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Abstract: This paper presents a Nonlinear Model Predictive Control approach for 
nonlinear state-space models obtained with the modelling and identification technique 
recently proposed in literature as Linearization on the Equilibrium Manifold (LEM). The 
predictive controller that will be applied to the LEM uses the Local Linearization on the 
Trajectory algorithm (LLT) which simulates the nonlinear plant and calculates optimal 
control actions based on local linearizations around the simulated trajectory by online 
minimization of an objective function. The proposed combination of the LEM and LLT 
techniques is tested with a nonlinear SISO system.  Copyright © 2006 IFAC
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1. INTRODUCTION 
 
The importance of nonlinear approaches to control 
systems in industrial chemical processes has been 
rising significantly during the last few years and will 
continue to do so in the future. The high demands of 
today’s economy in terms of process yield and the 
obedience of environmental standards require an 
increased efficiency that cannot always be achieved 
with linear control concepts. At the same time, the 
availability of nonlinear dynamic models has been 
recognized in the literature as one of the main 
obstacles, if not the most important, for the 
application of nonlinear control strategies. High cost 
and complexity of nonlinear approaches often impose 
restrictions on practical usability. 

This situation calls for methods that take into account 
the well-developed linear control theory, extending it 
for usage with nonlinear processes. One possibility, 
which can be termed “grey-box” modelling, is the use 

of “local models”, understood as approximations of 
the original system in a limited sub-region of the 
operating domain in order to construct a nonlinear 
model. The underlying principle is that the system 
behavior is “simpler” locally than globally and as a 
result local models can be identified more easily. 
Examples of this methodology are the local linear 
models tree (Nelles, 1997) and the identification 
through the decomposition into operating regimes 
(Johansen and Murray-Smith, 1997). 

The Linearization on the Equilibrium Manifold 
(LEM) approach (Bolognese Fernandes and Engell, 
2005) proposes a way of constructing a nonlinear 
model by interpolating the equilibrium manifold and 
the linear behavior of the system between different 
operating points. It has been shown that various 
problems of local modelling techniques can be 
avoided by using this method, making it an appealing 
way of obtaining a nonlinear model with less than the 
effort necessary for a first-principles modelling. 
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))()(( uxuAx −=A suitable control strategy for this kind of system 
would also use linear models for determining control 
actions, as these are already available and in use for 
the construction of the global model. The Local 
Linearization on the Trajectory algorithm LLT 
(Duraiski, 2001) is a predictive control strategy for 
nonlinear models which uses local linearizations at 
the current point of the system state. In the following, 
a combination of the LLT with LEM models will be 
proposed and compared to the already well-tested 
combination of the LLT with a first-principles model. 

This paper is structured as follows: section 2 presents 
the basics of the LEM method in the general (MIMO) 
form, section 3 explains the LLT control strategy. 
Section 4 proposes a combination of the two methods, 
which is evaluated with numerical experiments in 
section 5 using a nonlinear SISO example system. 
Concluding remarks and proposals for further 
investigations can be found in Section 6. 

 
2. LINEARIZATION ON THE EQUILIBRIUM 

MANIFOLD (LEM) MODELS 

Consider a continuous MIMO nonlinear dynamic 
system of the form 
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where r: X × U→ ℜn
 is at least once continuously 

differentiable on X ⊆ ℜn
, U ⊆ ℜm

, and h: X → ℜp
 is 

at least once continuously differentiable. The output 
equation will be frequently omitted in the sequel for 
shortness. The equilibrium manifold of (1) is defined 
as the family of constant equilibrium points  
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Similarly, the family of linearizations of (1) at the set 
of equilibrium points determined by (2) is given in 
the usual way as 
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and similarly for the output equation. Under the 
condition that the rank of [∂r(xs,us)/∂x] is n for the set 
Ξ (Wang and Rugh, 1987, Bolognese Fernandes 
2005), the equilibrium manifold and consequently the 
family of linearizations of (1) will be specified by m
among the n + m variables (x,u). Therefore, if this 
matrix is full rank, the set of inputs fully parameterize 
both families of equilibrium points and linearizations. 

