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Abstract: Starting from the statement that the purpose of process control is to achieve op-

timal process operations and that optimal tracking of setpoints is in most cases only a 

means to this end, different approaches how to realize optimal process operation by feed-

back control are reviewed. The emphasis is on direct optimizing control by optimizing an 

economic cost criterion online on a finite horizon where the usual control specifications 

in terms of e.g. product purities enter as constraints and not as setpoints. The potential of 

this approach is demonstrated by its application to a complex process which combines 

reaction with chromatographic separation. Issues for further research are outlined in the 

final section. Copyright © 2006 IFAC

Keywords: Process control, online optimization, predictive control, optimizing control, 
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1. INTRODUCTION

From a process engineering point of view, the pur-

pose of automatic feedback control (and that of man-

ual control) is not primarily to keep some variables at 

their setpoints as well as possible or to nicely track 

setpoint changes but to operate the plant such that the 

net return is maximized in the presence of distur-

bances and while the model used for plant design 

does not represent the real process exactly so that an 

operating regime that was optimized for the plant 

model will not lead to an optimal operation of the real 

plant, exploiting the available measurements. This has 

been pointed out in a number of papers (e. g. Morari, 

et al., 1980, Narraway, et al., 1991, Narraway and 

Perkins, 1993, Zheng, et al., 1999, Skogestad, 2000) 

but nonetheless almost all of the literature on auto-

matic control and controller design for chemical 

processes is concerned with the task to make certain 

controlled variables track given setpoints or setpoint 

trajectories while assuring closed-loop stability. In 

chemical process control, however, good tracking of 

setpoints is mostly of interest for lower level control 

tasks. This is one reason why managers and process 

engineers often consider the choice and the tuning of 

controllers as a subordinate task, comparable to the 

procurement and maintenance of pumps or valves for 

a predefined purpose.  

In their plenary lecture at ADCHEM 2000, Backx, 

Bosgra and Marquardt (2000) stressed the need for 

dynamic operations in the process industries in a in-

creasingly marked-driven economy where plant op-

erations are embedded in flexible supply chains striv-

ing at just-in-time production in order to maintain 

competitiveness. Minimizing operation cost while 

maintaining the desired product quality in such an 

environment is considerably harder than in a continu-

ous production with infrequent changes, and this can-

not be achieved solely by experienced operators and 

plant managers using their accumulated experience 

about the performance of the plant. Profitable agile 

operation calls for a new look on the integration of 

process control with process operations. In this con-

tribution, we give a review of the state of the art in 

integrated process optimization and control of con-

tinuous processes and highlight the option of direct or 

online optimizing control (also called 1-layer ap-

proach (Zanin, et al., 2002) or full optimizing control 

(Rolandi and Romagnoli, 2005)).  
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First the idea to implement the optimal plant opera-

tion by conventional feedback control, termed “self-

optimizing control”, is discussed in Section 2. In 

highly automated plants, the goal of economically 

optimal operation is usually addressed by a two-layer 

structure (Marlin and Hrymak, 1997). On the upper 

layer, the operating point of the plant is optimized 

based upon a rigorous nonlinear stationary plant 

model (real-time optimization, RTO). The optimal 

operating point is then characterized by setpoints for a 

set of controlled variables that are passed to lower-

level controllers that keep the chosen variables as 

close to their setpoints as possible by manipulating 

the available degrees of freedom of the process within 

certain bounds. The two-layer structure has certain 

drawbacks. As the optimization is only performed 

intermittently, the adaptation of the operating condi-

tions is slow. The manipulated variables cannot be 

kept at their constraints if they are used to reduce the 

variations of the controlled variables, thus the operat-

ing point cannot be at the constraints but some margin 

must be reserved for the feedback control layer. 

Thirdly, different models are used leading to inconsis-

tencies. These issues are partly addressed by schemes 

in which the economic optimization is integrated 

within a linear MPC controller on the lower level, as 

discussed in section 4. 

Recent progress in numerical simulation and optimi-

zation algorithm enables to move from the two-layer 

architecture to direct online optimizing control. In this 

approach, the available degrees of freedom of the 

process are directly used to optimize an economic 

cost functional over a certain prediction horizon 

based upon a rigorous nonlinear process model. The 

regulation of quality parameters, which is usually 

formulated as a tracking or disturbance rejection 

problem, can be integrated into the optimization by 

means of additional constraints that have to be satis-

fied over the prediction horizon. The applicability of 

this integrated approach is demonstrated for the op-

eration of simulated moving bed chromatographic 

processes. Finally, open issues and possible lines of 

future research are discussed. 

2. OPTIMIZATION BY REGULATION 

(SELF-OPTIMIZING CONTROL) 

The idea behind what was termed self-optimizing 

control by Skogestad (2000) was outlined already in 

Morari, et al. (1980): a feedback control structure 

should have the property that the adjustments of the 

manipulated variables that are enforced by keeping 

some function of the measured variables constant are 

such that the process is operated at the economically 

optimal steady state in the presence of disturbances. 

Morari et al. explicitly stated that the objective in the 

synthesis of a control structure is “to translate the 

economic objectives into process control objectives”, 

a point of view that has thereafter found surprisingly 

little attention in the literature on control structure 

selection. Skogestad formulated the goal somewhat 

more modestly: to select the regulatory control struc-

ture of a process such that if the selected controlled 

variables are driven to suitably chosen setpoints, 

steady-state optimality of process operations is real-

ized to the maximum extent possible. The selection is 

done with respect to the stationary process perform-

ance only, the consideration of the dynamics of the 

controlled loops follows as a second step. This re-

flects that from a plant operations point of view, a 

control structure that yields nice transient responses 

and tight control of the selected variables may be use-

less or even counterproductive if keeping these vari-

ables at their setpoints does not improve the economic 

performance of the process. The goal of the control 

structure selection is that in the steady state a similar 

performance is obtained as would be realized by op-

timizing the stationary values of the operational de-

grees of freedom of the process for known distur-

bances and parameter variations. Thus the relation 

between the manipulated variables u and the distur-

bances d ucon=f(yset,di) which is (implicitly) realized 

by regulating the chosen variables to their setpoints 

should be an approximation of the optimal input 

uopt(di). The application of this idea to the selection of 

control structures has been demonstrated in a number 

of application papers (Larsson, et al., 2001, 2003, 

Scharf and Engell, 2005).  

