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Abstract: Currently a shift of focus towards 6-sigma quality and market responsive 
operation has been initiated in the chemical processing industries.  The fast evolution of 
products and processes enforced by fierce global competition and by tightening 
legislation are major forces for new application development approaches and for new 
technologies. The need of high performance non-linear model based control, 
optimization, monitoring and soft sensing applications and the cost driven necessity of re-
use of models and results of earlier engineering effort will be explained to be the drivers 
for the current and future industrial challenges in (hybrid) modelling and system 
identification. These market developments require more extensive application of (non-
linear) rigorous models extended with empirical model components to achieve the model 
accuracy requirements, the coverage of wide process operating ranges and minimization 
of engineering costs, which cannot be attained by application of pure black box modelling 
approaches. Besides the techniques applied for hybrid modelling and parameter 
estimation, the paper also discusses the techniques needed for model reduction, model 
tracking and state estimation to make the high performance model based applications 
work properly. An overview with some results is given of the techniques applied and 
tested in our current R&D industrial pilot projects. 
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1. INTRODUCTION 

Over the past decades processing industries have 
been facing significant changes, both in the 
marketplace as well as in society. The marketplace 
has turned from a quasi-infinite market, with only 
limited and mostly local competition in the 1970s, to 
an almost completely saturated and extremely 
competitive global world market at present. Society 
has become well aware of the limitations of our 
earth’s ecosphere in handling the effects of our rapid 
consumption of fossil fuel reserves and large growth 
of emissions.  Industries are confronted today with 
ever tightening legislation with respect to the 
environmental impact of their production, the use of 
natural resources, and the disposal or recycling of 
their products. They are getting full responsibility for 
all future effects of their production processes as well 
as of their products and by-products on people and 
environment. Hence, industries have to move 

towards a competitive and sustainable production on 
demand at tight operating constraints as well as 
product quality and variability specifications in order 
to cope with these changes.  

To get a clear understanding of the problems process 
industry is facing, an analysis needs to be made of 
the way processes are operated today in comparison 
with market demand and market opportunities 
(Backx et al, 2000; Pantelides et al. 2004; Britt et al., 
2004).  
At present the Chemical Processing Industries are 
still largely operating their production facilities in a 
supply driven mode of operation. This implies that no 
direct link exists in most companies between actual 
market demand and actual production. Products are 
to a large extent produced cyclically in fixed 
sequences. Delivery of orders is mostly handled from 
stock of finished products or from intermediates that 
only require finishing.  
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 The highly competitive market on the contrary 
imposes a strong need for flexibility with respect to 
the production of a broad variety of product types 
and grades at time-varying capacities. Good prices 
can only be made during those time periods where a 
product is asked for in the market. Hence, production 
capacity and product quality must become 
predictably controlled to enable and support market 
driven marketing and sales. On-time delivery of the 
right product at the right quality at a competitive 
price at the right location must be guaranteed as a 
minimum. Despite the need for high flexibility, 
delivery on demand has to be achieved by the 
industries without building up large stock volumes of 
intermediates or products. In addition price pressure  
enforces producers to process a broad variety of 
market available feedstock materials and utilities at 
loosely specified properties for producing products at 
tight -6-sigma- quality specifications.  

Examples from two different industries are presented 
next in order to illustrate the trends. Supply of 
polymer products to the automotive industries is 
taken as a first example. Currently, most of the 
polymer suppliers work with yearly renewable, 
preferred supplier type contracts. These contracts 
settle the base prices as a function of the ultimately 
requested volume of delivered product. Detailed 
orders for specific deliveries are placed up to just a 
few weeks before the requested moment of delivery. 
Significant penalties are agreed upon for late or off-
spec deliveries.  
Considering the broad range of polymer grades 
requested by the market, flexibility in manufacturing 
and tight quality control are absolute requirements 
for polymer suppliers to stay in business. Capital 
productivity and hence economic success highly 
depend on their manufacturing flexibility.  

