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The m ajority of control studies in the literature
have dealt with continuous processes operating
around around an equilbriim ponnt. In recent
years, however, the class of system s where the
process tem inates in finite time has received
ncreasing attention . An hteresting feature is the
fact thatm ost of these processes are repeated over
tim e.M any Industrialoperations, epecially in the
areas of batch chem ical production, m echanical
m achining, and sem iconductor m anufacturing do
fall under this category.
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Abstract: Im proving the perform ance ofbatch processes requires tools that are
tailored to the specificities of batch operations. These include a mathematical
representation that explicitly shows the two ndependent tin e variables (the run

tin et and the run ndex k) aswell as the two types of outputs (the run-tin e and
run-end outputs). Furthem ore, corrective action can be taken via both on-lne

and run-to-run control. T his paper Investigates the in portant notions of stability

and controllbility for batch processes, where it is shown that a valie rather than

a yestno answer neads to be considered. The tools required for evaluating these
properties are readily adapted from the literature. Finally, the various control
strategiesare illustrated via the simulation ofa sem i -batch reactor, and ref erences
arem ade to the appropriate tools for evaluating stability and controllability.

K eywords: Batch Processes, R epetitive P rocesses, O n-lne C ontrol, R un-to-run
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1. NTRODUCTION ized by the frequent repetition ofbatch runs, itis
appealing to use the results from previous runs to
im prove the operation of subsequent ones. This
has generated the ndustrially relevant topic of
run-to-run controland optin ization (Cam pbell et
al. 2002, Franoois et al. 2005) . R epetition provides
additionaldegrees of freedom form eeting the con-
trolobjectives since the w ork does not necessarily
have to be completed In a sngle run but can
be distributed over severalruns. This brings into
picture an additional type of outputs that need
to be controlled, the run-end outputs. The m ain
di culty is that these outputs are typically only
available at the end of the run.

In a batch process, operations proceed from an

Titial state to a very di erent final state. Hence,
there exists no sihgle operating point around
which the controlsystem can be designed B onvin
1998). Also, since batch processing is character-
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Though a 1ot of work has been reported recently
n the literature on batch process control and
optin ization (@A bel et al. 2000, Srinivasaret al.
2003, ForesC errillo and M acG regor 2003, Chin
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et al. 2004), there is still a lack of understanding
of their system -theoretical properties. D ue to the

finire-tin e nature ofbatch processes, the standard

definitions of properties such as stability, control-
lability and cbservability cannot be used.

This paper presents definitions and analysis tools

for the two im portant properties of stability and
control 1ability forbatch processes. It i s im portant
to em phasi ze that the contridbution of this paper

is In discussing the variousnotions of stability and

controllability and choosing the right notions for

the analysis of batch processes. T he analysis tools

are then readily adapted from those existing in

the literature.

T he paper is organized as follow s. Section 2 htro-

duces a brief mathematiml description of batch

processes and discusses the I plications of two
tin e scales and two types of output for control

N

tionsat tinet = 0.The coresponding state
trajectories are denoted by x; 0, 7] L™.
Outputs: The outputs are of two types: (1)
The run-tin e outputs, yx ¢) RP, corre-
soond to the on-line m easurem ents during
rn k; (i) the run-end outputs, zx RY,
clude them easurem ets that becom e avail-
able at the end of run k. The latter m ght
also depend on the state evolution during the
entire run, eg. the average valie of a state.
System dynamics: They describe the state
and output evolutions for a single run. For
exam ple, the nonlnear tin e-invariant m odel

describing the process behavior during runk
reads:

Ty )= F @y ¢),up @), x5 0) = i @)

yr €)= H @y @), up ¢)) @)

2z =H @p 0, T]ur 0, T (3)

Stability and controllability are analyzed in Sec-

tions 3 and 4, regpectively. An illistrative exam ple
is presented In Section 5, and conclusions are
drawn in Section 6.

