
     

Subspace closed loop identification using the integration of MOESP and N4SID 
methods 

 
Santos Miranda, Claudio Garcia 

 

Polytechnic School of the University of  São Paulo. 
e-mail: santos.borjas@poli.usp.br,  clgarcia@lac.usp.br 

Abstract: Linear identification of time invariant systems operating in closed loop is of special interest for 
a large number of engineering applications. There are different techniques and methods to carry out this 
type of identification. For example, modifying the N4SID method, one can derive a closed loop subspace 
identification method. The same can be done using the MOESP method. Based on them, the MON4SID 
method is introduced, which estimates the extended observability matrix and the state sequence directly 
from a LQ decomposition, using a combination of the techniques contained in both, MOESP and N4SID. 
This new method uses an algorithm to identify state space model of a plant in a closed loop system, in the 
same way as in MOESP method. The advantage of the proposed algorithm is that it does not require any 
knowledge about the controller, whereas such information is essential for other methods (e.g. N4SID).  
The disadvantage of this algorithm is that it needs a great amount of data to obtain better estimates. A 
simulated process to show the performance of this algorithm is presented. 
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1. INTRODUCTION 

Great part of the literature referring to system identification 
deals with how to find polynomial models as Prediction Error 
Method (PEM). In case of complex systems, there is a 
parameterization problem in the PEM model, so the state 
space model appears as an alternative to PEM, such as 
Multivariable Output-Error State sPace (MOESP) 
(Verhaegen, 1994), Canonical Variate Analysis (CVA) 
(Larimore, 1990) and Numerical algorithms for Subspace 
State Space System Identification (N4SID) (Van Overschee; 
De Moor, 1996). Statistical properties such as consistency 
and efficiency of these algorithms were studied by (Bauer, 
2003; Bauer; Ljung, 2002; Chiuso; Picci, 2005). One of the 
main assumptions of theses methods is that the process and 
the measurement noises are independent of the plant input. 
This assumption is violated when the system is working in 
closed loop. The closed loop identification is of special 
interest for a large number of engineering applications 
(Ljung, 1999), since closed loop experiments are necessary if 
the open loop plant is unstable, or the feedback is an inherent 
mechanism of the system (Forssell; Ljung, 1999; Van den 
Hof, 1997). Several closed loop identification methods have 
been suggested in the last years and can be broadly classified 
into three main groups: direct, indirect and joint input output 
identification methods (Forssell; Ljung, 1999). The results of 
any of the N4SID, MOESP and CVA methods cited above 
are asymptotically biased when closed loop identification is 
applied. To solve this problem, the MOESP method 
(Verhaegen, 1993) proposed a closed loop subspace 
identification method through the identification of an overall 
open loop state space. Based on it, the plant and the controller 

models are estimated. To do so, it is necessary to know the 
order of the controller. In the N4SID case (Van Overschee; 
De Moor, 1997) it is necessary to know a limited number of 
impulse response samples of the controller and, via direct 
identification, the plant model is estimated. There are other 
possible solutions to the closed loop identification problem; 
the reader can consult (Huang et al., 2005; Katayama, 2005; 
Katayama et al., 2002; Katayama et al., 2005; Ljung; 
McKelvey, 1996; Qin et al., 2005). 
Combining the MOESP and N4SID methods, we obtain the 
MON4SID algorithm, which estimates the extended 
observability matrix in the same way it occurs in the MOESP 
method, the state sequence is computed through the oblique 
projection, as it is done in the N4SID method. From this 
sequence, the past and future states are obtained, and finally a 
consistent estimate of the system matrices is obtained, 
applying the least squares method. In this paper, it is 
proposed an algorithm to identify the state space model of a 
plant in a closed loop system, in the same way as it was 
proposed in the MOESP method, that first computes a global 
model from which is extracted the plant model. This method 
does not need any knowledge about the controller. 