A second example is taken from the oil refining 
industries. Tightening legislation on fuels and 
permitted exhaust gas composition has resulted in 
more detailed and tighter fuel composition 
specifications. Consequently, complexity of fuel 
manufacturing has been increasing. At the same time, 
legislation on waste reduction and market pressure 
has forced refineries to further process heavy 
residues. Since crude feedstock quality is slowly 
degrading over time, high quality feedstock prices 
are increasing rapidly. Consequently, cheaper 
feedstock materials of lower and diverse quality are 
going into the market. Feedstock switch frequency is 
increasing to exploit economic opportunities in 
processing low priced raw materials. Economic 
performance of refineries is depending more and 
more on their flexibility to being able to handle and 
quickly change-over between a wide range of 
feedstock materials driven by availability, price and 
opportunities to meet delivery at market demand. 
Operating point switching facilitates the processing 
of a variety of feedstocks to minimize raw material 
cost, the processing of heavy residues to reduce 

waste streams, and the production of the right 
product qualities on demand. Capital productivity is 
continuously driven to its maximum by pushing total 
throughput despite of continuously varying operating 
conditions. 

The examples clearly demonstrate the need to enable 
production plants to be operated in a deliberately 
dynamic mode, covering feasible, wide operating 
ranges. Today many companies produce products at 
lowest possible costs in a lean operation with 
minimum overhead costs and no significant 
investments in upgrade of operation support 
technologies that focus on market driven production 
and innovation. Longer term these enterprises will 
experience that the average residence time of 
products in their warehouses will be long in 
comparison with the average residence time of 
products in warehouses of companies that have 
strongly invested in directly linking production to 
market demand and innovation. Margins will 
continuously be under extreme pressure for a 
significant part of the volume produced due to 
market saturation effects and due to mismatch 
between market demand and supply from stored 
products. The average capital turnaround cycle time 
will remain poor, despite a limitation of the number 
of grades produced per plant. This will continue 
putting pressure on the ultimate business results of 
these companies.  
Only those enterprises will be successful in the 
longer run, which will be able to exploit 
opportunities by quickly adapting to market 
dynamics. Critical issues are flexibility with respect 
to volume, type and grade of products, transition time 
and cost, predictability of production, reproducibility 
of transitions and tight quality control. Consequently, 
manufacturing will have to move from largely 
steady-state operation to an intentionally dynamic 
operation of the plant (Koolen, 1994; Backx et al., 
1998). Companies that have invested in flexible and 
innovative operation are the ones that are setting the 
scene for turning around the way of working in the 
Chemical Processing Industries (CEFIC, 2004-1,2). 
These companies are doing the same as the 
ultimately successful companies in the Consumer 
Electronics and Automotive Industries did 20-30 
years earlier: Operate production directly driven by 
market demand to the extent feasible. Companies 
doing so now are facing tough times however, as 
their total production costs, due to their focus on 
flexibility and innovation, initially appear to be 
higher. They have to make significant investments in 
adapting their operations, production and internal 
organisation to enable the flexible operation. 
Ultimately, these companies will see their overall 
performance rapidly improve due to the increase of 
capital turnaround, the better margins related to 
improved flexibility, their ability to better adapt to 
changing market conditions and their capability to 
timely deliver at (changing) specifications and 
varying volumes of product demand. A significant 
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improvement of economic performance results when 
the response of production to orders received is 
coupled directly. This of course requires predictable 
performance in manufacturing. Focussing operations 
on enabling market driven operation of processes 
opens up the opportunity for best economic 
performance. It ultimately ensures that production of 
ordered products starts after orders have been 
received and that the products are delivered to 
customers immediately after production so enabling 
shortest possible capital turnaround and significantly 
improved capital productivity. 
Innovation in future process technologies must in the 
first place aim at a high degree of adaptability of 
manufacturing to fluctuations in market demand 
covering operations as well as process and equipment 
design. The constraints imposed upon production 
result in increasing complexity of processes and of 
their operations. More sophisticated, model based 
operation support systems will be required to exploit 
freedom available in process operation (Backx et al., 
1998). 

