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Abstract: This article reviews advances in detection and diagnosis of plant-wide control 

system disturbances in chemical processes and discusses new directions that look 

promising for the future. Causes of plant-wide disturbances include non-linear limit 

cycles in control loops, controller interactions and tuning problems. The diagnosis of 

non-linearity, especially when due to valve stiction, has been an active area. Detection of 

controller interactions and disturbances due to plant structure remain open issues, 

however, and will need new approaches. For the future, the linkage of data-driven 

analysis with a qualitative model of the process is an exciting prospect that now looks 

within reach. Finally, the paper offers some comments about emerging applications. 
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1. INTRODUCTION 

Single-input-single-output control loop performance 

assessment (CLPA) and benchmarking is well 

established in the process industries [1,2]. The SISO 

approach has a shortcoming, however, because 

control loops are not isolated from one another. 

Specifically, the reason for poor performance in one 

control loop might be that it is being upset by a 

disturbance originating elsewhere.  

The basic idea of process control is to divert process 

variability away from key process variables into 

places that can accommodate the variability such as 

buffer tanks and plant utilities [3]. Unfortunately, 

process variability is often not accommodated and it 

may just move elsewhere. The reason for this is that 

modern industrial processes have reduced inventory 

and use recycle streams and heat integration. The 

interactions are strong in such processes because the 

amount of buffer capacity is small and the 

opportunities to exchange heat energy with plant 

utilities are restricted.  

A plant-wide approach means that the distribution of 

a disturbance is mapped out and the location and 

nature of the cause of the disturbance is determined 

with a very high probability of being right first time. 

The alternative is a time consuming procedure of 

testing each control loop in turn until the root cause 

is found. Some key requirements (e.g. see[4]) are: 

Detection of the presence of one or more periodic 

oscillations; 

Detection of non-periodic disturbances and plant 

upsets; 

Determination of the locations of the various 

oscillations/disturbances in the plant and their 

most likely root causes.  

A wish-list from [2] included: 

Automated, non-invasive stick-slip detection in 

control valves; 

Facility-wide approaches including behaviour 

clustering; 

Automated model-free causal analysis; 

Incorporation of process knowledge such as the 

role of each controller. 

The paper gives an overview of our own and others’ 

work in detection and diagnosis of plant-wide control 

system disturbances. Detection of plant-wide 

disturbances is covered in Section 2 and the isolation 
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and diagnosis of the root causes in Section 3. Both 

attempt a logical and structured classification and a 

comparative review of methods as well as 

highlighting open issues and unsolved problems. 

They are illustrated with a case study from a refinery. 

Section 4 discusses tests for sticking valves while 

Section 5 describes a new research direction 

involving the linkage of process information with 

data driven analysis using computer aided design 

data. Finally, Section 6 outlines some potential new 

areas of application. 

2. PLANT-WIDE DIAGNOSIS 

2.1 A classification of disturbances 

Timescales: The first distinction in a classification of 

plant-wide disturbances concerns the timescale, 

which may be (a) slowly-developing, e.g. catalyst 

degradation or fouling of a heat exchanger, (b) 

persistent and dynamic, and (c) abrupt, e.g. a 

compressor trip. The focus of this paper is on (b), 

dynamic disturbances that persist over a time horizon 

of hours to days. The approach is typically one of 

process auditing in which a historical data set is 

analysed off-line. The off-line approach gives 

opportunities for advanced signal processing methods 

such as integral transforms and non-causal filtering. 

Oscillating and non-oscillating disturbances. Figure 

1 shows a family tree of methods for the detection of 

plant-wide disturbances and cites the references. The 

vertical placements in the tree are of no significance, 

they have been adjusted in order to make the text fit. 

The main sub-division is between oscillating and 

non-oscillating behaviours. An oscillation is clear in 

both the time domain and as a peak in the frequency 

domain suggesting that either might be exploited for 

detection. The time trends of a non-oscillating 

disturbance often look somehow similar but in a way 

that is hard to characterize because the localised 

behaviour is not strongly coordinated. The frequency 

domain, on the other hand, shows the similarity well 

and therefore the spectra are exploited for detection 

of non-oscillating disturbances. Some dynamic 

disturbances are not stationery. For instance, an 

oscillation may come and go or may change in 

magnitude. The localisation in time means wavelet 

methods should be used for such cases.  