2.CONTROL OF BATCH PROCESSES

A batch processcan be seen asa repetitive dynam -
ical process that is chaxterized by the presence
of a finite term mnal tin e and thus the possbility

of having several sequential runs, with each run
being dynam ic. Batch processes have the follow -
ng mann characteristics: (i) There are two time

scales, i.e. the continuous tifnw ithin the run
and the discrete run ndex k, (i) the tine of a
run is Im ited (finite), (iil) there isno steady-state
operating polnt w ith respect to ¢, ie. the analysis
has to be perform ed around trajectories rather

than an equilbrium point, and (i) two types of

m easurem ents are avaibble, ie. during the run
and at the end of the run.

2.1 Terminology and notations

Let R beused forthe space of realnum bers andL
for that of functions, and ket Z, represent the set
of positive integers excluding zero. T he various
elem ents of a batch process can be defined as
follow s:

(1) Run: O ne realization of a repetitive process.
) Run time: Thetinewihmnhamn,t 0,71
Ry ,where T is the finite term naltin e.
B) Run index: Thenumberofa mun, k Z, .
@) Inputs: The inputsuy ¢) U
wih t during run k. The hput trajectories
for run k are denoted by u, 0,71 L™.
(5) States: The states, z ) X R™, evolve
with t during run k. x}f are the nitial condi-

<
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The dynam ics over several runs stem from
the possbility to update the mitial condi-
tions and the nputs on a run-to-run basis.

The system propertieswillbe analyzed around se-
lected reference trajectories, for which the accent
() willbe used. For exam ple, the reference state
trajectories will be denoted by z D,T']1, with T ¢)
being the corresponding state values at time
Perturbationsdenoted by () willbe considered,
eg. ZD,T1]isa perturbation ofz b, T]1.

2.2 Control strategies

There are two types of control cbjectives (run-
tin e outputs yi ¢) or yi 0,71, and run-end out-
puts zr), and aloo di erent ways of reaching
them (on-lne wih u}" ¢) and run-to-run wih
uj" 0, T]) . Each cbctive can be m et either on-
Ine or on a rmun-to-run basgis, this choice being

dependent on the type ofm easurem entsavailable.

The control strategies are classified n Figure 1
and discussed next.

Implementation

Control objectives

Run-time outputs Run-end outputs

aspect
P y,(t) ory,[0,T] z,
1 On-line control 2 Predictive control
n-lin on
On-line u () = y,(1) = y,[0,T] W) = 2, (1)
ZE PID MPC
3 lIterative learning 4 Run-to-run control
Run-to-run control
u"[0,7] = ,[0,7] Um) = u™[0,7] =z,

ILC R2R

R™, evolve

Fi. 1. Control strategies resulting from oconsid-

eration of the control objectives (run-time

or mun-end outputs) and the in plem entation
aspect (on-lne or run-to-run).
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rtr yk[O,T]
R U0 T | Run-to-run |
un -t Update
Dela .
. . Y I,R -
Intgr-run_ Viewpoint i Iy
Trajectories 0 [0T]
Run-to-run control urk”[o,'r] L »| Run-end -7
x[0.T] »-|Measurements
_______ I A SR i A
uy
Intra-run Viewpoint uk® o] Batch 9 | Run-time » V()
Instantaneous values + | FeeEs Measurements
On-line control

G

o Model
= Prediction

\i \J
On-line

Zpred k()

Update
K, P -

Fi. 2. Batch process wih the nputs beihg updated both on-lhe (tra-run, use of the mun-time
m easurem entgy (¢)) and on a run-to-run basis (nter-run, use of the run-end m easurem ents 2y ) .
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The symbol

isused to ndicate a change In view Ing the tin e argum ent, eg. from a trajectory to

an instantaneous value when going downw ard and conversely when going upward.