2. MODELING REQUIREMENTS IN THE 
CONTEXT OF MARKET DRIVEN 
PROCESS OPERATIONS 

Two challenges have to be faced in order to move 
towards intentional dynamic and supply chain 
conscious market driven plant operation:  

Fully integrated technologies are needed that 
make transparent operation of plants and their 
processes as part of supply chains feasible to 
enable the implementation of dynamic operation 
in industrial practice. In addition also a 
significant change in the culture of operators and 
plant management will be required. Dynamics 
has to be accepted as a further opportunity for 
performance improvement rather than 
considered as a strange, undesired and even 
dangerous phenomenon outside the scope of 
normal process operations.  
In addition, built up knowledge of processes and 
plants has to be condensed preferably in re-
usable, well documented, generally applicable so 
called Reference Models, which are 
continuously updated and refined to reflect state-
of-the-art understanding of plant and process 
behaviour (Foss, et al., 1998; Pantelides, 2003). 
These reference models at their turn may form 
the basis for highly automated updating of 
applied model based (dynamic) optimisation 
systems, (non-) linear control systems, process 
monitoring systems, soft sensing systems, etc. In 
these systems information on operational 
objectives and manufacturing status must be 
transparent at all levels of the automation 
hierarchy, since the operators will ultimately 
become the proprietors of the process (Clark, et 
al. 1995; Han, et al., 1995). Instead of merely 
executing process operation tasks targeting at 

process variables, operators will move towards 
making productivity decisions on the basis of 
real-time business variables derived from actual 
and model based process measurements and 
enterprise policy. 

Market driven process operation puts extremely high 
requirements on predictability and reproducibility in 
process operation. One needs to be able to produce 
products at adjustable specifications in predefined, 
tight time slots and in changing volumes. Flexibility 
and timing are key parameters that drive 
performance. Technologies that support such process 
operation have to provide the functionality to operate 
processes this way. 

The problems faced by process industries to turnover 
production control from supply driven process 
operation to market driven process operation may be 
summarized by the following problem statement: 

Given an industrial scale production plant that forms 

one link in a supply chain, provide the model based 
technologies for this plant that: 
- Enable flexible, dynamic operation of the plant in 

such a way that imposed operating constraints 

related to safety, ecology, plant lifetime and 

plant economics are always satisfied 
- Support continuous improvement of the plant and 

its operations to drive the plant towards 

conditions that comply with supply chain 
optimum operation within a pre-defined, feasible 

operating envelope for the plant 

- Operate the plant in accordance with process 
conditions that push for maximization of capital 

productivity of the company the plant belongs to. 

- Exploit freedom in plant operation to maximize 
capital productivity of the plant over plant 

lifetime

Assuming that best performance is achieved, if plants 
are operated in an anticipative way by exploiting 
detailed knowledge of dynamic behaviour of the 
plants, this problem definition clearly links to the 
following set of sub-problems related to modelling 
and model reduction (cf. fig. 2.1): 

- Enable fast and accurate modelling of application 
relevant dynamic process behaviour using 
detailed knowledge of processing equipment, 
materials and chemistry (Marquardt, 1995; 
Pantelides, 2003): apply Reference Models to 
make cost effective and market responsive, 
innovative operation feasible 

- Extract application relevant information for 
various model based applications (e.g. model 
based optimisers, model based control systems, 
model based soft sensors, model based 
monitoring systems, model based research and 
development of processes and equipment, …) in 
fast and robustly computing approximate models 
in a highly automated way: enable development 
of Reduced Models that robustly and accurately 
reflect relevant system characteristics. 

IFAC - 145 - ADCHEM 2006



- Realize continuous improvement of knowledge of 
processing equipment, materials and chemistry 
stored in Libraries. These libraries have to 
contain model building components that represent 
the state-of-the-art of the knowledge that should 
be applied throughout the company for R&D, 
Design, Process & Systems Engineering, 
Monitoring, Maintenance and Operations. 

- Create model adaptation mechanisms that enable 
closed loop adjustment of specific approximate 
model parts to overcome remaining inaccuracies 
and imperfections of the applied reduced 
complexity, approximate models. 
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Fig. 2.1 The Reference Model concept 

The model based applications have to use all freedom 
available in plant operation for continuously driving 
the plant to the operating conditions that best comply 
with a selected balance of most of the time mutually 
conflicting objectives. 