The effect of feedback control on the profit function J

in the presence of disturbances can be expressed as 

(Scharf and Engell, 2005) 
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The first term is the loss that would be realized if the 

manipulated variables were fixed at their nominal 

values, the second term represents the effect of an 

optimal adaptation of the manipulated variables to the 

disturbance di, and the third term is the difference of 

the optimal compensation of the disturbance and the 

compensation which is achieved by the chosen feed-

back control structure. If the first term in (1) is much 

larger than the second one, or if all terms are com-

paratively small, then a variation of the manipulated 

variables offers no advantage, and neither optimiza-

tion nor feedback control are required for this distur-

bance. If the third term is not small compared to the 

attainable profit for optimized inputs for all possible 

regulating structures, then online optimization or an 

adaptation of the setpoints should be performed rather 

than just regulation of the chosen variables to fixed 

pre-computed setpoints. 

Eq. (1) represents the loss (which may also be nega-

tive, i.e. a gain) of profit for one particular distur-

bance di and a fixed control structure. The economic 

performance of a control structure can then be meas-

ured by 
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where w(d) is the probability of the occurrence of the 

disturbance d, neglecting the effect of potential con-

straint violations. As feedback control is based on 

measurements, errors in the measurements of the con-

trolled variables must be taken into account. A vari-

able may be very suitable for regulatory control in the 

sense that the resulting inputs are a good approxima-

tion of the optimal inputs, but due to a large meas-

urement error or a small sensitivity to changes in the 

inputs, the resulting values ucon may differ considera-

bly from the desired values. This was discussed in a 

qualitative fashion by checking the sensitivity of the 

profit with respect to the controlled variables in (Sko-

gestad, 2000). An alternative is to consider the worst 

case control performance for regulation of the con-

trolled variables to values in a range around the 

nominal set-point yset which is defined by the meas-

urement errors (Scharf and Engell, 2005). For a dis-

turbance scenario di, the performance measure of a 

control structure is: 
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where f represents the plant dynamics. A regulatory 

control structure that yields a comparatively small 

value of the minimal profit is not able to guarantee  

the desired performance of the process in the presence 

of measurement errors and hence is not suitable. This 

formulation includes the practically relevant situation 

where closed-loop control leads to a worse result than 

keeping the manipulated variables constant at their 

nominal value. This will usually happen for small 

disturbances, as illustrated by Fig. 1 where the effect 

of disturbances of different magnitudes on the per-

formance of a process is illustrated for fixed nominal 

inputs, optimized inputs, and feedback control with 

and without measurement errors. For small distur-

bances, keeping the controlled inputs at their set-

points is better than reacting to disturbed measure-

ments. It is therefore important to include scenarios 

with small disturbances and not only those with very 

large ones into the set of disturbances that are consid-

ered in the analysis of the self-optimizing capacity of 

a control structure.  

Figure 1: Schematic representation of the influence of 

a disturbance on the profit for different control ap-

proaches in the presence of measurement errors 

Application studies have shown that the profit loss 

that is obtained by using regulation instead of steady-

state optimization can be quite low for suitably cho-

sen control structures. E.g., in (Larsson, et al., 2001) a 

performance loss of less than 5% is reported for the 

Tennessee Eastman benchmark problem (Downs and 

Vogel, 1993). The above analysis and subsequent 

control structure selection so far are limited to distur-

bances or variations of the plant behavior that persist 

over a very large horizon compared to the plant dy-

namics. The inclusion of disturbances with a higher 

bandwidth is an open issue. 

3. REAL-TIME OPTIMIZATION (RTO) 

The established approach to create a link between 

regulatory control and optimization of the economics 

of the unit or the plant under control is real-time op-
timization (RTO) (see e. g. Marlin and Hrymak, 1997, 

and the references therein). An RTO system is a 

model-based, upper-level control system operated in 

closed-loop that provides setpoints to the lower-level 

control systems in order to maintain the process op-

eration as close as possible to the economic optimum. 

The general structure of an RTO system is shown in 

Figure 2. Its hierarchical structure follows the ideas 

put forward already in the 1970’s (Findeisen, et al., 

1980). 

Planning and Scheduling

SS optimization Model update

Validation Reconciliation

C1 Cn

Plant

RTO

Figure 2: Elements of real-time optimization (RTO) 

The planning and scheduling system provides produc-

tion goals (e. g. demands of products, quality parame-

ters), parameters of the cost function (e. g. prices of 

products, raw materials, energy costs) and constraints 

(e. g. availability of raw materials), and the process 

control layer provides plant data on the actual values 

of all relevant variables of the process. This data is 

first analyzed for stationarity of the process and, if a 

stationary situation is confirmed, reconciled using 

material and energy balances to compensate for sys-

tematic measurement errors. The reconciled plant 

data is used to compute a new set of model parame-

ters (including unmeasured external inputs) such that 

the plant model represents the plant as accurately as 

possible at the current (stationary) operating point. 

Then new values for critical state variables of the 

plant are computed that optimize an economic cost 

function while meeting the technical constraints of 

the process and the economic constraints imposed by 

the plant management system. These values are then 
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filtered by a supervisory system (which often includes 

the plant operators) (e. g. checked for plausibility, 

mapped to ramp changes, clipped to avoid large 

changes) (Miletic and Marlin, 1996) and forwarded to 

the process control layer which uses these values as 

set-points and implements appropriate moves of the 

operational degrees of freedom (manipulated vari-

ables). The implementation of the optimal steady 

states by linear model predictive controllers was dis-

cussed in detail in (Rao and Rawlings, 1999). 

As the RTO system employs a stationary process 

model and the optimization is only performed if the 

plant is approximately in a steady state, the time be-

tween successive RTO steps must be large enough for 

the plant to reach a new steady state after the last 

commanded move. Thus the sampling period must be 

several times the largest time-constant of the con-

trolled process. Reported sampling times are usually 

on the order of magnitude of several (4 to 8) hours or 

once per day. 

The introduction of an RTO system provides a clear 

separation of concerns and of time-scales between the 

RTO system and the process control system. The 

RTO system optimizes the plant economics on a me-

dium time-scale (shifts to days) while the control sys-

tem provides tracking and disturbance rejection on 

shorter time-scales from seconds to hours. Often the 

control system is again divided into separate layers to 

handle different speeds of response and to structure 

the system into smaller modules. This separation of 

concerns from a management point of view may be 

misunderstood that the process control layer is a nec-

essary piece of equipment to run the process but the 

RTO system and the plant management system help 

to earn money. Consequently, the control system is 

just a part of the cost and any “luxury” on this layer 

should be avoided. 