On-line control of run-time outputs. The ap-
proach is sin ilar to that used In the tradi-

tional controlliterature. Controlis typically
done using PID techniques or m ore sophis-

ticated altematives w henever necessary. For-
m ally, this controller can be w ritten as

up" ) = K i @), ysp ¢)) @)

where K is the on-lne controller for the run-
tin e outputs yx ¢), and ys, ¢) the setpomt.
On-line control of run-end outputs. It isnec-
essary here to predict the run-end outputs
based on m easurem ent of the run-tin e out-
puts.M odelpredictive control M PC) iswell
suited to that task Nagy and Braatz 2003).
The controller can be written as
uzn €)="r (Zpred,k ), Zsp) 5)

where P is the on-line controller for the run-
end outputs 2, and 2Zpreq,k ¢) the prediction
of z;, available at tin e nstantt.
Run-to-run control of run-time outputs. In
batch processing, key paocess characteristics
such as process gain and tin e constants can
vary considerably. Hence, the need to pro-
vide adaptation In a run-to-run m anner to
compensate the e ect of these variations.

The mun-to-run part of the manipulated
variable profiles can be generated using I tera-
tive Leaming C ontrol (ILC ) that exploits n-
form ation from previous runs M oore 1993).
T he controller has the sructure

uf" 0, T1= I r—10,T],ysp 0, T 6)

where I is the iterative leaming controller
for the run-tim e outputsyy D, T']. Ik processes
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the entire profile of the previous run to gen-
erate the entire m anijpulated profile for the
current run.

e Run-to-run control of run-end outputs. The
nput profiles are param eterized using the
nput param eters 7, ul" D, T1 = U ().

Control is then implemented using simple

discrete ntegral control law s, that is m;, =
Tr—1 + K (2gp — 2k—1) (Francois et al. 2005).
Fom ally, the controller can be w ritten as

up™ 0, T1= U (mg), T = R @k—1,2sp) (7)

where R iIs the mun-to-run controller for
the run-end outputs zr, and U the nnput
param etrization.

Note that, except for predictive control that -
volvesprediction, allthe other controlschem esuse
only m easurem ents and thus do not necessitate a
processm odel for in plem entation, ie. a very nice
feature for batch processes, where detailed accu-
rate m odels are seldom availbble Bonvin 1998).

By combining strategies for the various types of
outputs, the control inputs can have contri butions
from both run-to-run and on-line updates:

ug @) = up" ) + u ¢) 8)

The tem u} () stems from the trajctories
u'™ D, T'] and represent the ‘feedforward’ operat-
ng policiesthat arenotaltered w thin a run .H ow -
ever, u}'" D, T1m ay change between runs (via run-
to-run update), leading to nter-run dynam ics.On
the other hand, u?" (f) represents the ‘feedback’
correction during the run (via on-lne update).
This combiation of strategies is illustrated M
Figure 2.
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Applying only run-to-run controlexhibits the 1im -
itations of being open-loop In run tim e, n partic-
ular for run-tin e disturbances. In general, a com -

bination of these four strategies isused.However,

n such a combined schem e, care should be taken
that the on-line and run-to-run corrective actions
do not oppose each other. Hence, the stability
issue is critical.

In form ulating the control strategy, controllability
is in portant since it nform swhether or not open-

there existsa d > 0 such that, orallzi® = 7 (0) +
Z (0) wih Z(0) < 6, the state evolution
2, 0, T] Bsg.

A divergihg (convergig) system has a positive
(negative) value of §. Note that a system that
nithlly diverges to eventually converge has a
positivéd. In addition to its sign, the value of3
isquite useful since, w ith finite-tin e system s, the

dividing line between stability and instability is

loop inputsexistthat can provide the desired pernot whether the trajectories converge or diverge,

fom ance. O nce a controller is designed, stability
issues are of upperm ost in portance. St abilization
(and m ore appropri ately finite-tin e stabilization),
which is the issue of designing a controller that

but by how much they come together or grow
apart In the interval of mterest. Hence, I the
context ofbatch processes, stability isnot a yesno
result, but rather a m easure quantified by 3.

achieves stability and desired performance, will

not be addressed I this paper.

3. NTRA-AND INTER-RUN STABILITY
Due to the presence of the two tin e scalest and
k,both intra-run (in run timfe and nter-run (I
run index k) stability need to be addressed .

3.1 Intra-run stability

Stability In run tin e ¢ is in portant for repeata-

Definition 3. System (9) is locally intra-run a-
terminal-time stable around the trajectories
T, T] if there exists a § > 0 such that, for
allzi® = £(O)+ Z(0) with Z(0) < §, the
term malstates statisfy . @) - ZT) < ad.

