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Abstract: Two nonlinear models (polynomial NARMAX) are identified for a ssimulated ail
well operating by continuous gas-lift. The chosen input/output pair (injected gas mass flow
rate/pressure drop in the production tubing) used in the identification can be applied in a
control strategy decoupling injection from production choke control. The model derived with
data obtained by exciting the plant around three different operating points compares well with
another using a more aggressive excitation. Copyright(©2006 IFAC
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1. INTRODUCTION

In order to control a well operating by continuous
gas-lift, a mathematical model of the well is usually
needed. However, physical modelling of theinput and
output relations is complex, encompassing partial dif-
ferential equations, which are hard to manipulate. An
dternative is to use identification techniques, which
try to find mathematical relations between the input
and the output series of asystem, without prior knowl-
edge of itsinternal behavior.

The ultimate goal isto control the wellhead flow-rate.
In an effort to avoid using expensive multiphase flow-
meters, thisis obtained indirectly by controlling other
variables like the pressure in front of the perforations.
The idea is to control the pressure in the wellhead
and the pressure drop in the production tubing in such
a way as to have a desired pressure in front of the
perforated zone. The control of the pressure in the
wellhead is done with alocal controller and is part of
the setup used in the identification.

The system under analysis has a clearly nonlinear be-
havior, making any linear model valid only inside a
narrow operating region. The specific type of nonlin-
ear model chosen is the polynomial NARMAX (Non-
linear AutoRegressive Moving Average model with
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eXogenous inputs). An arsenal of simple and robust
agorithms is available to estimate the parameters of
thiskind of models.

This paper is organized as follows: first of dl, the
polynomial NARMAX model is presented; then the
system under analysis is described. Following the
identification procedure is described and finally con-
clusions are drawn.

2. NARMAX MODELS

A NARMAX model isrepresented like follows (L eontaritis

and Billings, 1985):

y(k) = F[y(k - 1)7 . 'ay(k - ny)7
u(k —1),...,u(k —ny),
v(k),v(k—1),...,v(k—n,)], (1

where F' is a nonlinear function, u(k) is the input
signa, y(k) is the output signal, v(k) is the noise in
the system, n,, n,, and n,, are the largest delaysin y,
u e v, respectively. However the determination of the
function F' isahard task.

A polynomial NARMAX model isan expansion of the
function F' in a polynomia function with degree of
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nonlinearity £. It is considered that the system does not
have pure time delay and that none of the parameters
to be estimated depends on v (k). The polynomial
approximation with degree of nonlinearity ¢ is given
by (Chen and Billings, 1989):

y(k) =00+ > 0,25, (k)

i1=1

£ b (B) - i) + ..

i1=112=11

i1=1 =i_1
()
where:

p=yk—1)  ae = u(k—1)

Tn, = y(k —ny) xn =ulk—ny)  (3)

being n = n, + n,, and 6 constant parameters.

The use of a polynomia NARMAX representation
may be justified by the following reasons: it is a
global representation, allowing the globa dynamics
of the system to be represented, and not only the
dynamics around a certain equilibrium point; it is
easy to quantify the complexity of the model, based
on the degree of non-linearity, number of terms and
maximum delay used; it may deal with moderated
levels of noise; analytical information about the model
is easy to acquire; it is possible to have NARMAX
models with a good fit to the data, as long there are
not abrupt variations in the signals (Leontaritis and
Billings, 1985); simple and robust algorithms may be
used to estimated the parameters (since the model is
linear in the parameters).

3. SYSTEM DESCRIPTION

The continuous gas-lift works by reducing the grav-
ity term of the production tubing pressure drop. This
is accomplished by injecting gas inside the produc-
tion tubing through a gas-lift valve. Gas, being much
lighter than the liquid in the production tubing, moves
up, gasifying the flowing fluid, reducing its average
density and, consequently, the pressure in front of the
perforated zone.

In most wells, severa gas-lift valves are distributed
along the production tubing in such away asto permit
gas to enter progressively from top to bottom valve
when injecting gas in the annular tubing-casing. The
deepest valve is the only one which remains in opera-
tion while the other valves are only used for the start-
up of the well. This work proposes a different set-up
in an effort to avoid the utilization of mechanical gas-
lift valves. In this approach an orifice valveisinstalled
downhole, substituting the classical gas-lift valvesand
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the control is done in the surface acting on the gas-
lift and production chokes. Figure 1 shows the main
components of the gas-lift oil well set-up considered
in this work. The start-up procedure for this set-up is
not studied but it could possibly be done with a high
pressure COmpressor.