In (Forbes and Marlin, 1996, Zhang and Forbes, 

2000), a performance metric for RTO systems, called 

design cost, was introduced where the profit obtained 

by the use of the RTO system is compared to an esti-

mate of the theoretical profit obtained from a hypo-

thetical delay-free static optimization and immediate 

implementation of the optimal setpoints without con-

cern for the plant dynamics. The cost function con-

sists of three parts: 

the loss in the transient period before the layered 

system consisting of the RTO system and the proc-

ess control layer has reached a new steady state, 

the loss due to model errors in the steady state, 

the loss due to the propagation of stochastic meas-

urement errors to the optimized setpoints. 

The last factor advocates a filtering of the changes 

before they are applied to the real plant to avoid inef-

ficient moves (Miletic and Marlin, 1998, Zhang et al., 

2001). The issue of model fidelity was discussed in 

detail in (Zhang and Forbes, 2000, Yip and Marlin, 

2004). In general, the use of a rigorous model is rec-

ommended. Adequacy of a model requires that the 

gradient and the curvature of the profit function are 

described precisely whereas the absolute value is not 

critical (Forbes, et al., 1994, Forbes and Marlin, 

1995). As parameter estimation is a core part of an 

RTO system, the commanded set-point changes have 

an influence on the model accuracy and hence on the 

closeness to the true optimum. Yip and Marlin (2003) 

made the very interesting proposal to include the ef-

fect of set-point changes on the accuracy of the pa-

rameter estimates into the RTO optimization. None-

theless, plant-model mismatch will always be an im-

portant issue. Cheng and Zafiriou (2000) proposed a 

modification of an SQP optimization algorithm 

(Zhou, et al., 1997) for steady-state optimization on 

the RTO layer such that the available measurement 

information is taken into account when the search 

direction and the step size are computed. In this fash-

ion, convergence to the optimum can be assured even 

for considerable structural plant-model mismatch, 

resulting from the use of simplified process models 

that do not satisfy the conditions for a sufficiently 

accurate model as formulated in (Forbes, et al., 1994). 

Their algorithm avoids the need to determine gradi-

ents of the cost function and of the constraints by per-

turbations of the input to the real plant (and hence 

long periods of sub-optimal operation) as required by 

the algorithms proposed by Roberts and co-workers 

(Roberts 1979, Brdys, et al., 1987, Zhang and Rob-

erts, 1990).  

Duvall and Riggs (2000) in the evaluation of the per-

formance of their RTO scheme for the Tennessee 

Eastman Challenge Problem pointed out: “RTO profit 

should be compared to optimal, knowledgeable op-
erator control of the process to determine the true 

benefits of RTO. Plant operators, through daily con-

trol of the process, understand how process setpoint 
selection affects the production rate and/or operating 

costs”. In particular, they argue that the operators 

would most likely know which variables should be 

kept at their bounds but will not be able to optimize 

setpoints within their admitted ranges according to 
the disturbances encountered. This practically results 

in the same comparison as assuming that a “self-opti-

mizing” regulatory control scheme according to Sko-

gestad (2000) is used on the lower level. 

Quoting the famous Dutch soccer player and coach 

Johan Cruyff, “every advantage is also a disadvan-
tage”. The advantage of the RTO/MPC structure is 

that it provides a clear separation between the tasks of 

the control and the optimization layer. This separation 

is performed with respect to time-scales as well as to 

models. Rigorous nonlinear models are used only on 

the steady-state optimization layer. Such models 

nowadays are often available from the plant design 

phase, so the additional effort to develop the model is 

not very high. The control algorithms are based upon 

linear models (or no models at all if conventional 

controllers are tuned on-site) which can be deter-

mined from plant data. As pointed out by e. g. 

(Backx, et al., 2000), (Sequeira et al., 2002) this im-

plies however that the models on the optimization 

layer and on the control layer will in general not be 
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fully consistent, in particular their steady-state gains 

will differ.  

The main disadvantage of the RTO approach is the 

delay of the optimization which is inevitably encoun-

tered because of the steady-state assumption. After 

the occurrence of a disturbance the optimization has 

to be delayed until the controlled plant has settled into 

a new steady state. To detect whether the plant is in a 

steady state itself is not a simple task (see e.g. Jiang, 

et al., 2003). 

Suppose a step disturbance occurs in some unmeas-

ured external input to the plant. Then first the control 

system will regulate the plant (to the extent possible) 

to the setpoints that were computed before the distur-

bance occurred. After all control loops have settled, 

the RTO optimizer can be started, and after the results 

have been computed (which may also require a con-

siderable amount of time, depending on the complex-

ity of the model used) and validated, the control layer 

can start to regulate the plant to the new setpoints. 

Thus it will take several times the settling time of the 

control layer to drive the plant to the new optimized 

mode of operation. In the first phase, the control sys-

tem will try hard to maintain the previously optimal 

operating conditions even if without fixing the con-

trolled variables to their setpoints the operation of the 

plant would have been more profitable. If the distur-

bance persists for one sampling period of the RTO 

system plus one settling time of the regulatory layer, 

the use of the RTO system on the average recovers 

about half of the difference between the profit ob-

tained by the regulatory system alone (with fixed set-

points) and an online-optimizing controller that im-

plements the optimal setpoints within the settling time 

of the regulatory control layer. The combined 

RTO/regulatory control structure will work satisfacto-

rily for infrequent step changes of feeds, product 

specifications or product quantities but it will provide 

no benefit for changes that occur at time scales below 

the RTO sampling period. 

Marlin and Hrymak (1997) listed several areas for 

improvement of RTO systems. Two important ones 

are addressed in the remainder of this paper: the inte-

gration with the process control layer, and the exten-

sion to unsteady-state operation. They pointed out 

that instead of sending set-points to the control layer, 

an ideal RTO system should output a design (i.e. tun-

ing parameters or even a choice of the control struc-

ture) of the control system that leads to an optimized 

performance under the current long-term operating 

conditions. 