Tem naltine stability is the counterpart of
asym ptotic stability forfinite-tin e system s.Again,
stability isnot sin ply determ ned by whetherx is
greateror less than 1, butinstead it is quantified
by the value of «v.

It is possible to give results similar to the two

bility and reproducibility reasons. The problef, e sofLyapunov (one based on 1lineari zation

addressed therein is whether the trajectories of
various runs wih iniil conditions su ciently
close will rem ain close during the rest of the run.

System (1) under on-line closed-loop operation
using the feedback law @) or (5) can be w ritten
as:

)= F@pt),t), 2,0 =2z ©

The standard definition of Lyapunov stability

and the otheron the existence ofa non-increasing
Lyapunov function) for tube stability.

Theorem 1. Let 2, ¢) = A@¢) zp ¢) with the
ikl conditions 1z, (0) = ¥ (0) be a bounded
Inearization of System (9) alongz 0, Tl orrun k.
Let Omaz ) be the maxinum of the real parts
of the eigenvalues of the tin edependent ma-
trix L [T A@)dr. Alo, Bt Fpnas = M aX; Omax ().
Then, System (9) is tube stable around Z 0, 7]

is typically used around an egquilibrium poiwith 8 = Gmas - Furthem ore, the system is lo-

(V dyasagar 1978). To extend this definition to
finite-tim e system s w ithout an equilbrium point,

it isfirst necessary to introduce the concept of a

tube around the nom inaltrajectory in then(+ 1)-
dim ensional space of states and tim e.

Definition 1. The trajectoriesxy 0, 1] are defined
to be mside the (q,b)-tube B, around the ref-
erence trafctories T0,T] , 1.y 0,71 Bay, i
they satisfy =3, ¢) - T¢) <ae®, t D,TI.

The tube congists of a ball of radius a In the
n-din ensional state space at tine t = 0, which
shrinks or expandsw ith tin e at a rate determ ned
byb.

Definition 2. System (9) is ocally mtra-run (-
tube stable around the trajectories T 0,71 if

IFAC
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cally term naltin e stablkaround 0, T'lwith o =
eo"macz (T)T .

T he proofofthe theorem usesB ellm an-G ronwall's
Lemma (Vidyasagar 1978). Note that the eigen-
values of the integralof A are studied rather than
the ei genval uesof them selves. In m ost optin ally
operated finite-tin e system s (eg. usihg a finie-
tin e Inearquadratic regulator) , though the elgen-
values of the mtegral are negative, som e of the
eigenvaluesofl m ght becom e positive tow ard the
end of the run. This phenom enon caused by on-
Iine controlof z;, is referred to as the batch kidk’
in the optim ization ofbatch processes. mtuitively,
thism eans that little can go wrong tow ard the end
gince the ‘timetogo’isanall.
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Tumig to the second Lyapunov method, the
follow Ing result can be stated.

Theorem 2. Let V (x,t) : R™ x Ry R be
a oconthuously di erentiable finction such that

V&t = 0 and V,t) > 0 orall x¢) =
Tt), t.IfV @, t) ot)V @,t) along the sys-
tem trajctories oralx ¢) = &)+ T¢), t,

T ) < 9,then System (9) is tube stable w ith
3= maxt%fota(T) dr.

N ote that the definition of stability presented by
(Lohmiller and Slotine 1998) usihg contraction of

deviations around pre-gpecified trajectories is a System

special case of Definition 2 above and requires
contraction at every tin e nstant, ie.o ) < 0 for

T his stability definition is fairly standard but in
a discrete sstting. Thus, I princple, either one
of the two Lyapunov m ethods (via linearization
or Lyapunov function) can be used to analyze
stability. However, the linearization m ethod has

problem ssincedi erentiation hasto beperform ed

n the space of functions. T he Lyapunov-function
m ethod can be used once a nomm isappropriately
defined (Vidyasagar 1978).

Theorem 8. Let V :L" R be a continuously
di erentiable functional such that V @ 0,7T']) = 0
andV @D, T1) > 0 orzb,T1= b, T1.