There is an optimal operating region for the well,
economically speaking, shown in Figure 2, which is
related to the fluid fraction flow-rates produced by
the well, its current market prices, and the costs of
gas-compression and so on. This region, however,
has the inconvenient of presenting oscillations when
the system operates in open-loop, reducing the well
productivity and affects the oil, water, gas separation
efficiency.

Several works have appeared in the literature (Eikrem
et al., 2004), proposing different strategies to stabilize
the oscillations in wells operating via gas-lift using
similar set-up acting in the production choke.

In (Plucenio, 2002) a control strategy is proposed
using the mass flow-rate measured on the surface,
and acting in the gas injection mass flow-rate. Linear
ARX models are identified in three different points of
operation in order to develop arobust control.

In this paper, the well is treated as a SISO system,
with the mass flow rate of injected gas (Q;) as the
input and the pressure in the production tubing ()
as the output (see Fig. (3)). The input of the system
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Q; is actualy the setpoint of a controller actuating
in the injection valve opening. This controller has
the standard PI structure, with K, = 5 x 10~ and
K; = 0.1. The pressure in the production tubing may
be decomposed as P, = P,y — P, where P, ¢ isthe
pressure measured in the bottom of the well and P,
is the pressure measured in the head of the well. The
main advantage of considering P, asthe output of the
systemisthat P, isrelatively isolated of disturbances
in the pressure on the boundaries of the system (in the
separator). P,y and P, will react similarly to these
disturbances and compensate for these disturbances
when P, is calculated. The pressure in the head of
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Fig. 3. Measuring and actuation pointsin the oil well

thewell isalso controlled by alocal controller that, by
acting on the opening of the production choke, guar-
antees that P, remains constant (which is desirable).
The setpoint for the P, controller is 2.24 MPa, being
the structure astandard Pl with K, = —1 x 10~° and
K; =0.01.

This definition of input and output variables have the
advantage of allowing easy implementation, since in-
strumentation for measuring the pressure in the head
and bottom of the well is common in modern wells
(Veneruso et al., 2000). Besides that, measuring pres-
sure is trivial, on the contrary to the instrumentation
needed for measuring the flow rate of a multiphasic
fluid, which is very expensive.

The system possesses an obvious nonlinear behavior,
which can be observed in Figure 4, showing the output
corresponding to the application of a sequence of steps
in the input of the system. It may be observed that
not only the transitory response changes depending
of the region of operation, but also the steady state
response, and the signal of the static gain, which
changes from negative to positive when the injected
gas flow rate increases beyond a certain point. The
desired operating region lies in aregion with negative
gain.
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Fig. 4. Top: sequence of steps applied in the input of
the system (Q;). Bottom: Corresponding output
(Pyp) showing the nonlinearity of the system

Besides the nonlinear characteristic, the system pos-
sesses a hon-minimum phase response (see Fig.(4)),
which makes harder the synthesis of a controller. !

It must be noted that the model identified to quantify
the relation P, x @, is influenced by the choice
of the parameters of the local controllers (for gas
injection and for the pressure in the head of the well).
Any change in the structure or the parameters of this
controllers demand a new identification of the system.

The dataused for identification was generated with the
software OLGA® 2000, by Scandpower Co., version
4.10.1. The system used in the simulator is amodifica-
tion of amodel supplied by Scandpower, representing
a real well operating in deep waters in the Mexican
Gulf. The well has the following characteristics:

Reservoir static pressure = 33.094 MPa
Reservoir temperature = 82.2°C

Reservoir productivity index = 2 x 1076 kg/s/Pa
Pressure in the separator = 2.585 MPa
Temperature in the separator = 26.7°C

Gas pressure at compressor output= 9.652 MPa
Gas temperature at compressor output = 20°C

4. NONLINEAR IDENTIFICATION

First of al, the original model in (2) was changed, in-
cluding in the candidate terms those containing (k).
The presence of aterm containing « (k) indicates that
there may exist a direct transfer of information from
the input to the output of the system, in other words,
a part of the dynamic may be fast enough to reflect

1 The term “non-minimum phase” is generally used in the context
of linear systems meaning the presence of a zero outside the unit
circle (in the discrete case). This notion was extrapolated here,
where the term “non-minimum phase response” was used to state
that the response of the system presents a behavior similar to the
onethat could be found in alinear system with non-minimum phase
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“immediately” in the output. The model is therefore
given by:

y(k) =0+ > 0;,24, (k)

i1=1

+ Z Z Oiyis iy (k) * Ly (k) +...

i1=112=1%1

Y G (), (K) + k)

i1=1 =11

4
where:
x1 =y(k—1) Tp, 41 = u(k)
xo =y(k—2 Tp, o = u(k —1)

Tn, = y(k —ny) T = u(k —ny) (5)

being n = ny + n, + 1, n, the maximum delay in y
and n,, the maximum delay in .