4. REDUCING THE GAP BETWEEN 

REGULATION AND RTO 

4.1 Frequent RTO 

As a consequence of the drawback of RTO to work 

with rather long sampling periods, several authors 

have proposed schemes that work with smaller sam-

pling times on the optimizing layer. E.g., Sequeira et 

al. (2002) propose to change the set-points for the 

regulatory layer in much shorter intervals (in the case 

study presented 1/50 of the settling time of the plant) 

and to perform a “real-time evolution” of the set-

points by heuristic search (used  here to reduce the 

computation time) based upon the stationary process 

model and the available measurements. To avoid 

overshooting behavior, the steps of the decision vari-

ables are bounded in each step. In the example 

shown, this scheme outperforms steady state RTO 

with regulatory control especially for non-stationary 

disturbances and in the first phase after a disturbance 

occurs which is not too surprising. The idea that a 

“step in the right direction” should be better than to 

wait until the process has settled to a new steady-state 

is convincing, however the approach suffers from 

neglecting the dynamic aspects. This concerns two 

aspects: the interaction of the set-point change with 

the regulatory control layer and the assumption that a 

steady-state optimization performed at an instationary 

operating point yields the right move of the set-

points. In the same line of thinking, Basak, et al. 

(2002) discussed an on-line optimizing control 

scheme for a complex crude distillation unit. They 

proposed to perform a steady-state optimization of the 

unit for an economic cost function under constraints 

on the product properties with respect to the opera-

tional degrees of freedom and a model parameter up-

date at a sampling rate of 1-2 hours and to apply the 

computed manipulated values directly to the plant. If 

the update of the manipulated variables is based 

solely on information on the plant inputs and the eco-

nomics, such a scheme will react to disturbances only 

via the model parameter update. If dynamic variables 

enter the optimization, the resulting dynamics of the 

controlled plant will be unpredictable from the sta-

tionary behavior. The idea to perform updates of the 

operating point using a stationary model more fre-

quently than every few settling times of the plant but 

to limit the size of the changes that are applied to the 

plant such that quasi-stationary transients are realized 

is also used in industrial practice. This leads to the 

implementation of the optimal set-point changes by 

ramps rather than steps or, in other terms, of a nonlin-

ear integral controller, causing slow moves of the 

overall system. 

The fast sampling approach is similar to gain schedul-

ing control because a projection of the actual dynamic 

state on a corresponding stationary point that is de-

fined by the values of the measured, actuated or de-

manded variables during transients is performed. It 

shares the potential of stability problems with gain 

scheduling controllers that usually can only be 

avoided if “slow”, quasi-stationary set-point changes 

are realized (Shamma and Athans, 1992, Lawrence 

and Rugh, 1995).  

4.2 Integration of steady-state optimization into 
model-predictive control 

The so-called LP-MPC and QP-MPC two-stage MPC 

structures that are frequently used in industry to nar-

row the gap between the low-frequency nonlinear 
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steady-state optimization performed on the RTO layer 

and the relatively fast MPC layer (Morshedi, et al., 

1985, Brosilow and Zhao, 1988, Yousfi and Tournier, 

1991, Muske, 1997, Sorensen and Cutler, 1998, Nath 

and Alzein, 2000) were analyzed by Ying and Joseph 

(1999). The task of the upper MPC layer is to com-

pute the setpoints (targets) both for the controlled 

variables and for the manipulated inputs for the lower 

MPC layer by solving a constrained linear or quad-

ratic optimization problem, using information from 

the RTO layer and from the MPC layer. The optimi-

zation is performed with the same sampling period as 

the lower-level MPC controller (see Fig. 3). This 

structure addresses the following issues: 

A faster change of the setpoints after the occurrence 

of disturbances is realized; 

Inconsistency of the nonlinear steady-state model 

on the RTO layer and the linear steady-state model 

used on the MPC layer is reduced; 

Large infrequent setpoint changes that may drive 

the linear controllers unstable are avoided; 

The distribution of the offsets from the desired tar-

gets that are realized by the MPC controller is ex-

plicitly controlled and optimized. 

Steady-state RTO

slow sampling

QP/LP setpoint optimization

fast sampling

Linear constrained MPC

fast sampling

Plant

cost

constraints

setpoints

MVs

MVs

CVs

MVs

CVs

CVs

Figure 3: Two-layer MPC with setpoint optimization 

The plant model and the disturbance estimate used on 

the intermediate optimization layer is the same as that 

used (and eventually updated) on the MPC layer, thus 

avoiding inconsistencies, whereas the weights in the 

cost function and the linear constraints are chosen 

such that they approximate the nonlinear cost func-

tion and the constraints on the RTO layer around the 

present operating point. As long as this approximation 

is good, optimal operations are ensured. 

A simpler approach to the integration of steady-state 

optimization and model predictive control is to opti-

mize those tuning parameters of a DMC or QDMC 

controller that determine the steady-state behavior of 

the controller (setpoints of the regulated variables, 

targets of the manipulated variables, weights on the 

deviations of the regulated variables from the set-

points and on the deviations of the of the manipulated 

variables from the targets) such that the profit ob-

tained is maximized over a number of disturbance 

scenarios as proposed by (Kassidas, et al., 2000). In 

the parameter optimization, a full nonlinear steady-

state plant model is used. Note that this optimization 

is only performed once (off-line), whereas only the 

usual computations of the DMC or QDMC controller 

moves employing linear plant models have to be per-

formed online. The approach was compared to rigor-

ous steady-state optimization (similar to what a RTO 

layer working together with a zero-offset controller 

would yield) of the purity setpoints and to a controller 

that controls the plant to fixed pre-computed purity 

setpoints (also optimized over the various disturbance 

scenarios) for a simple distillation example. The op-

timization approach led to a considerable variation of 

the controlled outputs over the different scenarios, 

while when the process is regulated to fixed setpoints, 

this variation is mapped to the manipulated variables. 

The optimally tuned DMC controller implements a 

compromise between these extremes and realizes 

about 70% of the average additional profit that results 

for rigorous optimization. Even better results can be 

expected for examples where the optimal operation is 

mostly determined by the constraints. 