(10) is ocally nter-run Lyapunov sta-
bk if, brallzg 0,71 = 0, T]1+ ZD0,T]wih
zb,T] <0,V @1 D,T) V@b, T, k.

allt. Thismeasure isclearly inadequate forbatch

T ) i If, m addition, £ D,7'] is the largest wvariant set
system s that exhibit a batch kidk. Inform ation

regarding the overallperform ance isbetter related
to the integralof o asgiven n Theorem s1 and 2
than to its instantaneous value.

3.2 Inter-run stability

The Interest In studying stability n run index k
arises from the necessity to guarantee convergence
of run-to-run adaptation schem es. H ere, the stan-
dard notion of stability applies as the lndependent
variable k goes to infinity. The m ain conceptual
di erence wih the stability of conthuous pro-

cesses is that equilibrium ’ refers to enti re trajec-

tordes. H ence, the nomn s have to be defined 1 the
gpace of functions I such as the Integral squared
error Lo .

For studyhg stability with respect to run index
k, System (1) is considered under closed-loop
operation. At the k' run, the trajectories of the
k - 1)*" mun are known, which fixes u}"" 0, T]
according to (6) or (7). These mput profiles, along
wih the on-lhe feedback law @) or (5), are
applied to (1) to obtain zx ¢) for allt and thus
zr 0,T]. ATl these operations can be represented
form ally as:

2 0,T1= F @r_1 0, T, 200, T1= Zinie 0, T110)

where T, 0,71 are the nitial state trajecto-

ries. Inter-run stability is considered around the

equ:i]jbr:hml trajectory com puted from
fDaT]= F (3_'/.[07T])-

(10), ie.

Definition 4. System (10) islocally interrun Lya

punov stable around the equilbrium trajectories
ZD,T] if there exist § > 0 and € > 0 such
that, for all 2o 0,71 = 0O, T1+ Z0,T] with

zh,T1 <0, 0, T1- 20, T]1 <€, k.IfE T
addition, m ;0o 2 0, 7T1-2 D, T] = 0,then the

satisfyingV @wp41 0,71 = V (0, T]), then the

system islocally inter-run asymptotically stable.

Again, the choice of a Lyapunov function is a
majr di culty. The nom of the nput eror
w0, T]1- wD,T] 1, has served as a usefill Lya-
punov function n som e of our studies, although
the output ermror has been widely used In the
literature.

4. CONTROLLABILITY OF RUN-TIM E AND
RUN-END OUTPUTS

O ne of the definitions of controllability for nfinite-
tin e dynam ic system s requires that there exists
an Input vectoru kg, 7] w ith which the equilbbrium
state can be reached from any arbitrary statex ¢g)
I the neighborhood of the equilbbrium .

There are two di culties w ith extending this def-
Tnition to batch processes. F Irstly, the controlla-
bility of finite-tin e system s needs to be defined
around trajectories. T herenn, the relevant question
is whether or not som e neighborhood of given
trajectories can be reached. Clearly, not all state
trajctories can be fixed independently because
the state vector x D,7'] contains a ot of redun-
dant Inform ation. For exam ple, sihce a position
tra jectory enforces the velocity, the trajectories of
position and velocity cannot be chosen ndepen-

dently of each other! .Hence, only controllability

n temm s ofindependent output trajectories can be
Tvestigated (y-controllability) .

Secondly, the above definition of controllability
mentions the existence of a timer , which how ever
m Ight be larger than the term hal tine 7. This

aspect becom es in portant when considering the

1 In contrast, when instantaneous values are considered,

system islocally inter-run asym ptotically staladlgtrary position and velocity values can be specified.
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controllability with respect to the run-end outputs
(z-controllability) .

Here, controllability addresses the problem of the

existenceofinputsthatcan im plem ent thedesired

action and thus is dependent of whether the
correction ism ade on-lne oron a run-to-run basis.

4.1 Controllability of run-time outputs

Lety!,i= {1,---,p}, be the i’ run-im e cutput
of System (1)-(2) and ket its relative degree be

. . 6 d]yfr’ . .
Tl,l.em# =0, <.

