Yi)∀i ∈ {1, . . . , nu}. In a
more general loosely-structured CSD, the ith CV is a linear
combination of an individual PV subset Yi with individual
set size nYi = dim (Yi).
Theorem 7. Let Hc represent a column-structured CSD
of size nYc with finite worst-case/average loss, i.e.,
rank (Hc) = nu. Then, for every Hc there exists a
common-sized CSD Hs with a PV subset size of ns =
nYc − (nu − 1) and the same worst-case/average loss as
Hc. The proof will be omitted due to the lack of space.
Corollary 8. Let Hc be a column-structured CSD with
PV subset size nc = nu and finite loss. Then, the worst-
case/average loss of Hc is independent of the coefficients
in Hc. Rather, the worst-case/average loss of Hc depends
only on the selection of the PV subset Yc. The proof will
be omitted due to the lack of space.

Some advantages of common-sized and loosely-structured
CSDs over column-structured CSDs are pointed out below.

(1) A smaller PV subset size is, on the one hand, fa-
vorable due to better practical acceptance but, on
the other hand, usually accompanied by a larger
worst-case/average loss. From Theorem 7 it can be
concluded that for nu > 1 a reduction in PV subset
size without affecting the worst-case/average loss can
be achieved if, instead of a column-structured CSD,
a common-sized CSD is taken into account. In par-
ticular, the PV subset size reduction with invariant
worst-case/average loss can be as large as nu−1 PVs.

(2) By implication of the first argument, it is evident that
a smaller worst-case/average loss can be achieved if,
instead of a column-structured CSD, a common-sized
CSD with equal PV subset size is taken into account.

(3) For nYc = nu the optimality of column-structured
CSDs is only a matter of PV subset selection as
pointed out in Corollary 8 presented above.

(4) Column-structured CSDs Hc fail if nYc < nu holds.
This is due to the fact that rank (Hc) < nu which
leads to a singular Hc Gy and, by observation of (4)
and (5), to infinite loss.

(5) Input/output (I/O) selection based on heuristic rules
is a common practice. Physical closeness between CVs
and MVs is probably the most common rule, in order
to achieve good cause and effect between MVs and
CVs. If decentralized controllers are used and the
MVs are far apart from each other (e.g., in large scale
processes), it is desirable to have an individual PV
subset for every CV as in common-sized and loosely-
structured CSDs.

(6) PV combinations including different measurement
units have poor practical acceptance. If the structural
constraint was imposed on the prospective CSD that
only PVs of the same type can be selected for each
CV, then, in the case of a column-structured CSD
with nu > 1, one would be forced to omit information
of all PVs not part of the selected unit group. In
common-sized and loosely-structured CSDs, for each

CV another PV subset can be selected which allows
to use information of more than only one unit group.

For loosely-structured CSDs, no explicit expression for H
can be derived by the solution to problems (5) and (7).
Thus, iterative solution methods need to be applied. In
the following, a framework for advanced iterative methods
will be presented.

In order to take loosely-structured CSDs into account, (4)
is restated as

zT
nu∑
i=1

(Gy
z)T

hi eT
i = fT

nu∑
i=1

F̃
T

hi eT
i , (14)

where hT
i ∈ R

ny is the ith row vector of H, i.e., HT =
[ h1 . . . hnu ], and ei ∈ R

nu is the ith standard basis
vector. The vector hi represents the map from the PVs of
the subset Yi towards the ith CV, hence hij = 0∀j /∈ Yi.
It is thus convenient to write (14) as

zT
nu∑
i=1

(Gy
z)T

Yi
hiYi eT

i = fT
nu∑
i=1

F̃
T

Yi
hiYi eT

i , (15)

where the subscript Yi denotes that those columns/elements
of (Gy

z)T , F̃
T

and hi are selected whose index is part of
Yi.