2.2 Detection of oscillating disturbances 

Methods for detection of oscillation fall into three 

main classes namely those which use the time 

domain, those using autocovariance function (ACF), 

and spectral peak detection. Filtering or some other 

way of dealing with noise is usually needed in the 

time domain applications. A benefit of using the ACF 

is that the ACF of random noise appears at zero lag 

leaving a clean signal for analysis at other lags. All 

the methods [5-10] should be able to detect the 

oscillations whose time domain, ACF and spectra are 

shown in Figure 3. 

Most of the methods are off-line and exploit the off-

line advantages, such as the use of the whole data set 

to determine a spectrum or autocovariance function. 

The oscillation monitor of Hägglund [5] is an on-line 

method and was implemented industrially in the 

ECA400 PID controller from Alfa Laval Automation 

which gave an alarm when as oscillation is detected.  

The cited methods in [5-8] and [10] achieve the 

detection of an oscillation one measurement at a 

time, but more is needed for plant-wide detection 

than the detection of oscillations in individual control 

loops. It requires the recognition that an oscillation in 

one measurement is the same as the oscillation in 

another measurement, even though the shape of the 

waveform may differ and when interferences such as 

other oscillations are present. A characterization and 

grouping step is needed as well as oscillation 

detection. The method in [9] automated the detection 

of clusters of similar oscillations. An agglomerative 

classification algorithm from [16] detects the tags 

within each cluster and issues a report, an example of 

which is given in Table 1.  

2.3 Detection of non-oscillating disturbances 

Persistent non-oscillatory disturbances are generally 

characterized by their spectra which may have broad-

band features or multiple spectral peaks. The plant-

wide detection problem requires (a) a suitable 

distance measure by which to detect similarity and 

(b) determination and visualization of clusters of 

measurements with similar spectra. 

In spectral principal component analysis (PCA) [11] 

the rows of the data matrix X  are the power spectra 

( )P f  of the signals and a PCA decomposition 

reconstructs the X  matrix as a sum over p

PLANT-WIDE DISTURBANCE DETECTION 

oscillating non-oscillating 

time-domain methods ACF methods spectral peak 
detection
(textbook) zero crossings

Thornhill & Hagglund 
[8], 1997 

Forsman& Stattin, [6], 
1998

poles of ARMA model

Salsbury & Singhal [7], 2005. 

zero crossings

Thornhill et. al

[9], 2003 

damping

Miao & Seborg, 
[10], 1999 

spectral methods 

correlation

Tangirala et.

al., [14] 2005 

PCA, ICA & NFM

Thornhill et. al, [11], 
2003

Xia & Howell, [12], 
2004

Tangirala et. al., [13] 

non-stationary

IAE deviations

Hagglund [5], 
1995

Forsman & 
Stattin, [6], 1998 

wavelet

Matsuo et. al.,
[15], 2003 

Figure 1. Family tree of methods for 

plant-wide disturbance detection.
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orthonormal basis functions 1w  to pw   which are 

spectrum-like functions each having N  frequency 

channels arranged as a row vector: 

1,1 1,2 1,
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,1 ,2 ,

... ... ... ...

p

p

m m m p

t t t

t t t

X w w w E

The i’th spectrum in X  maps to a spot having the co-

ordinates ,1it  to ,i pt  in a p-dimensional space. 

Similar spectra have similar t-coordinates and form 

clusters which can be detected using the Euclidian 

distance or the angles between lines connecting each 

spot to the origin. Methods for display include 

hierarchical tree or a colour map [13]. Independent 

Component Analysis (ICA) is a decomposition of a 

data matrix that minimises statistical dependence 

between the basis vectors. It gives basis functions 

with a good one-to-one relationship with the physical 

sources of signals, as shown by Xia and Howell [12] 

who gave the first application of ICA to process 

spectra. Non-negative matrix factorization (NMF) 

was introduced in the area of image recognition [17]. 

The authors described it as follows:  “The basis 

images for PCA are eigenfaces … which resemble 

distorted versions of whole faces. The NMF basis … 

are localized features that correspond with … the 

parts of faces.” The first report of the use of NMF for 

plant-wide disturbance analysis is [13].  

2.4 Case study example1

The upper panel in Figure 3 plots mean centred and 

normalized data from the refinery separation unit of 

Figure 2 showing a large amplitude oscillation in 

steam flow, analyser and temperature controller 

errors (err) and outputs (op) Measurements from 

upstream and downstream pressure controllers PC1 

and PC2 are also included. The lower panel shows 

the power spectra. The sampling interval was 20s. 