Definition 5. System (1)-(2) islocally y-controllable

around the arbirary trajectories y 0, T'] if there

exists & > 0 such that, orall gD, 7] <4,
70,71 CU Y fori= {1,---,p}, there exists

up 0,71 U that kads to yx 0,71 = g0, T1+
y0,T1.

Note that if the first ¢** - 1) derivatives of 7
are discontinuous, D irac In pulses are required at
the mputs to meet the outputs. Thus, the per-
turbations §' that are considered cannot have
discontinuities in their first- (1) derivatives,
i.e.y™ CU'-1, where C" denotes the space of

functions that have continuous derivatives up to

orderr.

N ote also that the trajectories ¥ D, T'] are assum ed
feasble, ie. they resgpect the mitial conditions
and they can be in plem ented through @ D, 1'] (the
ocondition under which u D,7T'] exist for a given
4 0, T'] is not addressed here) . T he question asked
n this definition regards only the neighboring
trajectordes. T his is clearly a local inversion prob-
km for which standard conditions for nnverting
a muli-mput multi-output system can be used
H frschom 1979).

Theorem 4. Let ui,j = {1,---,m}, be the jt"
Tnput of System (1)-(2). Let the relative degrees
r*,i= {1, ---,p}, rem ain constant aroundy D, T'],

and M () be defined as M ;; () = LY 1f
k

@1)-@2) 1is

M () is of rank p, t, then System
local ly-controllable around i D, T'].

4.2 Controllability of run-end outputs

A sin ilbr definition can be provided for system

Definition 6. System (1,3) islocally z-controllable,
from tine t{p on, around an arbitrary operating
pointz if there exists®> 0 such that, for all

Z <0, there existsug bp, 7] U that kadsto
Zr=Z+ Z.

Here, the notion of controllability is lnked to a
given tin ety . T he question asked is the ollow ing:
Is it possible to change the outoom e of the run if,
at tin e mstant ¢y I the run, one wishes s0? To
answ er this question, consider the lnearization of
System (1,3) around a trajectory, resulting n the
Inear tin evaryig system (Friedland 1986):

T = AE) x {ty) = 0 (11)
zr=C @) =g (12)

Ty + B(t) Uk,

Theorem 5. Consider the output controllability
Gramm ian G () for System (11)-(12):

Py = Ciredo ™™ gy
T
G (o) = /P(T)PT ) dr (13)

to

IfG () is of rank ¢, then System
z-controllable from tin ety on.

(1,3) is ocally

Foron-line controlof run-end outputs, Theorem 5
can be usad to ndicate until what tin e ¢y in the
batch the control of run-end outputs is feasble.

For rmun-to-run control of run-end outputs, it is

Inportant to study the case where the Tnputs

are param eterized . Consider the param eterization

up 0,T]1= U (), where m;, R"™ are the mput

param eters. This way, the batch process can be

Seen as a static map between the mput param -

eters m, and the run-end outputs 2z . To assess

controllability, the transfer m atrix betwesn
and zp needs to be com puted. The equivalent of
Theorem 5 using put param etrization is given
next.

Theorem 6. Consider they x n, transfer m atrix
between 7 and 2z calculated for System (11)-(12):

s

T
T (fo) = /cmefto Als) dr g (T)Z—U dr (14)
to

IfT (fg) is of rank ¢, then System (1, 3) wih the
param etrization ui 0,71 = U ;) Is ocally z-

controllability in tem s of reaching specified munmontrollable from tinetg on.

end outputs.

2 The relative degree of an output is the minimal degree
of its time derivative for which at least one input appears.
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Note that run-to-run control requires only the

evaluation of the matrix T (0). The rank condi-
tion (or mvertibility) of G or T Pllow s from the
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fact that the lputs that can create the necessary
change In the run-end outputs are cbtained by
Tnversion. However, note that as tg approaches
T, the Gramm Jan approaches singularity, with
GT') = 0.Similarly, if a piecew ise param etriza-
tion is used, after a certan tine, some of the
param eters w ill have no influence on the outputs,
thus making a few colimns zero. A sty proceeds
toward 1", m ore and m ore colum ns will becom e
zero.Hence, ast T, inverting or T requires

lamer and lawger inputs for control . Also rank

deficiency m ay occur, and the system may lose
controllability.