By performing the GSVD of the corresponding matrix
pairs

{
(Gy

z)T
Yi

, F̃
T

Yi

}
, (15) can be written as

zT
nu∑
i=1

U i Inu×nYi
h̃i eT

i︸ ︷︷ ︸
=X

= fT
nu∑
i=1

Ũ i Si h̃i eT
i , (16)

where Si =
[
0nYi

×ri
diag

(
σi1, ..., σinYi

)
0nYi

×s̄i

]T
, ri =

max (0, nYi
− nu), s̄i = max (0, nf − nYi

) and σij ={
αij/βij if βij 	= 0
1 otherwise

; U i ∈ R
nu×nu and Ũ i ∈ R

nf×nf are

unitary; Inu×nYi
is the nu × nYi tailing diagonal identity

matrix; and h̃i = diag
(
βi(ri+1), ..., βinYi

)
V T

i hiYi
, with

V i ∈ R
nYi

×nYi if nu + nf ≥ nYi
. The decomposed formu-

lation (16) has several advantages over (10) as pointed out
below.

(1) From observation of (16) it can be seen that the
first ri = max (0, nYi

− nu) elements in h̃i do not
contribute to X. It is generally close to optimal to set
them to zero as the corresponding columns in Ũ i Si

vanish. Thus, if any ri > 0 then one can reduced the
variable space from

∑nu

i=1 nYi
to

∑nu

i=1 nYi
− ri. The

maximum dimension of the reduced space is nu×nu.
(16). This approach will be referred to as the reduced
space (RC) method. The starting values for the RC
method will be h̃i = enYi

which corresponds to the
selection of the smallest generalized singular values.

(2) From (16), it can be shown that a suboptimal solution
to (7) can be obtained by setting the first ri elements
in h̃i are zero and solving the substitute problem

X = arg min
X

nu∑
i=1

XT
i S̃T

i S̃i Xi s.t. XT X = I, (17)

where S̃i = Si IT
nu×nYi

UT
i and Xi is the ith column

of X. Problem (17) is still nonconvex but has the



advantage that an efficient steepest descend method
can be developed. Due to the lack of space, the
method cannot be outlined here but will be an issue
of a subsequent publication. It will be referred to as
the unitary matrix constraint (UMC) method. The
starting value for the iterative solution of X will be
the identity matrix.

(3) From (16) a lower bound for the minimum worst-
case/average loss can be derived. This is particu-
larly helpful in reducing computational expense as
described below.

The large number of alternative control structures can be
reduced by excluding candidate CVs which cannot lead to
an optimal solution. This strategy is known as the BAB
principle. BAB algorithms have been formerly applied
to CSD problems by several authors such as Cao and
Saha [2005], Kariwala and Skogestad [2006/07/09-13], Cao
and Kariwala [2008] and Kariwala and Cao [2009]. Lower
bounds on the minimal worst-case/average loss are helpful
for discriminating candidate CVs. From the conclusion
that the lower bounds corresponds to the ideal case that
h̃i = enYi

, U iYi
⊥ U jYj

and Ũ iYi
⊥ Ũ jYj

∀i 	= j it follows
from observation of (16) that

M =
nu∑
i=1

σinYi
ei eT

i .

This yields the inequalities

Lworst ≥ 1
2

max
i

(
σ2

inYi

)
(18)

Laverage ≥ 1
6 (nY∩ + nd)

nu∑
i=1

σ2
inYi

. (19)

Note that nY∩ indicates the size of the merged PV subset
Y1 ∩ · · · ∩ Ynu

. It is important to state that (18) and
(19) also hold for incomplete set of candidate CVs, i.e.,
the lower bound of one candidate CV is also the lower
bound of all possible control structures which include this
CV. If an upper bound for the worts-case/average loss of
all alternatives Lub is known, the evaluation of structures
(and substructures) can be omitted which show a lower
bound Llb > Lub. Unfortunately, the bounds given above
are not very tight, so that computational savings are
relatively small.