As input signals for the system, two strategies where
used: the first one used an “aggressive” signal, with
more abrupt variations, which tries to excite a large
range of frequencies and reach different operating
regions of the system. The second signal is more
“well behaved”, using small variations around three
operating points, reducing the risk of damage to the
plant.

4.1 Aggressive signal

The “aggressive” signal was obtained by keeping the
input signal constant at Q); = 2.15 kg/s, until the ini-
tialization transitory of the system was over. After it, it
was added to the constant signal arandom signal with
zero mean and unitary variance, being each step kept
for 200 seconds. The use of this random signa tries
to excite a broad range of frequencies. Before adding
the random signal to the constant, it is multiplied by
a crescent value, such that the system starts operating
around the operating point and move away from it as
time passes. Figure 5 shows the input signal applied
and Figure 6 shows the corresponding output. The test
duration was 15000 seconds, with a sampling rate of
40 seconds.

Another signal with the same characteristics but with
another realization of random numbers was used as
input of the system to produce data to validate the
identified models. The desired model has a degree of
nonlinearity ¢/ = 2, ny, = n, = 5, resulting in 78
candidate terms. Besides these terms, 10 linear noise
moving average terms were added to avoid biasing of
the estimates.

Among the candidate terms, there are 6 term clusters
(0, Qy, Qy2, Oy, Q2 and Q). Theterm cluster X,
was eliminated from the candidate terms set, because
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Fig. 5. Aggressive input signal of the system used to
estimate the parameters of the nonlinear model
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Fig. 6. Output signal resulting from the aggressive
input

the desired polynomial NARMAX model should have

only one fixed point. The location of the fixed points

of the model (which has degree ¢ = 2) isthe solution

of the equation:;

(242)7+(Zy+ gt~ FJ+(Zo+ Sy t+2,20%) = 0.
(6)

Therefore, by eliminating the term cluster .2, there
will exist only one fixed point located in:
(B0 + Byt + Xy2u?)

(Zy + Zyuﬂ - 1) (7)

y=-

The Error Reduction Ratio (ERR) criterium (Chen and
Billings, 1989) was used to sort the sequence that
the terms should be included in the model, but the
actual number of terms in the fina model was de-
termined by using the Akaike Information Criterium
(AIC) (Akaike, 1974). The parameters of the esti-
mated model were then checked for statistical signif-
icance, by comparison with the standard deviation of
the estimate. A 99% level of significance was used,
meaning that each parameter should satisfy —30; <
0, < 30;, where o, is the standard deviation of the
estimate of the parameter 7 and 0; isthe estimate of the
parameter i. An iterative process was then performed,
were the terms that were not significant (but were still
included in the model by the ERR criterium) were
excluded from the set of candidate terms and a new
model was identified and checked for significance.

The final model identified has 6 deterministic terms,
shown in table 1, plus 10 linear moving average terms
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Table 1. NARMAX model terms (aggres-
siveinput) ordered by the ERR value.

Order Term 0; o
1 y(k—1) +2.01356  |+2.23668x 10~ 2
2 y(k —2) —1.01002  |+2.24378 x 1072
3 |u(k —4)y(k — 2)|—3.49843x 1072 |+2.93181x 103
4 |u(k —4)y(k —5)|+2.37093x 1072 [4+3.52717x 1073
5 u(k —4) +3.09134x 1072 | 4-2.84186x 103
6 u?(k) +8.50101x10™4 |47.68678 x 10~°
348 [ Vvaiidation :1‘2:!3 ] *
- Simulated model | 1
346+ “ F
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Fig. 7. Free simulation of the NARMAX model identi-
fied with the data from an aggressive input, com-
pared with validation data
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Fig. 8. Fixed points of the NARMAX model identified
for the aggressive input

of the noise signal, which had the sole purpose of
avoiding biasing of the estimates, being discarded
afterwards. To quantify the quality of a model, it was
used the fit index defined by (Ljung, 2004):

19—yl
e mean(y)ll) @

where g isthe vector with the output of the model and
y isthe vector with the real output of the system. The
equation (8) compares the quality of prediction of a
model with the mean of the dataas atrivial predictor.

fit = 100 % (1 —

By using the validation data to evaluate this model,
the output of the model had a fit = 87.78%, as
seen in Figure 7. The steady-state characteristic of the
model, compared to the steady-state characteristic of
the system may be seenin Figure 8. It may be seen that
the model represents well the system under analysisin
the defined operating region (from Q; = 1.5 kg/s to
Q; = 3 kg/s).
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Fig. 9. PRBS Signal Au(t) applied in the system

4.2 Well behaved signal

The model identified in the previous section was able
to reproduce adequately the dynamics of the system
under analysis. However, the input used to generate
the identification data is too “aggressive’, presenting
big changes and may be risky to use in the real plant.
In order to avoid this risks, a new NARMAX model
was identified, using data acquired from the use of
a “well-behaved” input (with smaller changes in the
signal).