5. LLUSTRATIVE EXAM PLE

Consider the scale-up, from the laboratory to pro-
duction, of a sam i-batch reactor in which several
reactions take place. The desired and m ain side
reactions are

A+B C, 2B D

with C' the desired product and D an undesi red
side product. The reactions are fairly exotherm ic
and the reactor is equipped with a jcket for

heat rem oval. The control objective is twofold:

(1) O perate isotherm ally at 50°C by m anjpulating

the jpdket tem perature, and (il) m atch the final
concentrations that have been cbtaned in the
laboratory, cg (I') = CB,maz a0d Ccp T = CD,max

by m anjpulating the feed rate of reactant B .

The control structure used is flustrated In Fig-
ure 3.1t in plem ents on-line feedback tem perature
control. In addition, the feedforward profile for
the jacket tem perature ijf D,T1 is adjusted on
a run-to-run basi sby means of ILC . In this case,

_ dT.
M—de

tive of the trajectory chosen (hence, satidies y-
controlbbility - Theorem 4).The controller reads

is a constant non-zero scalar rrespec-

t

K
Tjwtt) = T €)+ Kpey ) + T—R/ek r)dr,
! 0
il 0T~ 1=T/H 1, T1+ Kicenl T,
with ex ¢) = Types ) - T (), Kg the propor-

tional gain and 77 the Integral tim e constant of
the P Im aster controller. It can be easily verfied
that the system is tube stable with a negative
(. Kipc is the gain of the ILC controller and
0 the value of the nput shift. The second
equation allow sadapting the feedforward term for
the jadket tem perature setpoint on a run-to-run
basisbased on IL.C with mputchift. h Theorem 3,
the Integral squared output error fOT e} (r) dr is
used as the Lyapunov function n run index k. The
value of the mput chift is tuned for convergence
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W elz et al. 2004) .D ue to the presence of the shift,
the errordoesnot converge asym ptotical 1y to zero.

In addition, the feed rate profile u D,7T] is pa-
ram eterized using the two feed-rate levels u; and
ug , each valid over half the batch tin e. The final
concentrations ¢ (I') and ¢p (') are met, on a
run-to-run basis, by adjusting the two param eters
7= {u1,us}.The transferm atrix T is evaluated
around the current operating point using (14),
with 24 = @ 0] during the first half of the batch
and & = p 1" n the second half. W ith the
matrix T beng fullrank (satifies z-controllability
- Theorem 6), the discrete Itegral control law

reads

Tht1 = T + T T KRoR Bref — 21, (15)
where T is the pseudo-inverse of T , and Kror
the gain of the run-to-run controller. T he run-to-
run convergence of this schem e can be shown usng
Theorem 3 w ith the squared lput error - 7* 2
as the Lyapunov function in run indexk (Francois
et al. 2005).

The evolution of the m anipulated and controlled
variables are fllistrated n Figures 4.

6. CONCLUSIONS

T he controlofbatch processes is characterized by
run-tim e and run-end ob jectives on the one hand,
and by actions that can be in plem ented on-line
and on a run-to-run basis on the other. Tt hasbeen
shown that the conocepts of stability and controlla-
bility, which are well understood for Infinite-tin e
System s operating around an equilbriim point,
are not directly applicable to finite-tin e batch
processes.

W ih regard to stability, the concept of tube
stability, by which the state txrajectories rem ann
wihh a given tube, has been htroduced. The
gecil case of tem ihal-time stability has also
been discussed. Two theorem s that help evaluate
tube stability have been proposad.

As for controllbbility with respect to speciied
trajectories, it was observed that the entire state
goace cannot be studied due to the fact that there
is considerable redundancy in the state trajecto-
ries. Hence, only controllability with resgpect to
two types of outputs have been addressed. Con-
trollability was studied from the point-of view of
inversion, and results were adapted from the ex-
isting literature.
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