3. STATE-OF-THE-ART IN MODELLING 
AND MODEL REDUCTION  

Model based applications require the models to 
satisfy very specific properties. The specific 
requirements imposed depend on the application. 
Most of the literature on modelling and model 
reduction is related to specific applications discussed. 
No structuring of modelling and model reduction 
techniques has been discussed in literature yet.  
Two types of modelling approaches are applied in the 
(petro-)chemical processing industry for the 
development of model based applications: 

Empirical modelling (black box modelling) 
First principles based modelling 

Empirical modelling techniques are the techniques 
that are applied extensively in industry for the 
development of model predictive control systems, 
inferential control systems and soft sensors. The 
process identification techniques applied for 
empirical  modelling have been given broad research 
attention the past two decades in a predominantly 
linear model context covering model structure (Ho et 
al., 1966; Willems, 1986, 1987; Ljung, 1987; Backx 

et al., 1992), parameter estimation (Åström et al., 
1971; Eykhoff, 1974; Richalet et al., 1978; Ljung, 
1987; Söderström et al., 1989; Heuberger, 1990; 
Verhaegen et al., 1992; Van Overschee et al., 1993; 
Zhu et al., 1993; Falkus, 1994; Van den Hof et al., 
1994; Van Overschee, 1995; De Vries et al., 1998), 
model reduction (Ho et al., 1966; Zeiger et al., 1974; 
Moore, 1981; Pernebo et al., 1982; Backx, 1987; 
Heuberger, 1990), closed loop identification (Forssell 
et al., 2000; Van Donkelaar et al., 2000; Zhu, 2003) 
and parametrization and estimation of model 
uncertainty (Ljung, 1987; Zhu, 1991; Falkus, 1994; 
Hakvoort, 1994; Van den Hof et al., 1994; De Vries, 
1994; Reinelt, et al. 2002). Process identification 
techniques focus on accurate modelling of process 
dynamics, which are relevant for process control. The 
techniques applied –model parameter estimation on 
the basis of input-output process data generated by 
persistent excitation of process inputs during 
sufficiently long time- result in models that have both 
good observability and good controllability. The 
models obtained reflect the approximated linear 
dynamic behaviour of the processes observed during 
the data generation. The models are valid for the 
operating window covered during testing, but in 
general cannot be applied reliably for operating 
conditions, which have not been covered during 
testing. 
First principles based modelling techniques apply 
basic physical/chemical/biological laws and 
mechanisms –mass balances, energy balances, 
momentum balances extended with constitutive 
equations- to construct models. As the models are 
based on basic laws, they have wide range validity in 
general. A main problem in creating models that 
accurately reflect actual process behaviour is 
stemming from the fact that no direct process 
information is used to select the mechanisms 
included in the models. Especially accurate 
modelling of process chemistry appears difficult due 
to inaccurate knowledge of main reaction complexes 
and reaction kinetics. Physics related process 
behaviour of applied equipment can be modelled 
accurately in general by application of the 
conservation laws. Accurate modelling of physical 
properties of materials mostly results in complex 
models with much redundancy. Model inaccuracies 
always remain due to inaccurately known physical 
properties, reaction complexes and reaction kinetics. 
Models resulting from first principles modelling 
therefore always will require adaptation to align them 
with actually observed process behaviour (Briesen et 
al., 2000).  This implies that adjustments of the 
models based upon actual process measurements are 
a necessity to assure that the applied models reflect 
actual process behaviour.  The actual model accuracy 
and model content requirements are a function of the 
specific application of the models: Model based 
research and development, model based (dynamic) 
optimization, model predictive control, inferential 
control, model based soft sensing, model based 
process monitoring, process performance analysis …. 
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The requirements involve the range of dynamics 
covered (time scale), the operating range covered, 
specific process mechanisms covered and model 
components applied for model adaptation. 
State-of-the-art model reduction techniques in 
general focus on two main requirements imposed on 
the reduced model: 

Extraction of model behaviour relevant for the 
application (relevant range of dynamics, applied 
operating window) 
Reduction of model complexity to enable faster 
simulations (relevant process mechanisms, 
restriction to the actual operating window, 
approximate modelling) 