4.3 Integration of nonlinear steady-state optimization 
in the linear MPC controller.

Zanin, et al. (2000, 2002) reported the formulation, 

solution and industrial implementation of a combined 

MPC/optimizing control scheme for an FCC unit. The 

plant has 7 manipulated inputs and 6 controlled vari-

ables. The economic cost used is the amount of LPG 

produced. The optimization problem that is solved in 

each controller sampling period is formulated in a 

mixed manner: range control MPC with a fixed linear 

plant model (imposing soft constraints on the con-

trolled variables by a quadratic penalty term that only 

becomes active when the constraints are violated) 

plus a quadratic control move penalty plus an eco-

nomic objective that depends on the values of the 

manipulated inputs at the end of the control horizon. 

The economic objective value is computed using a 

nonlinear steady-state process model. As only the first 

move of the controller is implemented, a penalty term 

is added that penalizes the deviation of the first values 

of the manipulated variables from their final values 

within the control horizon. Several variants for this 

penalty term are investigated. The different compo-

nents of the cost function are weighted such that the 

economic criterion and the MPC part have a similar 

influence on the values of the overall cost.  

This combined optimizing/MPC controller was im-

plemented and tested at a real plant with a sampling 

rate of 1 minute, a control horizon of 2 steps and a 

prediction horizon of 20 steps. An impressive per-

formance is reported, both in terms of the economic 

performance and of the smoothness of the transients, 

pushing the process to its limits. The integrated con-

trol scheme performed substantially better than the 

conventional scheme where the operators chose set-

points based on their experiences that were then im-

plemented by a conventional MPC scheme. The final 

weights of the different contributions to the cost func-

tion were determined by experiments. Simulations 

also showed that the one-layer approach compared 
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favorably to a two-layer approach in which the eco-

nomic optimization provided setpoints for a linear 

MPC scheme in terms of dynamic response. A similar 

control scheme was experimentally validated in 

(Costa, et al., 2005). 

5. DIRECT FINITE HORIZON OPTIMIZING 

CONTROL 

5.1 General ideal 

For demanding applications, the replacement of linear 

MPC controllers by nonlinear model predictive con-

trol is a promising option and industrial applications 

are reported in particular in polymerization processes 

(Qin and Badgewell, 2003, Bartusiak, 2005, Naidoo, 

et al., 2005). If nonlinear model-based control is used 

to implement optimal set-points or optimal trajecto-

ries at a plant, it is only a small step to replace the 

traditional quadratic cost criterion that penalizes the 

deviations of the controlled variables from the refer-

ence values and the input variations by an economic 

criterion. Constraints on outputs (e.g. strict product 

specifications) as well as process limitations can then 

be included directly in the optimization problem. This 

approach has several advantages over a combined 

steady-state optimization/ linear MPC scheme: 

Fast reaction to disturbances, no waiting for the 

plant to reach a steady state is required; 

Regulation of constrained variables to setpoints that 

implies a safety margin between these setpoints and 

the constraints is avoided, the exact constraints can 

be implemented for measured variables and only 

the model error has to be taken into account for 

unmeasured constrained variables; 

Over-regulation is avoided, no variables are forced 

to fixed setpoints and all degrees of freedom can be 

used to optimize process performance; 

No inconsistency arises from the use of different 

models on different layers; 

Economic goals and process constraints do not have 

to be mapped to a control cost whereby inevitably 

economic optimality is lost and tuning is difficult; 

The overall scheme is structurally simple. 

An important point in favor of using an economic 

cost criterion and formulating restrictions of the proc-

ess and the product properties as constraints is that 

this largely reduces the need for tuning of the weights 

in less explicit formulations. In contrast, Exxon’s 

technology for NMPC employs a combination of cri-

teria that represent reference tracking, operating cost 

and control moves (Bartusiak, 2005).  

In the next section, it will be demonstrated that direct 

online optimizing control can successfully be applied 

to control problems that are hard to tackle by conven-

tional control techniques. Other application studies 

have been reported e. g. by (Singh, et al., 2000) and 

Johansen and Sbarbaro (2005) for blending processes 

and by (Busch, et al., 2005) for a waste-water treat-

ment plant.  

5.2 Case Study: Control of reactive simulated moving 
bed chromatographic processes  

Process Description. Chromatographic separations 

are a widespread separation technology in the fine 

chemicals, nutrients and pharmaceutical industry. 

Chromatography is applied for difficult separation 

tasks, in particular if the volatilities of the compo-

nents are similar or if the valuable components are 

sensitive to thermal stress. The separation of enanti-

omers (molecules that are mirror images of each 

other) is an example where chromatography is the 

method of choice. The standard chromatographic 

process is the batch separation where pulses of the 

mixture that has to be separated are injected into a 

chromatographic column followed by the injection of 

pure solvent. The components travel through the col-

umn at different speeds and can be collected at the 

end of the column in different purified fractions. In 

the batch mode, the adsorbent is not used efficiently 

and it usually leads to highly diluted products.  

The goal of a continuous operation of chroma-

tographic separations with a counter-current move-

ment of the solid phase and the liquid phase led to the 

development of the Simulated Moving Bed (SMB) 

process (Broughton 1961). It is gaining increasing 

attention in industry due to its advantages in terms of 

productivity and solvent consumption (Guest 1997, 

Juza, et al. 2000). An SMB process consists of several 

chromatographic columns connected in series which 

constitute a closed loop. An effective counter-current 
movement of the solid phase relative to the liquid 

phase is achieved by periodically and simultaneously 

moving the inlet and outlet lines by one column in the 

direction of the liquid flow (see Fig. 4).  

Figure 4: Simulated Moving Bed principle 

After a startup phase, SMB processes reach a cyclic 

steady state (CSS). The length of a cycle is equal to 

the duration of a switching period times the number 

of columns, but relative to the port positions, the pro-

files are repeated every switching period. Fig. 5 

shows the concentration profiles of a binary separa-

tion along the columns plotted for different time in-

stants within a switching period.  

Control of SMB processes. Classical feedback control 

strategies are not directly applicable to SMB proc-

esses due to their mixed discrete and continuous dy-

namics, spatially distributed state variables with steep 

slopes, and slow and strongly nonlinear responses of 

the concentrations profiles to changes of the operating 

parameters. A summary of different approaches to 
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control of SMB processes can be found in (Engell and 

Toumi 2005, Toumi and Engell, 2005).  