Calling the steady-state map Ω: ℜm → ℜn
, such that 

r(Ω(u),u) = 0 (that is, the function Ω gives the 
steady-state xs corresponding to a constant input us), 
the input-parameterized linearization the equilibrium 
manifold (LEM) of (1) is defined as the system 
(Bolognese Fernandes and Engell, 2005) 

                                          Ω                                   (4) 

A(u) represents the evaluation of the Jacobian matrix 
[∂r(x,u)/∂x] on (Ω(u),u). The focus on input 
parameterization is due to the fact that identification 
experiments to obtain A(u) and Ω(u) from process 
data are carried out by exciting the plant with a 
designed input signal. The output equation can be 
linearized in an analogous way, considering the 
stationary output mapping: : ℜ

m → ℜp
.

The model (4) has to be interpreted as a (state-affine) 
nonlinear system that possesses the same family of 
equilibrium points (2) and the same linearization 
family (4) as the nonlinear system (1). Following the 
discussion in Bolognese Fernandes (2005), the LEM 
system can be a good approximation of (1) in 
transient regimes away from the equilibrium manifold 
depending on the degree of nonlinearity, in that way 
substituting a first-principles model. Obviously, other 
representations that are equivalent on the equilibrium 
manifold can be constructed on the basis of any m
distinct parameters. Moreover, these representations 
can be easily interchanged, provided that the inverses 
of the corresponding elements in Ω(u) and    (u) exist. 
For further information about how to obtain the 
equilibrium manifold and the dynamic matrix A,
please refer to Bolognese Fernandes (2005). 

3.  LOCAL LINERIZATIONS ON THE 
TRAJECTORY (LLT) 

In the following section a control strategy for the 
model introduced above will be presented. It was 
developed by Duraiski (2001) and consists of a model 
predictive control algorithm which works in the 
following way: the control actions applied to the 
manipulated variables are obtained by optimizing an 
objective function of control costs using a nonlinear 
internal model to predict the future system outputs. 
The control actions, however, are determined in each 
iteration through the use of a set of linear models in 
the step response form, obtained through local 
linearizations around the trajectory of the system, 
previously obtained in the last iteration. This ensures 
that the optimization problem is quadratic as it is in 
the case of Linear Model Predictive Control, and thus 
easy to solve. 

3.1 Algorithm description 

The LLT algorithm (Duraiski, 2001) consists of the 
following iterative calculation steps:  
1) The first solution is based on a linearized model at 

the current operating conditions. Using this 
trajectory it is possible to simulate the nonlinear 
model which is used to calculate a sequence of 
linear models for the next iteration.   

2) With the sequence of linearized models on the 
trajectory a new control action trajectory is 
calculated.  
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3)  This sequence of control moves is applied to the 
simulation of the open-loop response of the 
internal model.  

4) Based on the new trajectory, it is possible to 
determine a new set of linearized models in the 
same way as it is done in the first step. Then, this 
set of models is used in the next iteration step.  

5) The steps 2, 3 and 4 are sequentially carried out 
until the algorithm converges, i.e., when the i-th  
control action trajectory (calculated in the current 
iteration) does not differ too much from the        
(i-1)-th, satisfying the maximum norm 
convergence criterion                                        .  In 
case the algorithm does not converge after a given 
time and number of iterations, e. g. when the 
setpoint is unattainable, the best of all calculated 
control actions in this time step will be applied. 

                                                 . 

3.2 Linearized Step Response Model 

In this part the linear step response model used for 
predicting the future system output will be developed. 
Primarily, the following discrete time state space 
equation is considered. 
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The matrices Ak-2, Bk-2, Ck-1 and D k-1 are obtained by 
discretization of the continuous linear state space 
system resulting from the Taylor linearization of 
equation (1). They are not to be confused with the 
traditional notation for the continuous state space 
matrices (i.e., A, B, C and D). The variables xB, uB,
yB represent the variables x, u, y at the point of 
linearization. Equations (5) and (6) can now be 
applied iteratively for the time steps from 0 up to the 
simulation horizon P, yielding an output equation for 
each discrete time step. With this, an equation for the 
output Y from the time instant 0 to P can be 
constructed. Written in a compact matrix form, the 
following equation is obtained: 
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Equation (7) will be used with some alterations within 
the calculation and optimization of the objective 
function. For details please refer to Duraiski (2001).