In general closed loop applications impose 
restrictions on the range of dynamics covered by the 
reduced model, the operating window covered and 
the condition number of the reduced model. Due to 
limitations in the range of dynamics, accuracy and 
reproducibility of actuators and sensors only two 
decades of dynamics can be handled in most 
industrial model predictive control applications. As 
model predictive control systems predominantly are 
focussing on disturbance rejection (time varying) 
linear models can be applied for actual control in 
general. This also applies for model based control 
systems for transition control and batch control. In 
addition the models applied in model predictive 
control and closed loop optimization applications 
may not contain too small gain directions. If a model 
would contain very small gain components, the 
controller or optimizer would directly use these 
directions for achieving its objectives by generating 
large input amplitudes in these small gain directions. 
Even small model inaccuracies in these directions 
result in very poor controller or optimizer 
performance due to the large input amplitudes 
applied in not exactly right directions. 
Similar requirements apply for soft sensing, 
inferential control and observer applications to 
achieve robust performance (Marquardt, 2001; 
Antoulas, 2005). 

4. INITIAL STRUCTURING OF THE 
MODEL REDUCTION TECHNIQUES  

In order to support minimum effort design and 
maintenance of model based applications in chemical 
processing, the reference model concept may be 
applied. This concept assumes that a reference model 
is developed and maintained that reflects all process 
knowledge available from R&D, process and systems 
engineering, process operations, process control and 
optimization. The reference model reflects all 
relevant process knowledge available at any time first 
principles based, if necessary extended with 
empirical model components. The reference model 
only approximates actual process behaviour. 
Therefore it always will be inaccurate to some extend 
and on-line adaptation of the derived model on the 

basis of measured process behaviour will be 
necessary.  
The reference model will become too complex on the 
other hand for most applications as it will be based 
on rather generic library components that reflect 
knowledge obtained from a wide range of research, 
development, design, monitoring, maintenance and 
operation activities. Model approximation and model 
reduction techniques are required to extract the 
relevant behaviour for specific applications in sub-
models. To derive approximate models that match 
the needs, specific model reduction and model 
approximation procedures need to be developed for 
this purpose. Such model reduction procedures do 
not exist yet. The EC funded 6th Framework Program 
Marie-Curie Training Network project PROMATCH 
focuses on the development of these techniques. To 
enable appropriate model reduction aiming at 
approximate initial process models that reflect all 
application relevant process dynamics with minimum 
complexity, a procedure will be elaborated on based 
on a selection of the following categorized 
techniques:

Selection of main process mechanisms in a well 
balanced way by application of physical/chemical 
model reduction (Tatrai, et al. 1994; Androulakis, 
2000; Vora et al., 2001; Petzold et al., 1999; 
Briesen et al., 2000; Maas et al., 1992; Ganguly et 
al., 1993). 
Selection of relevant operating windows and 
relevant dynamics by using projection methods 
(Inertial methods, Galerkin projection methods, 
Proper Orthogonal Decomposition methods) and 
Krylov subspace methods (Armaou et al., 2001; 
Rathinam et al., 2003; Adrover, et al. 2002; 
Kunisch et al., 2002; Shvartsman, et al. 2000; 
Novo, et al. 2001; Garcia-Archilla, et al. 1999; Bai, 
2002; Jaimoukha, 1997; Heres, 2005) 
Reduction of the model complexity by non-linear 
model reduction (Löffler et al., 1991; Lohmann, 
1995; Lall, et al. 2002; Mossayebi, et al. 1992; 
Desrochers et al., 1980) 
Selection of relevant process dynamics by 
application of numerical reduction methods 
(Baldea et al., 2006; Lee, et al. 2000; Carpanzano, 
2000; Kumar, et al. 1998; Sun et al., 2005; 
Hedengren et al., 2005) 

In addition to the direct use of the techniques 
summarized above, it seems important to evaluate 
these techniques additionally under closed-loop 
conditions imposed by real-time feedback control 
and feedback optimization algorithms.  