Figure 5: Concentration profiles of an SMB process 

Klatt, et al. (2002) proposed a two-layer control archi-

tecture similar to the RTO/MPC scheme where the 

optimal operating trajectory is calculated at a low 

sampling rate by dynamic optimisation based on a 

rigorous process model. The model parameters are 

adapted based on online measurements. The low-level 

control task is to keep the process near the optimal 

cyclic steady state despite disturbances, plant degra-

dation and plant/model mismatch by controlling the 

front positions. The controller is based on in-

put/output models that are identified using simulation 

data produced by the rigorous process model near the 

optimal cyclic steady state (Klatt, et al., 2002, Wang, 

et al., 2003). A disadvantage of this two-layer concept 

is that keeping the front positions at the values ob-

tained from the rigorous optimization does not guar-

antee the product purities if structural plant/model 

mismatch occurs. Thus an additional purity controller 

is required, and the overall scheme becomes quite 

complex without actually ensuring optimality. 

Online optimizing control. As the progress in efficient 

numerical simulation and optimization enabled a dy-

namic optimization of the process within one switch-

ing period, Toumi and Engell (2004a) proposed a di-

rect finite horizon optimizing control scheme that 

employs the same rigorous nonlinear process model 

that is used for process optimization and applied it to 

a 3-zones reactive SMB process for glucose isomeri-

sation (Toumi and Engell 2004a,b) The key feature of 

this approach is that the production cost is minimised 

on-line over a finite horizon while the product purities 

are considered as constraints, thus a real online opti-

misation of all operational degrees of freedom is per-

formed, and there is no tracking of any precomputed 

setpoints or reference trajectories. In (Toumi, et al. 

2005), this control concept was extended to the more 

complex processes VARICOL (Ludemann-

Homburger, et al., 2000 Toumi, et al., 2003) and 

PowerFeed (Kearney and Hieb 1992) where the ports 

are switched asynchronously and the flow rates are 

varied in the subintervals of the switching period. 

These process variants offer an even larger number of 

degrees of freedom that can be used for the optimiza-

tion of the process economics while satisfying the 

required product purities. In the optimizing control 

scheme of Toumi, et al. (2004a,b), the states of the 

process model are determined by forward simulation 

starting from measurements in the recycle stream and 

in the product streams.  

A different optimization-based approach to the con-

trol of SMB processes was proposed by (Erdem, et 

al., 2004a, Erdem, et al., 2004b, Abel, et al., 2005). In 

their work, a moving horizon online optimization is 

performed based on a linear reduced-order model that 

is obtained from linearizing a rigorous model around 

the periodic steady state. The state variables of the 

model are estimated by a Kalman Filter that processes 

the product concentration measurements. Due to the 

use of repetitive MPC (Natarajan and Lee, 2000) the 

switching period is kept fixed although it has a con-

siderable influence on the process performance.  

The Hashimoto reactive SMB process. The integra-

tion of chemical reactions into chromatographic sepa-

rations offers the potential to improve the conversion 

of equilibrium limited reactions. By the simultaneous 

removal of the products, the reaction equilibrium is 

shifted to the side of the products. This combination 

of reaction and chromatographic separation can be 

achieved by packing the columns of the SMB process 

uniformly with adsorbent and catalyst, this leads to 

the reactive SMB (SMBR) process. The SMBR proc-

ess can be advantageous in terms of higher productiv-

ity in comparison to a sequential arrangement of reac-

tion and separation units (Borren and Fricke, 2005). 

However, for reactions of the type A <=> B, a uni-

form catalyst distribution in the SMBR promotes the 

backward reaction near the product outlet which is 

detrimental to the productivity, further, the renewal of 

deactivated catalyst is difficult when it is mixed with 

adsorbent pellets, and the same operating conditions 

must be chosen for separation and reaction what may 

lead to either suboptimal reaction or suboptimal sepa-

ration. The Hashimoto SMB process (Hashimoto, et 

al., 1983) overcomes the disadvantages of the SMBR 

by performing separation and reaction in separate 

units that contain only adsorbent or only catalyst. In 

this configuration, the conditions for reaction and for 

separation can be chosen separately and the reactors 

can constantly be placed in the separation zones of 

the SMB process by appropriate switching. The struc-

ture of a Hashimoto SMB process is shown in Fig. 6. 

The dynamics of this class of processes is highly 

complex. 

Q
De ExQ

switching of
separators

liquid flow

zone II zone IIIzone I zone IV

QRaQFe

recycle

Figure 6: Four-zones Hashimoto SMB process 

Optimizing controller application. The example proc-

ess considered in (Küpper and Engell, 2005) is the 

racemization of Tröger’s Base (TB) in combination 

with chromatographic separation for the production of 

TB- that is used for the treatment of cardiovascular 
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diseases. The solvent is an equimolar mixture of ace-

tic acid that acts as the catalyst for the reaction and 2-

propanole that increases the solubility of the mixture. 

The Tröger’s Base system is described by an adsorp-

tion isotherm that is of multi component Langmuir 

type: 
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The reaction takes place in plug flow reactors that are 

operated at 80°C whereby the catalyst is thermally 

activated. In the chromatographic columns that have a 

temperature of 25°C the catalyst is virtually deacti-

vated. In the simulation run shown below, a four-

zones Hashimoto process with 8 chromatographic 

columns, 2 reactors, and a column distribution as 

shown in Fig. 6 is considered. The objective of the 

optimizing controller is to minimize the solvent con-

sumption QD for a constant feed flow and a given pu-

rity requirement of 99% in the presence of a 

plant/model mismatch. The inevitable mismatch be-

tween the model and the behavior of the real plant is 

taken into account by feedback of the difference of 

the predicted and the measured product purities. A 

regularization term is added to the objective function 

to obtain smooth trajectories of the input variables. 

The controller has to respect the purity requirement 

for the extract flow which is averaged over the pre-

diction horizon, the dynamics of the Hashimoto SMB 

model and the maximal flow rate in zone I due to lim-

ited pump capacities. In order to guarantee that at 

least 70% of the mass of the components fed to the 

plant averaged over the prediction horizon leaves the 

plant in the extract product stream, an additional pro-

ductivity requirement was added. The resulting 

mathematical formulation of the optimization prob-

lem is: 
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where the purity error and the mass error are calcu-

lated according to 
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The model of the plant consists of rigorous dynamic 

models of the individual columns of the plant, the 

node equations and the port switching. The chroma-

tographic columns are described accurately by the 

general rate model (Guichon, et al., 1994) which ac-

counts for all important effects of a radially homoge-

neous column, i.e. mass transfer between the liquid 

and the solid phase, pore diffusion, and axial disper-

sion. The pdes are discretized using a Galerkin ap-

proach on finite elements for the bulk phase and or-

thogonal collocation for the particle phase (Gu, 

1995). The reactors consist of 3 columns in series. 