3.3 Objective function 

The optimization problem consists of the 
minimization of a quadratic objective function with 
penalty terms for setpoint deviations and control 
actions, in the most general form being 
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In the case of the LLT method, the input difference 
variable uk = uk – uk-1 is replaced by the deviation 
variable uk = uk – uk-1

B. Furthermore, a penalty term 
for soft constraints |s| (s  0 being a scalar slack 
variable that is only nonzero while the constraints are 
violated) and for the deviation of the manipulated 
variable from a given target zi are introduced. With 
these alterations, the objective function is 
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The parameters i, i, i and i are to be determined 
by common MPC parameter tuning methods. For the 
actual implementation, equation (9) can be rewritten 
in a matrix form. Further details will not be discussed 
here and can be found in Duraiski (2001). 

4.  COMBINING A LEM MODEL WITH AN 
LLT CONTROLLER

Now a combination of models obtained through the 
LEM technique with a nonlinear model predictive 
controller using the LLT method will be proposed. In 
general, two possibilities exist to achieve this goal: 
first, using the LEM as a nonlinear model for the LLT 
algorithm as it is, deriving the needed Jacobians A, B,
C, D through analytic or numerical differentiation of 
the LEM itself. A second possible approach is 
altering the LLT algorithm in a way that it can deal 
directly with the dynamic matrix A and the stationary 
manifold vector Ω(u) of the LEM. In this work only 
the first possibility will be investigated, as it 
demonstrates the feasibility of the approach with 
fairly low effort in terms of implementation. The 
control performance and computational effort of the 
LEM+LLT combination will be compared to an LLT 
controller with a nonlinear model.  

It will be assumed in the sequel that a nonlinear LEM 
model in the autonomous state space form as stated in 
equation (4) has been constructed by identifying the 
matrix A and the equilibrium manifold Ω(u) using 
appropriate techniques. Further details about model 
construction can be found in Bolognese Fernandes 
(2005). Equation (4) will now be incorporated into 
the LLT algorithm, using it as a description of the 
nonlinear process. As can be seen in equations (5) and 
(6), it is necessary to derive a general linearization of 
the process for later discretization and the calculation 
of control actions by the LLT. This is achieved by a 
straight-forward Taylor linearization of the LEM 
model around an arbitrary point (xB, uB) in state 
space. Note that this has to be a dynamic linearization 
as we cannot assume the system to be at an 
equilibrium state at all times. However, the resulting 
bias caused by the term r(xB, uB) = A(uB )(xB - Ω(uB)) 
will cancel out in the differential equation, as shown 
in Duraiski (2001), Appendix B. 

(9)
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Linearizing equation (4) around an arbitrary point 
(xB,uB) in state space yields: 
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The output equation from (1) can also be linearized in 
a straight-forward way, yielding matrices CB and DB

for the linear state space model. 
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Equations (11) and (13) will be discretized for each 
instant of time, yielding matrixes Ak, Bk and Ck. As 
we assume the output equation to be only dependent 
on x, Dk will always be 0. With this, equations (5) and 
(6), which serve the purpose of determining the 
control actions of the predictive controller, can be 
easily constructed. The trajectory simulation is 
performed with the original nonlinear model from 
equation (4). 

5.  CASE STUDY 

To prove the applicability of the proposed 
combination of the LEM and LLT methods, a 
nonlinear SISO system will be considered as an 
example. 

5.1 Methodology and control objectives 

The system under consideration will be tested and 
compared in four different forms:  

a) Nonlinear model. A nonlinear differential equation 
derived from first-principle modelling techniques. 
This model also represents the real plant that is to be 
controlled. This holds for all the five cases a)-d).  

b) Analytic LEM model. A nonlinear LEM model is 
constructed by analytic calculation of the dynamic 
matrix A and the equilibrium manifold Ω(u).  

c) Interpolated LEM model. A nonlinear LEM model 
is constructed by spline interpolation of the dynamic 
matrix A and the equilibrium manifold Ω(u) between 
different operating points. These operating points and 
their linear dynamics are determined analytically.  

d) Linearized model. One of the linear models from b) 
at one point of operation only, without LEM. This 
yields actually a purely linear MPC problem. 