5. EVAPORATOR CASE STUDY

In this section, the proposed CSD methods will be applied
to the evaporation process presented in Figure 3. This
forced-circulation evaporation was originally treated by
Newell and Lee [1989] and has been investigated subse-
quently by Heath et al. [2000] and Kariwala et al. [2008],
among others. The purpose of the process is the concen-
tration of dilute liquor from the feed to the product stream
by evaporation and separation of the solvent. The analytic
model equations including the cost function and opera-
tional constraints can be found in Kariwala et al. [2008].
The process model has three state variables, the level
L2, the composition X2 and the pressure P2 with eight
degrees of freedom. Table 1 lists the important stream
properties, their value at the nominal operating point and

Evaporator

100
Steam

Condensate

Separator

002003001
Feed

Pump

004

Condenser

005
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Cooling water

Condensate
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Figure 3. Evaporation process scheme

Var. Description Nominal value Classification

F1 Feed flow rate 9.469 kg/min MV, PV (±2 %)

F2 Product flow rate 1.334 kg/min MV†, PV (±2 %)

F3 Circulating flow rate 24.721 kg/min MV†, PV (±2 %)

F4 Vapor flow rate 8.135 kg/min

F5 Condensate flow rate 8.135 kg/min PV (±2 %)

X1 Feed composition 5.00 % DV (±5 %)

X2 Product composition 35.50 %

T1 Feed temperature 40.0 ◦C DV (±20 %)

T2 Product temperature 88.4 ◦C PV (±1 ◦C)

T3 Vapor temperature 81.066 ◦C PV (±1 ◦C)

p2 Operating pressure 51.412 kPa PV (±2.5 %)

F100 Steam flow rate 9.434 kg/min PV (±2 %)

T100 Steam temperature 151.52 ◦C

p100 Steam pressure 400.0 kPa MV†

Q100 Heat duty 345.292 kW

F200 Water flow rate 217.738 kg/min MV, PV (±2 %)

T200 Water inlet temp. 25.0 ◦C DV (±20 %)

T201 Water outlet temp. 45.55 ◦C PV (±1 ◦C)

Q200 Condenser duty 313.21 kW

J Operational cost -582.233 $/h

Table 1. Key process variables in the evapora-
tion process

their classification into MVs, DVs and PVs. Three out of
five MVs indicated by † are used to keep the three PVs
L2, X2 and P100 at their set points. Note that the level in
the separator L2 has no steady-state effect but needs to be
controlled for stabilization. The other two controlled PVs
need to be kept at their constraints in order to achieve
optimality over the given disturbance region. Generality is
not lost by this particular selection of the unconstrained
MVs. In Table 1, the (embraced) expected variations of
the DVs and measurement errors of the PVs are given
in % from their nominal value except for temperature
measurement errors which are indicated on an absolute
scale.

The model equations were implemented in a modeling
environment (ME) of the in-house tool OPTISIM R© 1 , an
equation-oriented process simulator. The model has been
optimized with respect to the DVs’ nominal values given
in Table 1 and operational constraints. This led to the
operating conditions of the MVs and DVs presented in
Table 1. As the ME provides first derivatives by automatic
differentiation, the linear I/O gains Gy

u and Gy
u at the

operating point are directly available. Second derivatives
Juu and Jud were estimated by finite difference approx-
1 OPTISIMR©is a registered trademark of the Linde AG. (Burr
[1991/4/7-11])



nYc Best PV set Laverage Lworst

(in $/h) (in $/h)

2 F3, F200 3.8079 56.7126
3 F2, F100, F200 0.6533 11.6643
4 F2, T201, F3, F200 0.4545 9.4516
. . .
10 All PVs 0.1941 7.5015

Table 2. Worst-case/average loss of best
column-structured CSDs

imation and the use of the NAG routine E04XAF. The
numerical results of the I/O gains and the Hessians are
in agreement with those of Kariwala et al. [2008]. CSDs
for the evaporation process have been identified using the
methods presented in Sections 3 and 4. The calculations
were conducted in Matlab R©R2008b using a Windows XP
SP2 desktop with an Intel R©Core

TM
Duo CPU E8400 (3.0

Ghz, 3.5 GB RAM).