1.1 Open Loop  Subspace identification 

Consider a time discrete linear time invariant dynamic system 
described by the state space models in the innovation form: 
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where m

k
Ru !  and l

k Ry !  denote the input and output 
signals, respectively and n

k
Rx !  is the vector of states. 

l

k
Re !  is zero-mean Gaussian white noise and independent 

of past input  and output data. A, B, C, D and K are matrices 
with appropriate dimensions. 

1.2 Open Loop  Subspace identification problem 

The subspace identification problem is: given [ ]
nd
uuu ,..,

1
=  

and [ ]ndyyy ,..,
1

=  a set of input-output measurements, 
determine the order n of the unknown system, the system 
matrices (A, B, C, D) up to within a similarity transformation 
and Kalman filter gain K (Van Overschee; De Moor, 1996). 

1.3 Subspace matrix equation 

Making successive iterations in equation (1), one can derive 
the following matrix equation: 
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where subscript f  stands for the “future” and p  for the 
“past”. For the definition of the matrices d

i
H and s

i
H  given 

in (2), see (Van Overschee; De Moor, 1996). The past and 
future input block-Hankel matrices are defined as: 
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where mixN

fp RUU !, . The output and noise innovation 

block-Hankel matrices lixN

fp RYY !,  and mixN

fp REE !, , 

respectively, are defined in a similar way to (3). 
The states are defined as: 
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The extended observability matrix 
i
!  is given by: 
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The orthogonal projection of the row space of
x
A into the row 

space of 
x
B  is: 
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where *)(• denotes the Moore-Penrose pseudo-inverse of the 
matrix )(• . 

The projection of the row space of
x
A  into the orthogonal 

complement of the row space of
x
B  is: 

xxxxx
BAABA // !=

"  (8) 

The oblique projection of the row space of G along the row 
space H into the row space of J is: 
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Properties of the orthogonal and oblique projections: 
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For a proof, see (Van Overschee; De Moor, 1996). 

2. PROPOSED IDENTIFICATION METHOD 

2.1 MON4SID identification method 

In this subsection, the MON4SID method is presented. To 
solve the problem in section 1.2, it is used the POMOESP 
method to calculate the extended observability matrix 

i
! and 

the N4SID method is employed to calculate the matrices A, 
B, C, D  through the least squares method. Therefore, it is 
necessary to eliminate the last two terms in the right side of 
equation (2). That is done in two steps: first, eliminating the 
term

f

d

i UH  in (2), performing an orthogonal projection of 

equation (2) into the row space of !

fU , which yields: 
!!!!

++"= ff
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And by the property (10), equation (12) can be simplified to: 
!!!
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Second, to eliminate the noises in (13), an instrumental 
variable TT

p

T

p YUZ )(=  is defined. Multiplication of (13) by 

Z yields: 
ZUEHZUXZUY ff

s

iffiff
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+"= ///  (14) 

As it is assumed that the noise is uncorrelated with input and 
output past data (Verhaegen; Dewilde, 1992), which means 
that 0/ =

!ZUE ff
. Therefore, (14) is written as: 

fiff XZUY ˆ/ !=
"  (15) 

In equation (15), 
fff XZUX ˆ/ =

! is the estimate of the 

Kalman filter state. Equation (15) indicates that the column 
space of 

i
!  can be calculated by the SVD decomposition of 

ZUY ff

!
/ . For further details, see (Verhaegen; Dewilde, 

1992). 
i
! , given in (15), can be derived from a simple LQ 

factorization of a matrix constructed from the block-Hankel 
matrices 

fU , 
pU  and 

fY , 
pY , in the form: 
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and the orthogonal projection in the left side of (15) can be 
computed by matrix 

32
L  (Verhaegen; Dewilde, 1992). The 

SVD of  
32
L  can be given as: 
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The order n of the system is equal to the number of non-zero 
singular values in S . The column space of  

1
U  approximates 

that of 
i
!  in a consistent way (Verhaegen; Dewilde, 1992), 

that is: 
1
U

i
=!  (18) 

The system (1) can be written as: 

!!
"

#
$$
%

&
+
!
!