The system was carefully brought to three operat-
ing points and when in steady-state, a PRBS signal
(Pseudo Random Binary Signal) was applied in the
input. Figure 9 depictsthe PRBS signal used (Awu(t)).
The actua signal applied in the input is u(t) =
Au(t) +wuo, where uq isthe operating point. The three
chosen operating points where ug = 1.5, ug = 2.15
and ug = 2.8 kg/s.

Obvioudly the data used for estimating the parameters
of the model isnot ideal in atheoretical point of view,
because the input is restricted to three small operating
regions, not passing through all the desired operating
region (from 1.5 kg/s to 3 kg/s). However, the use of
this data set has two advantages over the “aggressive”
signal used in the previous section:;

e itislessrisky to the plant, for having less abrupt
variations,

e production can till be carried on during the
execution of the tests, because there is only a
dlight disturbance over the steady-state inputs.

The candidate models searched have the same charac-
teristics of the ones searched in the previous section,
being the degree of nonlineearity ¢ = 2, n, = n, =5,
and 10 linear moving average terms used to avoid
biasing of the estimates. From the set of candidate
terms the term cluster 2, was eliminated too.

After repeating an iterative procedure which includes:
sorting the remaining candidate terms with the use of
the ERR criterium, defining the number of terms to
be included in the final model with the Akaike Infor-
mation Criterium, verifying the statistical significance
of the estimated parameters and validating statistically
the model by residual analysis, the model shown in
table 2 was found. The model has a fit = 91.2% to
the validation data, which isan excellent performance.
Figure 11 shows the steady-state characteristic of the
model identified compared with the actual steady-state
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Fig. 10. Free simulation of the NARMAX model
identified with the data from an well-behaved
input, compared with validation data
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Fig. 11. Fixed points of the NARMAX model identi-
fied for the well-behaved input

characteristic of the system. It is seenin thefigure that
the model is agood representation of the oil well.

Table 2. NARMAX model Terms (well-
behaved input) ordered by the ERR value.

Order Term 0; o
1 y(k—1) +2.84619  [+3.94354x 1072
2 y(k —2) —2.23221  [45.70014x 1072
3 y(k —4) +3.88183x 107! | +1.83896 x 1072
4 |u(k—2)y(k —1)[—7.26036x 1073 | +5.33763 x 10~*
5 u(k) +5.29649x 1073 | +1.78812x 10~ %
6 u(k —5) +2.78799x 1072 | +-6.50890 x 104
7 |u(k —3)y(k —1)|—2.67362x 1071 | +2.23946 x 1072
8 u(k —2) +1.25873x 1072 |4+2.18152x 103
9 |u(k —5)u(k — 3)|—1.22951 x 1073 | +2.48621 x 10~*
10 |u(k — 3)y(k — 2) [4+3.64800x 1071 | +3.17758 x 1072
11 |u(k — 3)y(k — 4) | —9.75874x 1072 | +9.86630 x 103
12 |u(k — 2)u(k — 2)[+1.73758 x 10~3 | +2.33335 x 10~*

5. CONCLUSIONS

In this paper, two models of an oil well operating by
continuous gas-lift were identified, relating the pres-
sure in the production tubing (output) with the mass
flow rate of injected gas (input). The presented strat-
egy has the advantage of allowing an easy implemen-
tation on existing oil wells, where the needed instru-
mentation iswidely available (Veneruso et al., 2000).

The two polynomial NARMAX models identified
showed to represent adequately the system, which

IFAC

-1118 -

would be impossible to do with linear models. The
absence of a stronger nonlinearity, in the considered
range of gas-lift injection flow rate, made it possible
to use awell behaved input signal, which is not ideal
in anonlinear identification viewpoint, but is preferred
for presenting less risk to the plant during the test
procedure.

The model identified with the well-behaved signal
showed better performance when near the boundaries
of the operating region, because two of the three
operating points chosen to apply the PRBS signal
are a the boundaries. The aggressive signal, in the
other hand, concentrates the input in the middle of the
operating region and so the model identified with has
a dightly worse performance near the boundaries of
the operating region.

As a next step in research, the models identified will
be used to design a controller to the simulated plant
in the OLGA simulator, as a previous step to the
implementation of this control strategy in a rea oil
well.
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