5. EXAMPLE 

MPC control based upon detailed CFD models of a 
glass forehearth is used to demonstrate the rigorous 
model based approach. This example has been 
worked on as part of a research project funded by the 
Dutch government (REGLA project funded by the 
E.E.T. program).  
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The objective of the controller is to stabilize the 
temperature of the glass that is delivered to the 
forming machines in order to improve the so-called 
workability of the glass. The workability of glass, or 
the ease with which the glass can be used for forming 
the final product, depends largely on the viscosity 
and therefore on the temperature and temperature 
distribution of the glass melt. 
A new approach to set-up control models: 

The approach starts with setting up a separate CFD 
model for the feeder under consideration. This 
model is validated, as the performance of the 
controller will depend largely on the quality of this 
underlying model.  
Subsequently, dynamic tests are performed upon 
the CFD model. The simulation tests couple the 
response of temperatures and flows in the feeder to 
changes in the input. Proper Orthogonal 
Decomposition (POD) is applied for model 
reduction.  
The resulting approximate model is used to achieve 
constant temperatures and setpoints at the exit of 
the feeder even for the case of disturbances in the 
melt entering the feeder or disturbances in the 
feeder itself. 

The resulting control model, which is derived from 
these CFD simulation tests, can be used for a large 
set of working points (e.g. a large range of loads) 
instead of for one single working point, as the 
response of the feeder to large variations in 
disturbances and process settings is determined. 
Consequently, the control model does not have to be 
rebuilt when a different working point for the 
feeder/furnace is selected due to e.g. the production 
of a different product (as long as the type of glass 
does not change). It is a fast way of setting up a 
complete control model without any risk for 
production. 

The resulting control scheme for the industrial feeder 
is shown in figure 5.1. The temperatures in the feeder 
are controlled via the set-points of three PID 
controllers that adjust the fuel supply to the three 
zones in the feeder. These PID set-points are the 
result of the MPC, which reads the values of the 9-
grid thermocouple at the feeder exit. Based on the 
fast reduced model describing the dynamic behavior 
of the feeder, the MPC determines the optimal values 
of the PID set-points such that the desired 
temperature (homogeneity) at the feeder exit is 
attained. Next to the control objectives (desired 
temperature and temperature homogeneity at the 
feeder exit), also several constraints are imposed to 
the MPC: the glass melt temperatures in the feeder 
may not exceed and drop below certain values; also 
the rate of fuel adaptation is constrained to avoid 
instabilities in the feeder. These constraints limit the 
flexibility of the feeder operation and hamper the 
identification of the optimal feeder settings (optimal 
PID set-points to ensure stable production at the 
desired glass melt temperature (homogeneity)) when 
CFD models are not consulted.  
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Figure 5.1: Control scheme for the industrial feeder. 

Although the feeder entrance temperature 
(homogeneity) is measured continuously, in the field 
test of the MPC this information has not been taken 
into account. Incorporation of the entrance 
temperatures in the MPC (indicated by the dotted line 
in figure 5.1) would allow the MPC to anticipate in 
the feeder (by adjusting the PID set-points) on 
temperature disturbances from the refiner.  
The application of the described MPC feeder control 
has been extensively tested on various production 
campaigns for a production feeder in emerald green 
container glass manufacturing. Figure 5.2 shows the 
impact of the controller on the average 9-point grid 
temperature, which is the main objective for the 
controller. In manual control mode, deviations in 
temperature in the 9-grid exceed +/  2.5 degrees C, in 
some instances even more. It is clearly seen that the 
feeder temperatures become very stable (+/  0.5 
degrees C) once the controller is switched on. It 
should be noted, that the smallest change in 
temperature that is detected by the thermocouples is 
0.2 degrees C, which makes the capabilities of the 
controller even clearer. Besides the increased 
stability, changes in set points are realized within a 
short period of time. Even automated transitions 
between largely different operating points (95 
ton/day – 135 ton/day; different glass gob 
temperatures) have been performed successfully. 
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6. CONCLUDING REMARKS 

Changing market conditions enforce chemical 
processing industries to better utilize process 
capabilities. Process operation needs to be closer tied 
with market demand to improve capital productivity. 
Model based techniques require dedicated models 
that reflect application relevant dynamics with 
sufficient accuracy for the relevant operating range. 
New concepts have been discussed that are based on 
the development of a reference model and subsequent 
derivation of approximate, reduced process models. 
The approximate models are derived from the 
reference model by using an adequate model 
reduction/ model approximation method. This 
requires a highly automated, minimum engineering 
effort model reduction technology.  
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