"

#

$
$

%

&
!!
"

#
$$
%

&
=

!
!

"

#

$
$

%

&
+

2

1

~~

r

r

U

X

DC

BA

Y

X
i

ii

i

ii

i  (19) 

In equation (19), suppose (ideally) that 
1

~

+iX
and 

i
X
~  are 

given, then the system matrices (A, B, C, D) could be 
computed through the least squares method. Therefore, the 
problem now is to find the state sequences. 

pUfi ZY
f

/=!  is the oblique projection (Van Overschee; 

De Moor, 1996), which is achieved by performing an oblique 
projection of equation (2), along the row space  

fU  onto the 

row space of  
pZ , that is: 
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It is easy to see that the last two terms of equation (20) are 
zero, by the property of the oblique projection, equation (11); 
and by the assumption that the noise is uncorrelated with 
input and output past data (Van Overschee; De Moor, 1996). 
Thus, equation (20) can be simplified to: 
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where 
pUfi ZXX

f
/

~
= . Then equation (21) is written as: 
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The oblique projection 
i

! given in equation (22) can be 
computed from (16) by: 
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An estimate of the state sequence X  is given by: 
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The following matrices are defined: )1:1(:,
~

!= NXX
i

, 

):2(:,
~

1 NXX
i
=+

. Thus, the system matrices can be 
estimated from equation (19). To estimate K see (Van 
Overschee; De Moor, 1996) or (Verhaegen; Dewilde, 1992). 

2.2 Closed loop identification method 

Figure 1 shows a typical standard closed loop system, where 
P and C denote respectively the plant and the controller, 

k
r  

is the exogenous input, 
k
u  the input control, 

ky
 the plant 

output, 
k
w  the plant disturbance and 

k
v  the plant noise. 

 

 
 
 
 
 
Figure1. Standard closed loop system. 
P is given by equation (1) and C can be described by the 
following state equation: 
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where 
c
A , 

c
B , 

c
C  and

c
D  are matrices with appropriate 

dimensions. 

2.3 Closed loop subspace identification problem 

Given ),,( kkk yur , a set of input output measurements finite 
data, of a well posed problem (Katayama, 2005), one 
considers the problem of identifying the deterministic part of 
the plant, that is, one determines the order n of the unknown 
system, the system matrices (A, B, C, D) up to within a 
similarity transformation. 

2.3 Identification by joint input output approach 

The objective of this paper is to obtain a state space model of 
the deterministic part of the plant P, based on finite 
measurement data ),,( kkk yur . The present problem is 
practically the same as it was exposed in Verhaegen (1993), 
but the approach is quite different, as it is not necessary to 
know any information about the controller. 
Using equations (1) and (25), it is possible to obtain a global 
state space model (Verhaegen, 1993): 
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where TT

k

T
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sx ][=! , TT
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kk

!" , are noises 

and DCBA
~
,
~
,
~
,
~  are matrices with appropriate dimensions. 

The method MON4SID is applied to find an estimate of the 
matrices DCBA

~
,
~
,
~
,
~ , and based on them, to estimate 

k
! . 

Once 
k

!  is known, it is easy to compute the matrices of the 
plant. To do so, the method POMOESP (Verhaegen, 1994) is 
used. 