For each of the mentioned models, numerical 
experiments with various LLT controllers in different 
operation domains are conducted. The controller 
parameters are determined using the RPN 
methodology developed by Trierweiler and Farina 
(2003), the control objective being a decrease of the 
closed-loop rise time to 1/6 of the open-loop rise 
time. For testing the closed-loop system, a series of 
random set point changes is applied to the controlled 
variable of the system. Furthermore, the total cost Jtotal

accumulated during the simulation time is compared, 
as well as the total necessary iterations. 

5.2 The example system:  isothermal CTSR reactor 
with Van de Vusse reaction scheme 

The Van de Vusse reaction scheme is a well-known 
benchmark problem for nonlinear control algorithms 
and has been studied extensively by various 
researchers. A detailed model for this system was 
presented in Engell and Klatt (1993). For shortness, 
only the differential equations will be shown here. 

2
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In these equations x1 is the concentration of 
component A, x2 is the concentration of component B
and x1,in is the feed concentration of A, assumed to 
remain constant. The parameter values are 
k1=15.0345 h-1, k2 = 15.0345 h-1, k3 = 2.324 l⋅mol-1⋅h-1

x1,in = 5.1 mol⋅l-1 (Engell and Klatt, 1993). In this 
example only the operating range of 3 < us < 35 h-1 is 
investigated.  

Fig. 1: Steady state CB (x2) concentration vs. dilution 
rate u for x1,in = 5.1 mol⋅l-1

A particularity of the Van de Vusse reaction is the 
division of the operating domain in two parts with 
different dynamic behaviours. Fig. 1 shows the steady
state CB solutions as a function of the dilution rate u
with the three typical operating regions (i.e., OR1, 
OR2, and OR3). For OR1 (i.e., us < 15 h-1) a         
non-minimum phase behaviour can be observed, 
while for OR3 (i.e., us > 15 h-1) the behaviour is 

(10)

(11)

(12)

(13)

5 10 15 20 25 30 35
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

C
b 

[m
ol

/l]

u [1/h]

OR1 

OR2 

OR3 

IFAC - 1018 - ADCHEM 2006



     

minimum-phase. Close to the peak the zero gets close 
to the origin, intensifying the non-minimum phase 
behaviour of the left side and making the controller 
design more difficult. At the peak, the zero is null as 
well as the static gain, which is positive for OR1 and 
negative for OR3.  

5.3 Numerical results

Details on obtaining the different LEM systems are 
not discussed here and can be found in Bolognese 
Fernandes (2005). First, OR1 and OR2 are 
investigated. In this region the proposed control goal 
could only be achieved by accepting excessive 
control action and inverse responses. Thus, the 
closed-loop rise time will only be reduced to about 
3/4 of the open-loop value. The following LLT 
parameters are used: 

Table 1: non-minimum-phase LLT parameters 

Prediction / Control horizon (P / M) 136 / 34 
Output / Input variable weight (Γ / Λ) 0.7 / 0.06 
Sampling time (Ts) 0.15 min 

The system is subjected to a series of setpoint 
changes in the region 0.7M < cB < 1.11M. 

Fig. 2: time response in OR1 and OR2 

In the first 20 minutes of the simulation the closed-
loop velocity is limited by the lower constraint of 
u = 3h-1. Up to this point, the behaviour of all the 
systems is very similar. The next setpoint is 
cB=1.09M which is the theoretical maximum of the 
concentration cB (OR2, see Fig. 1) and causes a rapid 
almost step-like control action. Note that the response 
of any input-parameterized LEM system to a step in 
the manipulated variable is comparable to the 
behaviour of the linear model at the equilibrium point 
corresponding to the new input (Bolognese Fernandes 
2005). All four systems approach the equilibrium 
state with a similar velocity. From the 75th minute, the 
system is subjected to a setpoint of cB = 1.11h-1 that is 
not attainable (see Fig. 1). With the two LEM model 
versions the controller stabilizes the system at the 
maximum value of cB = 1.09h-1. This is a clear 
advantage in comparison to the linear MPC shown in 
Fig. 2, or any other linear (e.g. PI) controller, which is 

not able to keep the system at the point of maximum 
yield and trespasses gradually into OR3. 