The steam sensor in FC1 was faulty. Condensate 

collected on the upstream side of the orifice plate 

until it reached a critical level, and the accumulated 

liquid would then periodically clear itself by 

siphoning through the orifice causing the plant-wide 

oscillation that can be seen in the data. 

analyser

off gas

air 

temperature

steam flow

Figure 2.  Process schematic. 

                                                          
1

The methods illustrated in the case study are being 

productized in a joint ABB/University project [18].

Table 1 gives the results of plant-wide oscillation 

analysis using [9]. Two plant-wide oscillations are 

reported because the most regularly oscillating tags 

in each group (those with the smallest standard 

deviation) have oscillation periods that are different 

by more that the standard deviation of either (Tag 4 

has 18.9 1.5  and Tag 7 has 21.1 1.1).
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Figure 3.  Data set. Upper panel: time trends. Middle 

panel: ACF. Lower panel: power spectra. 

Table 1. Oscillation analysis for the industrial 

case study.

tag analysis 

          tag no      period          tag no      period      .

             1          20.4 ± 4.3             6          20.4 ± 4.3 

             2          20.9 ± 2.5             7          21.1 ± 1.1 

             3          19.1 ± 1.8             8          18.7 ± 5.5 

             4          18.9 ± 1.5             9          18.9 ± 3.9 

             5          20.9 ± 1.1            10         20.7 ± 1.4

cluster analysis 

  period tags                 .

  18.9 4  3  9  8 

  20.7 7  5  10  2  6  1

The results of spectral principal component analysis 

are shown in the form of a hierarchical tree in Figure 

4 in which the spectrum of each tag is represented as 
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a square on the horizontal axis. Spectra form a cluster 

if they are connected to each other by short vertical 

lines and are well separated from all other spectra. 

The tree shows Tags 3, 4, 8 and 9 have similar 

spectra (PC1 and PC2), as do 1, 2, 5, 6, 9, and 10 

(FC1, TC1 and AC1). The wide separation of the 

spectral PCA clusters shows that the groups are 

distinctly different thus confirming the finding from 

oscillation analysis. Tags 1 and 6 are the controller 

error and controller output of AC1. AC1 at the top of 

the column is physically well separated from FC1 

and TC1 (Tags 2, 5, 7 and 10), however, it shares 

similar dynamic behaviour. 
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Figure 4 Spectral classification tree.  

3. ROOT CAUSE DIAGNOSIS 

Figure 5 is a family tree of methods for the diagnosis 

of a plant-wide disturbance. The main distinction is 

between non-linear and linear sources. Examples of 

non-linear sources include: 

Control valves with excessive static friction; 

On-off and split-range control;  

Sensors faults; 

Process non-linearities leading to limit cycles; 

Hydrodynamic instability such as slugging flows. 

The diagnosis problem decomposes into two parts. 

Firstly the root cause of each plant-wide disturbance 

should be distinguished from the secondary 

propagated disturbances which will be solved 

without any further work when the root cause is 

addressed. The second stage is testing of the 

candidate root cause loop to confirm the diagnosis. 

3.1 Finding a non-linear root cause of a plant-wide 

disturbance  

Examples of plant-wide disturbances caused by non-

linearity were discussed in [21]. They included a 

faulty steam flow sensor and a hydrodynamic 

instability caused by foaming in an absorber column. 

Other examples include the stop-start nature of flow 

from a funnel feeding molten steel into a rolling mill 

[37] and variations in consistency of pulp in a mixing 

process [24]. The point of these examples is to show 

that disturbances due to non-linearity are not just 

confined to control valve problems.  

Non-linear time series analysis: A non-linear time 

series means a time series that was generated as the 

output of a non-linear system, and a distinctive 

characteristic is the presence of phase coupling 

between different frequency bands. Non-linear time 

series analysis uses concepts that are quite different 

from linear time series methods and are covered in 

the textbook of Kantz and Schreiber [38]. For 

example, surrogate data are times series having the 

same power spectrum as the time series under test but 

with the phase coupling removed by randomization 

of phases. A key property of the test time series is 

compared to that of its surrogates and nonlinearity is 

diagnosed if the property is significantly different in 

the test time series. Another method of nonlinearity 

detection uses higher order spectra because these are 

sensitive to certain types of phase coupling. The 

bispectrum and the related bicoherence have been 

used to detect the presence of nonlinearity in process 

data [19]. Root cause diagnosis based on non-

linearity has been reported [20,21,39] on the 

assumption that the measurement with the highest 

non-linearity is closest to the root cause. 