At first, column-structured CSDs were identified by aver-
age loss minimization using the GSVD method. The best
control structure was determined by screening over all pos-
sibilities satisfying the PV subset size condition imposed.
Some results are given in Table 2. They reproduce the
results by Kariwala et al. [2008] with an deviation of less
than 0.6 %. Both, the minimum worst-case and average
loss of the best structure decrease with the PV subset size
and approach a lower bound (at nYc = 10) asymptotically.
According to Corollary 8, the case nYc = nu = 2 indicates
as well the best PV selection structure.

Next, common-sized CSDs PVs were sought. Accord-
ing to Theorem 7, for each nYc -sized column-structured
CSD there exists a common-sized CSD of size ns =
(nYc − nu + 1) which can be obtained by a simple linear
transformation of the former. Thus, the results in Table
2 indicate also possible common-sized CSDs of PV subset
size ns from one to nine. For instance, Table 3 shows the
transformation of the best column-structured CSD with
set size three, indicated by Hc3, into Hs2 where only
combinations of two PVs per CV occur. Despite its small
PV subset size, Hs2 achieves a considerably small average
loss. Note that CSDs obtained by this approach are gener-
ally not the best among all CSDs satisfying the particular
structural constraint of a common-sized set with set size
two. In order to find a CSD with lower average loss, the
RC method was applied. The best solution found among
the

(
C2

10

) (
C2

10 − 1
)
/2 = 990 alternatives is indicated as

Ĥs2 in Table 3. Due to the BAB algorithm only 103
problems with an average of 0.07 s expense per problem
had to be solved. The total computation time was 8.3
s. Using the UMC method, the computational efficiency
could be reduced to 6 ms expense per problem leading to
a total computation time of 3.3 s at 144 iterative problem
solutions. The solution H̃s2 showed a larger average loss
than Ĥs2 structurally identical though.

Suppose that due to cost issues, only one flow meter can
be afforded. Since temperature and pressure indicators
are rather cheap, their numbers are not limited by cost
considerations. In this situation, the task is to find the
two best CVs out of C1

6 + 2 candidates, i.e., one out of
six flows, one pressure and one temperature set. The best
CSD indicated as Hs1F in Table 3 was found by applying

CSD Laverage

(in $/h)

Hc3 =

[ −0.99 0.15 0.00

−0.99 −0.12 0.01

] [
F2 F100 F200

]T
0.6533

Hs2 =

[ −6.27 1.0

−143.08 1.0

] [
F2 F100 F200

]T
0.6533

Ĥs2 =

[ −6.27 1.0

1.0 −23.30

] [
F2 F100 F200 F1

]T
0.5673

H̃s2 =

[ −6.22 1.0

1.0 −13.34

] [
F2 F100 F200 F1

]T
0.6682

Hs1F =

[
1.0

0.36 0.33 0.87

] [
F3 T2 T3 T201

]T
2.9704

Hc3T =

[
0.59 0.53 −0.61

0.02 0.01 1.0

] [
T2 T3 T201

]T
3.6573

Table 3. CSD results

the RC method. It shows slightly better average loss than
Hc3T which is the best column-structured CSD where all
temperatures are used.

6. CONCLUSION

In this paper new insights into the identification problem
of self-optimizing CSDs were given. The GSVD method
was proposed which allows finding CVs, altogether linear
combinations of a common PV subset. It minimizes the
average loss super-optimal to the worst-case loss by taking
expected disturbances and measurement errors into ac-
count. The GSVD method can be beneficially implemented
into iterative solution approaches in order to find loosely-
structured CSDs where for each CV an individual PV
subsets is taken into account. The new methods were
successfully applied to an evaporation process. It could
be shown that loosely structured CSDs are favorable in
terms of flexibility, practical acceptance and economic
considerations.
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