Each column is discretized into 12 elements, yielding 

an overall model with 1400 dynamic states. For the 

solution of the optimization problem, the feasible path 

solver FFSQP (Zhou, et al., 1997) is applied. It first 

searches for a feasible operating point and then mini-

mizes the objective function. The number of iterations 

of the SQP solver was limited to 8 because the opti-

mizer performs this number of iterations within one 

cycle of the process (8 switching periods), as required 

for online control.  

In the simulation scenario, an exponential decrease of 

the catalyst activity was assumed that occurs in the 

case of a disturbance in the heating system. A 

model/plant mismatch was introduced by disturbing 

the initial Henry coefficients HA and HB of the model 

by +10% and -15%. The parameters of the controller 

are displayed in Table 1. 

Table 1: Controller parameters 

Sampling time  8 periods = 1 cycle 

Prediction horizon HP 6 cycles 

Control horizon HC 1 cycle 

Regularization  R [0.3 0.3 0.3 0.3] 

Controller start 72nd period 

Estimator start 72nd period 
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Figure 7: Simulation of the optimizing controller of 

the Hashimoto reactive SMB process 

The performance of the controller is illustrated by 

Fig. 7. The controller manages to keep the purity and 

the productivity above their lower limits, while it im-
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proves the economical operation of the plant by re-

ducing the solvent consumption. As reported in 

(Toumi and Engell, 2004a,b) the optimizing control-

ler has been implemented at a medium scale commer-

cial SMB plant using a PLC-based process control 

system and an additional PC for optimization and 

parameter estimation. 

5.3 Numerical Aspects.

In the example described above, a relatively simple 

numerical approach using direct simulation, computa-

tion of the gradients by perturbation and a feasible 

path SQP algorithm for the computation of the opti-

mal controls was used. By using more advanced nu-

merical techniques, much shorter computation times 

can be realized. Diehl, et al. (2002) proposed a 

scheme for the solution of nonlinear model-predictive 

control problems with large plant models where the 

multiple shooting method (Bock and Plitt, 1984) with 

a tailored SQP algorithm is used and only one itera-

tion of the SQP-problem is performed in each sam-

pling interval. Moreover, the steps performed in the 

algorithm are ordered such that a new output is com-

puted fast immediately after a new measurement be-

came available and the remainder of the computations 

is done thereafter, thus reducing the reaction time to 

disturbances considerably. A further improvement of 

the speed of the solution of the optimization problem 

is presented in (Schäfer, et al., 2006). The maximum 

time needed for the solution of a quadratic NMPC 

problem for a distillation column modeled by a rigor-

ous DAE model of order 106+159 and prediction and 

control horizons of 36 sampling intervals is reported 

to be less than 20 s for a Pentium 4 computer. Diehl, 

et al. (2005) proved convergence of the real-time it-

eration scheme to the optimal solution for general 

cost functions.  

An alternative to the multiple shooting approach is to 

apply full discretization techniques were similar pro-

gress has been reported (e. g. Biegler, et al., 2002, 

Grossmann and Biegler, 2004). Jockenhövel, et. al. 

(2003) reported the application of conventional 

NMPC with a quadratic cost criterion to the Tennes-

see Eastman challenge problem with 30 dynamic and 

149 algebraic states, 11 control variables, several 

constraints on state variables, and control and predic-

tion horizons of 60 steps. Using full discretization and 

an interior point method, a reliable solution well 

within the sampling time of 100 s is achieved. It can 

thus be concluded that online optimizing control is 

computationally feasible nowadays for models with 

several hundred state variables and for long predic-

tion horizons. 

6. OPEN ISSUES 

Modeling. In a direct optimizing control approach 

accurate dynamic nonlinear process models are 

needed. While nonlinear steady-state models are 

nowadays available for control purposes for many 

processes because they are used extensively in the 

process design phase, there is still a considerable ef-

fort required to formulate, implement and validate 

nonlinear dynamic process models. The recent trend 

towards the use of training simulators may alleviate 

this problem. Training simulators are increasingly 

ordered together with new plants and are available 

before the real plant starts production. The models 

inside the training simulator represent the plant dy-

namics faithfully even for states far away from the 

nominal operating regime (e.g. during start-up and 

shut-down) and can be used also for optimization 

purposes. Such rigorous models may however include 

too much detail from a control point of view. It does 

not seem to be necessary to include dynamic phe-

nomena that effect the behavior only on time scales 

much longer than the prediction horizon or shorter 

than the sampling time of the controller. However, the 

appropriate simplification of nonlinear models still is 

an unresolved problem (Lee, 2000, Marquardt, 2002). 

The alternative to use black-box or grey-box models 

as proposed frequently in nonlinear model-predictive 

control (e.g. Draeger and Engell, 1995, Wang, et al., 

2003, Camacho and Bordons, 2005) does not seem 

appropriate for optimizing control with performance 

requirements formulated as constraints. 

Stability. Optimization of a cost function over a finite 

horizon in general neither assures optimality of the 

complete trajectory nor stability of the closed-loop 

system. Closed-loop stability has been addressed ex-

tensively in the theoretical research in nonlinear 

model-predictive control. There is a pronounced dif-

ference in the attention that practitioners and re-

searchers pay to this issue – practitioners will usually 

tend to say that if suffices to choose sufficiently long 

prediction and control horizons which, for stable 

plants, will work indeed. Nonetheless, the theoretical 

discussion has led to a clear understanding of what is 

required to ascertain stability of a nonlinear model 

predictive control scheme and clearly pointed out the 

deficiencies of less sophisticated schemes. Stability 

results so far have been proven for regulatory NMPC 

where stability means convergence to the desired 

equilibrium point. Stability can be assured by proper 

choice of the stage cost within the prediction horizon 

and the addition of a cost on the terminal state and the 

restriction of the terminal state to a suitable set (Chen 

and Allgöwer, 1998, Mayne, et al, 2000). If the stage 

cost is an economic cost function, bounded cost will 

in general not ensure boundedness of the difference of 

the states to the equilibrium state because economic 

cost functions often involve only few process vari-

ables, mostly inputs and mass flows leaving the 

physical system. Moreover, there is no fixed equilib-

rium state. 