Limit cycles and harmonics: Sustained limit cycles 

are common in non-linear systems. The waveform in 

a limit cycle is periodic but non-sinusoidal and 

therefore has harmonics which can be used to detect 

non-linearity. It is not always true, however, that the 

time trend with the largest harmonic content is the 

ROOT CAUSE DIAGNOSIS

non-linear causes linear causes 

non-linear time series 
analysis 

valve diagnosis methods 

harmonics

Owen et al, [23], 
1996

Thornhill&Hagglund 
[8], 1997 

Ruel & Gerry, [24], 
1998

tuning diagnosis 

OLP index

Xia & Howell 
[34] 2003 

Zang & Howell 
[35], 2003 

SISO methods

Vendor tools

controller gain change

Thornhill et. al, [20], 
2003

Rossi and Scali [32], 
2005

Choudhury et al, [33], 
2005

bicoherence

Choudhury et. al., 
[19], 2004

Surrogate testing

Thornhill et. al, [20], 
2003

Thornhill, [21], 2005 

Lyapunov exponent

Zang & Howell, [22], 
2004

limit cycle methods 

no intervention intervention 
cross correlation

Horch [25], 1999 

signal pdf

Horch [26], 2002 

waveform shape

Rengaswami et al., [27], 
2001

Stenman et al., [28],2003 

Kano et al., [29], 2004 

Yamashita, [30], 2004 

Singhal and Salsbury,  
[31], 2005. 

Rossi and Scali [32], 
2005

interaction/ 
structural 
diagnosis

OLP index

Xia & Howell, 
[34], 2003 

causality

Bauer et al, [36], 
2004

Figure 5. Family tree of methods for 

plant-wide root cause diagnosis. 
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root cause. The second and third harmonics of a non-

sinusoidal oscillatory disturbance are sometimes 

amplified in the secondary disturbance when a 

control loop compensates for higher harmonics in an 

external disturbance. In that case the harmonic 

content of the manipulated variable may be higher 

than that of either the disturbance or the controlled 

variable, even though non-linearity tests show the 

manipulated variable to be more linear [40]. 

Disturbance propagation: The reason why the non-

linearity is strongest nearest to the source of a 

disturbance is that the plant acts as a mechanical 

filter. As the limit cycle propagates to other variables 

such as levels, compositions and temperatures the 

waveforms generally become more sinusoidal and 

more linear because plant dynamics destroys the 

phase coupling and removes the harmonics. 

Empirically, non-linearity measures do very well in 

isolation of non-linear root causes. However, a full 

theoretical analysis is missing at present of why and 

how the various measures change as a disturbance 

propagates, and this remains open research question. 

Case study example: Non-linearity testing using [21] 

showed the group of tags in Table 1 with the 21 

samples per cycle oscillation period had non-linearity 

in the FC1 controller output, FC1 controller error and 

the TC1 controller output which points 

unambiguously to the FC1 slave control loop as the 

source of the oscillation. This is the correct result, the 

FC1 control loop was in a limit cycle because of its 

faulty steam flow sensor. There was no non-linearity 

present in tags 3, 4, 8 and 9 associated with PC1 and 

PC2 and a root cause other than non-linearity has to 

be sought for their oscillation. A controller 

interaction is suspected because set point changes in 

PC1 (not shown) initiated oscillatory transient 

responses in both pressure controllers.  

3.2 Finding a linear root cause of a plant-wide 

disturbance 

A poll of industrial process control engineers at a 

June 2005 IEE Seminar in the UK suggested the most 

common root causes, after non-linearity, are poor 

controller tuning, controller interaction and structural 

problems involving recycles. The detection of poorly 

tuned loops SISO loops is routine using commercial 

CLPA tools, but the question of whether an 

oscillation is generated by the controller or is 

external has not yet been solved satisfactorily. 

Promising approaches to date require some 

knowledge of the transfer function [34]. 

There has been little academic work to address the 

diagnosis of controller interaction and structural 

problems using only data from routine process 

operations. Some progress in being made, however, 

by cause and effect analysis of the process signals 

using a technique that is sensitive to directionality to 

find the origin of a disturbance [36,41,42]. The 

methods are sensitive to time delays, attenuation and 

the presence of noise and further disturbances that 

affect the propagating signals. The outcome of the 

analysis is a qualitative process model showing the 

causal relationships between variables.  