3. SIMULATION 

In this section, we provide a simulation example to evaluate 
the performance of the MON4SID algorithm and to compare 
it with other existing identification algorithms PEM, N4SIDC 
and ARXS. N4SIDC here denotes the algorithm of Van 
Overschee and De Moor (1997) and ARXS the algorithm of 
Ljung and MacKelvey (1996). This example was used by 
(Huang et al., 2004; Katayama, 2005; Overschee; De Moor, 
1997 and Verhaegen, 1993). It is important to stress that the 
algorithm N4SIDC has three versions (Overschee; De Moor, 
1997): two of them are unbiased and one is biased. The 
version implemented in this paper is the biased one, based on 
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states. In this version, it is used two different initial 
conditions, one for past states and the other for future states, 
what causes the bias. For further details see (Overschee; De 
Moor, 1997). 
The plant is a discrete time model of a laboratory plant setup 
of two circular plates rotated by an electrical servo motor 
with flexible shafts. For further details, see (Hakvoort, 1990). 
The model of the plant is given by equation (1), where: 
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k
e  is the white noise, which generates the disturbance on the 
plant, with standard deviation equal to 0 (for the case of 
deterministic system), 0.001 (to denote a system of little 
noise) and 0.01 (to denote a system of high noise). The 
controller has a state space description as in the equation 
(25), where: 
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PRBS was used as an exogenous input signal, that is, 
persistently exciting of any finite order. There were collected 
3000 samples and the number of block rows 20=i . 
The simulation results for a closed loop deterministic 
identification without noise is shown in figure 2, where the 
order of the plant is n = 5. From figure 2, one can observe 
that all the algorithms had a good performance, apart from 
the algorithm N4SIDC, which had am improvement using n 
=7, as it is shown in figure 4. Figure 3 shows the poles of the 
original open loop plant and the estimated systems, where •  
denotes the original poles of the plant. One can see that all 
the algorithms had a good performance in relation to the 
estimation of the poles, which are on the unit circle. 
To see an advantage of the proposed algorithm, a white noise 
is added to the plant, first with measurement noise variance 
0.001 and then with 0.01. The comparison results are shown 
in figures 5 and 7 respectively. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Bode plots of the plant P, to n=5 and no noise. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Poles of the eigenvalues of the estimated A matrix. 

 
From figures 5 and 7 one can see that the algorithm 
MON4SID performs better in the presence of noise. The 
order for identification of the plant is 7=n . Figures 6 and 8 
show the pole estimates and the true poles of the plant. From 
figure 5 one can see that the algorithm ARXS does not have a 
good performance. 
 
 
 
 
 
 



 
 

     

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Bode plots of the plant P, to n=7 and no noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Bode plots of the plant P, to n=7 and little noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Poles of the eigenvalues of the estimated A matrix. 

As can be noticed in figure 6 for the ARXS model, there is a 
difference between the estimated and real poles, what causes 
the difference between the real and estimated plots in figure 
5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Bode plots of the plant P, to n=7 and high noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Poles of the eigenvalues of the estimated A matrix. 
From figure 8 it can be seen that the MON4SID method 
provides a better estimation of the most crucial pole and all 
the poles are inside the unit circle. This does not happen for 
the other methods. Based on figure 8 one can say that direct 
identification models do not have a good performance for 
closed loop identification in the presence of high noises. 
 

6. CONCLUSIONS 

In this work, the MON4SID algorithm is presented, which 
uses LQ factorization in the same way as the MOESP 
method, which is used to compute the oblique and orthogonal 



 
 

     

 

projections; these projections are used to compute the state 
sequence and the extended observability matrix, respectively. 
The past and future state sequences are computed from the 
state sequences, which have only one initial state. It does not 
happen in the N4SID method, because for each oblique 
projection (

i
! and 

1+!
i

) different state sequences (
1

~
X and 

1

~

+iX
) are computed, generating a problem of bias in the 

estimates.  
This algorithm was compared with three identification 
algorithms (PEM, N4SIDC, ARXS), when applied to a 
simulated example, which was used in (Van Overschee; De 
Moor, 1997) to identify a plant model in discrete time state 
space. Their results were compared by means of Bode plot 
and the comparison of the estimated poles with the true poles. 
The algorithm MON4SID presented good performance in all 
the cases. This algorithm has an advantage over the N4SIDC 
algorithm in the sense that it does not need any knowledge 
about the controller. 
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