An optimizing control algorithm with guaranteed sta-
bility in principle can be designed if in addition to the 

direct optimizing controller a steady-state optimiza-

tion is performed to determine the desired terminal 

state. Then the cost function can be extended by a 

terminal cost that penalizes the distance of the state at 

the end of the prediction horizon from the optimal 

steady state and by a (small) quadratic penalty term 

on the deviation of the state (or of suitable outputs) 
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from the terminal state within the prediction horizon. 

If a suitable constraint on the terminal state is added, 

this will provide a stabilizing control scheme. It has 

been demonstrated recently that algorithms of this 

type are computationally feasible even for very large 

nonlinear plant models (Nagy, et al., 2005). The con-

straint on the terminal state has to be computed for 

each update of the optimal terminal state what is 

computationally demanding but should be feasible on 

the steady-state optimization layer. By the choice of 

the weighting terms, a compromise between optimiz-

ing process performance over a limited horizon at a 

fast sampling rate and long-term performance under 

the assumption that no major disturbance occurs can 

be established. This leads to a hierarchical scheme 

similar to the RTO/MPC scheme where the upper 

layer provides the terminal state and the terminal re-

gion and the lower layer now is “cost-conscious” and 

no longer purely regulatory. In contrast to the 

RTO/MPC-scheme, the optimization goals as well as 

the models used are consistent in this structure.  

An alternative approach to guaranteeing stability of 

an optimizing controller is applied in (Johansen and 

Sbarbaro, 2005) to a linear process with a static 

nonlinearity at the output, based on an augmented 

control Lyapunov function. 

State estimation. For the computation of economi-

cally optimal process trajectories based upon a rigor-

ous nonlinear process model, the state variables of the 

process at the beginning of the prediction horizon 

must be known. As not all states will be measured in 

a practical application, state estimation is a key ingre-

dient of a directly optimizing controller. The state 

estimation problem is of the same complexity as the 

optimization problem, unless simple approaches as 

predicting the state by simulation of a process model 

are employed. The natural approach is to formulate 

the state estimation problem also as an optimization 

problem on a moving horizon (Jang, et al., 1986, 

Muske and Rawlings, 1994, Rao, et al., 2000). Pa-

rameter estimation can be included in this formula-

tion. Experience with the application of moving hori-

zon state estimation however still is quite limited to 

date. Simpler and computationally less demanding 

schemes as the constrained extended Kalman filter 

(CEKF) may provide a comparable performance 

(Gesthuisen, et al., 2001). As accurate state estima-

tion is at least as critical for the performance of the 

closed-loop system as the exact tuning of the opti-

mizer, more attention should be paid to the investiga-

tion of the performance of state estimation schemes in 

realistic situations with non-negligible model-plant 

mismatch. 

Measurement-based optimization. In the scheme de-

scribed in section 5, feedback of the measured vari-

ables is only realized via the updates of the state and 

of the parameters and by a bias term in the formula-

tion of the constraints and possibly in the cost crite-

rion. As discussed in the section on RTO, a near-

optimal solution requires that the gradients provided 

by the model and the second derivatives are accurate 

and in such a scheme there is no feedback present to 

establish optimality despite the presence of model 

errors. This can be addressed by the solution of a 

modified optimization problem (Roberts 1979, Brdys, 

et al., 1987). As shown by Tatjewski (2002), optimal-

ity can be achieved without parameter update and for 

structural plant-model mismatch by correcting the 

optimization criterion based on gradient information 

derived from the available measurements. This idea 

was extended to handling constraints and applied to 

batch chromatography in (Gao and Engell, 2005) and 

should be explored in the continuous case as well. An 

alternative to implement measurement-based optimi-

zation is to formulate the optimization problem 

(partly) as the tracking of necessary conditions which 

are robust against model mismatch (Srinivasan, et al., 

2002, Chatzidoukas, et al., 2005, Kadam, et al., 

2005). 

Reliability and transparency. As discussed above, 

relatively large nonlinear dynamic optimization prob-

lems can be solved in real-time nowadays, so this 

issue does not prohibit the application of a direct op-

timizing control scheme to complex units. A practi-

cally very important issue however is that of reliabil-

ity and transparency. It is hard, if not impossible to 

rule out that a nonlinear optimizer does not provide a 

solution which at least satisfies the constraints and 

gives a reasonable performance. While for RTO an 

inspection of the commanded setpoints by the opera-

tors may be feasible, they can hardly act as filters in 

direct optimizing control of complex units. Hence 

automatic result filters are necessary as well as a 

backup scheme that stabilizes the process in the case 

where the result of the optimization is not considered 

safe. But the operators will still have to supervise the 

operation of the plant, so a control scheme with opti-

mizing control should be structured into modules 

which are not too complex. The concept of adding a 

cost term that represents steady-state optimality as 

described above provides a solution for the dynamic 

online optimization of larger complexes based on de-

centralized optimizing control of smaller units. The 

co-ordination of the units is performed by the steady 

state real-time optimization that sends the desired 
terminal states plus adequate penalty terms to the 

lower level controls. These penalty terms must reflect 

the sensitivity of the global optimum with respect to 

local deviations, i.e. how an economic gain on the 

local level within the optimization horizon is traded 

against a global loss due to not steering the plant to 

the globally optimal steady state. Still, acceptance by 

the operators and plant managers will be a major 

challenge. Good interfaces to the operators that dis-

play the predicted moves and reactions and enable 

comparisons with their intuitive strategies are be-

lieved to be essential for practical success.

Effort vs. performance. Of course, the complexity of 

the control scheme has to be traded against the gain in 

performance. If a carefully chosen standard regula-

tory control layer leads to a close-to-optimal opera-

tion, there is no need for optimizing control. If the 

disturbances that affect profitability and cannot be 

handled well by the regulatory layer (in terms of eco-
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nomic performance) are slow, the combination of 

regulatory control and RTO is appropriate. In a more 

dynamic situation or for complex nonlinear multivari-

able plants, the direct optimizing control idea should 

be explored. As for an NMPC controller that is de-

signed for reference tracking, a successful implemen-

tation will require careful engineering such that as 

many uncertainties as possible are compensated by 

simple feedback controllers and only the key dynamic 

variables are handled by the optimizing controller 

based on a rigorous model of the essential dynamics 

and of the stationary relations of the plant without too 

much detail. 
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