An example: The analysis can be a help to an 

experienced process control engineer who has good 

knowledge of the process. A joint study between BP 

and UCL used the method of transfer entropy with 

data from a process with a recycle, Figure 6. None of 

the time trends was non-linear and the causal map 

implicated the recycle because all the variables in the 

recycle were present in the order of flow. Knowing 

that the problem involves the recycle rather than 

originating with any individual control loop 

suggested the need for an advanced control solution. 
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Figure 6.  Cause and effect in a process with recycle 

(courtesy of A. Meaburn and M. Bauer). 

4. VALVE TESTS 

If a root cause has been isolated to a particular part of 

the plant then further tests are usually carried out 

before maintenance action is requested. Also, some 

alleviating actions may be taken to minimise the 

impact of the problem. Figure 5 cites references for 

useful methods which have been reviewed in detail 

elsewhere [43]. Some general observations are 

discussed here.  

Stiction in valves: A problem with control valves is 

the dead band and stick-slip behaviour (stiction) 

caused by excessive statistic friction [44]. Deadband

arises when a finite force is needed before the valve 

stem starts to move, stick-slip behaviour happens 

when the maximum static friction required to start 

the movement exceeds the dynamic friction once the 

movement starts [44, 45, 46;47]. 

Control valve diagnosis is straightforward if the 

controller output signal, op, and either the flow 

through the valve, mv, or the valve position are 

measured. A op-mv plot is a straight line at 45 

degrees for a healthy linear valve, and any deviations 

such as deadband can be easily diagnosed by visual 

inspection. Unfortunately the flow through the 

control valve is frequently not measured unless it is 

in a flow control loop. Similarly, the position, while 

it may be measured on a modern valve with a 

positioner, is not always available in the data 

historian. The challenge in analysis of valve 

problems, then, is to determine and quantify the type 
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of fault present using op and pv data only. The pv is 

the measurement or controlled variable of the control 

loop, for instance the level in the case of a level 

control loop. The major difficulty is that the process 

dynamics (integration in the case of a level loop) 

greatly interfere with the analysis. It is encouraging 

that several of the methods reviewed in depth in [43] 

are able to utilize op and pv data successfully.  

The impact of the controller on the limit cycle: It has 

been known for many years that control loops with 

sticking valves do not always have a limit cycle 

[48,49]. Table 2 lists the behaviour depending on the 

process, controller and the presence or not of 

deadband and stick-slip.  A short-term solution is to 

change the controller to P-only. The oscillation 

should disappear in a non-integrating process and 

while it may not disappear in an integrating process 

its amplitude will probably decrease.  

A further observation is that changing the controller 

gain changes the amplitude and period of the limit 

cycle oscillation. In fact, observing such a change is a 

good test for a faulty control valve [20]. The aim is to 

reduce the magnitude of the limit cycle in the short 

term until maintenance can be carried out. In 

practice, since the expected change in amplitude and 

period is complicated to work out, one tries a 50% 

reduction in gain first or a similar increase in gain if 

the trends seems to be going the wrong way. 

Table 2 Limit cycles in control loops.

process and controller deadband only stick-slip 

integrating, PI limit cycle limit cycle 

integrating, P-only  no limit cycle limit cycle 

non-integrating, PI  no limit cycle limit cycle 

non-integrating, P-only  no limit cycle no limit cycle 

5. USE OF PROCESS INFORMATION 

Qualitative process information is implicitly used in 

diagnosis when an engineer analyses the results from 

a data-driven analysis. An exciting possibility is to 

capture and make automated use of such information. 

Qualitative models include signed digraphs (SDG) 

[50, 51] and Multilevel Flow Modelling [52]. Chiang 

and Braatz [53] and also [54] showed enhanced 

diagnosis using signal based analysis if a qualitative 

model is available. 

We believe that qualitative models of processes will 

in future become almost as readily available as the 

historical data. The new technology that will generate 

such models is already in place in Computer Aided 

Engineering tools such as ComosPT (Innotec) and 

Intools (Intergraph). The object-oriented 

representation of process diagrams can be exported in 

a text based format that describes equipments and the 

connections between them. In Europe, the Standard is 

a (Pre)Norm DIN V 44366:2004-12 called Computer 

Aided Engineering Exchange (CAEX). ISO-15926-7 

is a similar standard. 