Now the region OR3 for 1M < cB < 1.09M is 
investigated. Minimum-phase behaviour causes a 
better overall performance. First, the controller shown 
above is tested with a series of setpoint changes of 
random magnitude to prove the usability of one set of 
control parameters for the whole operation domain. 
Fig. 3 shows these results for OR3, the linearized 
model being designed for OR1, while Fig. 4 shows 
the same setpoint changes applied to OR1. Table 2 
below summarizes the quantitative performance of 
the different models. 

Fig. 3: minimum-phase responses, 1M < cB < 1.09M.  

Fig. 3 shows clearly that the linear controller for OR1 
cannot operate in OR3. All the other models follow 
the perturbations in the same way. 

Fig. 4: non-minimum-phase responses, 1M < cB < 1.09M 

Table 2: minimum-phase and non-minimum-phase 
performance, 1M < cB < 1.09M 

 NL ANA  INT LIN 
Iterations, 
min.-phase 

1055 1055 1053 1030 

Jtotal, m.p. 131.82 131.73 131.99 3.33·104

Iterations,    
n.min.phase 

831 831 858 1047 

Jtotal, n.m.p. 183.37 183.69 177.48 7.01·106
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Finally, a controller designed especially for the 
minimum-phase region will be tested in order to see 
how the performance can be improved when the right 
tuning parameters are applied. Table 3 summarizes 
the new controller parameters. 

Table 3: minimum-phase LLT parameters 

Prediction / Control horizon (P / M) 3 / 1 
Output / Input variable weight (Γ / Λ) 0.7 / 0.02 
Sampling time (Ts) 0.15 min 

Fig. 5: minimum-phase responses, faster controller 

It is evident that this controller performs much better 
than the one designed for non-minimum-phase 
behaviour, which makes it the preferable option for 
operation near the maximum yield of cB=1.09M. 
Even the linear MPC controller shows almost exactly 
the same behaviour as the controller with the true 
nonlinear model. However, it has to be assured that 
the system does not trespass into the non-minimum-
phase region, since in this case it would cause 
excessive inverse responses. This can be achieved by 
defining a ‘target’ for the manipulated variable in the 
minimum-phase domain within the LLT algorithm. 

Table 4: minimum-phase performance, 
1M < cB < 1.09M

As expected, the LEM models perform well in all the 
shown cases with only slight deviations from the 
original nonlinear model. 

6.  CONCLUSIONS AND OUTLOOK 

In this paper the proposal for a combined use of the 
nonlinear modelling and identification technique 
LEM and the nonlinear predictive control algorithm 
LLT was made and tested with a SISO example. 
Analytical considerations and numerical results 
suggest a good applicability of this combination to 
lower order SISO systems, performing fairly well 
where purely linear methods fail completely. Losses 
in control performance are mainly due to the 

inevitable deviation of the identified and interpolated 
equilibrium manifold and the associated dynamics 
from the true nonlinear system’s dynamics. The 
necessary iterations for convergence of the algorithm, 
as well as the accumulated values of the objective 
function are in all cases in the same scale, they can 
vary slightly because of the described deviations. It is 
clear that large efforts have to be made to obtain good 
approximations for the equilibrium manifold and the 
associated dynamics. Taking this into account, it can 
be concluded that further investigation of the 
demonstrated combination appears promising. Future 
work will be done on the testing of the technique with 
MIMO models and models of higher order, the goal 
being the proof of applicability to real industrial 
processes. The second possibility of implementation 
mentioned in section 4, the alteration of the LLT 
algorithm to be directly suitable for the LEM 
structure, will also be explored. 
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