A prototype tool that links a CAEX description with 

a data-driven analysis has been demonstrated in a 

joint project between UCL and ABB. Its aim is to 

parse and draw conclusions from an electronic 

process schematic. When linked with data-driven 

signal analysis of process measurements the end 

result is a powerful diagnostic tool for isolating the 

root causes of disturbances. The features are: 

Capture of a process connectivity description 

using CAEX; 

Parsing and manipulation of the description; 

Linkage of plant description and results from 

data-driven analysis; 

Testing of root cause hypotheses through 

falsification;  

Logical tools to give root cause diagnosis and 

process insights. 

The CAEX file describes items of equipment in the 

plant such as tanks, pipes, valves and instruments and 

how they are linked together physically and/or 

through electronic control signals. The data file gives 

information about the plant disturbances, for instance 

the period of oscillation, its intensity and regularity, 

the measurement points where it was detected and 

any non-linearity detected in the time trends.  

A reasoning engine finds physical paths and control 

paths in the plant and connections between 

equipments, and determines root causes for plant-

wide disturbances. For example, detection of non-

linearity in the time series of the process 

measurements suggests a non-linear root cause such 

as a sticking valve. In the case of ambiguity then the 

reasoning engine highlights the one further upstream 

as the more likely root cause. It can also verify that 

there is a feasible propagation path between a 

candidate root cause and all the other locations in the 

plant where secondary disturbances have been 

detected. A further capability is to suggest the best 

proxy measurement point for an unmeasured flow.  

6. NEW APPLICATION AREAS 

Plant-wide detection and diagnosis is starting to have 

an impact in areas outside process systems such as 

power plants, supply chains and electricity 

transmission systems. The techniques map across 

without difficulty after adjustments for the 

timescales, for instance inter-area oscillation in 

electricity transmission typically have periods of 2 to 

5 seconds while in manufacturing supply chains the 

oscillation have periods of weeks to months. The 

main challenge in successful transfer of the methods 

is in knowing what faults are typical of the target 

systems, and the business needs and drivers. 

Power plant applications: The heart of the power 

generation process is a recycle. Power plants are 

well-equipped with sensors and instrumentation is 

generally well maintained. Typical disturbances 

therefore are linear root-causes rather than actuator 

and instrument problems. The density of 

instrumentation means that many measurements 
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share similar disturbance patterns which increases the 

complexity of the task to be solved. On the other 

hand, due to the dense instrumentation, it should be 

possible to locate possible root causes rather exactly. 

Supply chain: Business needs include detection and 

diagnosis of rogue seasonality and demand 

amplification. Rogue seasonality is oscillation in 

inventory, orders and deliveries to customers induced 

by internal business practices. Demand amplification 

(also known as bullwhip) occurs in multi-echelon 

chains when replenishment rules magnify small 

variations in end-customer demands into large 

amplitude variations for upstream suppliers. Business 

data are often presented as weekly averages, meaning 

that only 52 data points are generated per year for 

each measured variable.  

Electricity transmission: A requirement for daily 

operation is for on-line assessment of the damping 

status of a transmission network, and methods 

already exist to do this task.. The tools described in 

this paper are for off-line auditing, nevertheless they 

have promise for the analysis and diagnosis 

immediately after an operational problem. Data 

collection is challenging. One issue is the accurate 

time-stamping of data collected over a very wide 

area, another is the compilation of data from different 

commercial organizations. Generating companies 

own the measurements of generator speed and rotor 

angle, while the transmission company owns the 

voltage, current and bus angle measurements. 

7. SUMMARY 

Section 1 listed some industrial requirements and a 

wish-list for plant-wide controller performance 

assessment. The work reviewed in this paper has 

showed good progress towards these targets 

especially in detection of plant-wide disturbances and 

behaviour clustering. Non-linear root causes can now 

be located and distinguished from the secondary 

propagated disturbances using analysis of signals 

from routine operation, with a high chance of being 

right first time. Stiction detection in valves has had 

much attention with several methods starting to 

perform well even in the difficult situation where no 

manipulated variable is measured. The isolation of 

linear root causes such as controller interactions and 

recycle dynamics is an open area still needing 

attention, however. Finally, we believe the linkage of 

plant layout information with signal analysis is due to 

take a big step forward using new Standards for 

description of plant layouts.  
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