
ADCHEM 2006 

International Symposium on Advanced Control of Chemical Processes 

Gramado, Brazil – April 2-5, 2006

OPERABILITY OF MULTIVARIABLE NON-SQUARE SYSTEMS 

Fernando Lima and Christos Georgakis 

Department of Chemical and Biological Engineering & 

Systems Research Institute, Tufts University 

Abstract: Non-square process control systems, with fewer inputs than the controlled 

outputs, are quite common in chemical processes. In these systems, it is impossible to 

control all measured variables at specific set points and many of the outputs are 

controlled within an interval. The objective of this paper is to introduce a multivariable 

Operability methodology for such non-square systems to be used in the design of non-

square constrained controllers. In order to motivate the new concepts, we examine some 

simple non-square systems obtained from the control system of a Steam Methane 

Reformer process. Copyright © 2006 IFAC
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1. INTRODUCTION 

In this section, the problem definition is described 

and a brief introduction to prior work, concerning 

non-square systems and operability issues, is 

presented. 

1.1 Problem Definition 

In recent years, in the face of increasing complexity 

of chemical processes due to the integration of units, 

process optimization and strict environmental 

regulations the use of tools to evaluate the 

performance of a control structure has become very 

important. This has to be done in a more systematic 

manner than by trial and error closed-loop 

simulations and before the final controller step. 

Georgakis et al (2003) mentioned that it has been 

since the last decade that the integration of process 

and control design has received considerable 

attention. Skogestad (2004) emphasized that the field 

of control structure design in plant-wide control 

problems, which includes the selection of 

manipulated and control variables, is 

underdeveloped. Moreover the majority of the 

controllability methods developed address the design 

of multiple input – multiple output (MIMO) systems 

with respect to interactions and loop pairings, and 

often apply only to unconstrained systems. Few 

methods take into account the limited range available 

for the control inputs during the design phase. The 

Operability framework developed by Vinson and 

Georgakis (2000) was a contribution in this 

direction. The Operability methodology is an effort 

to integrate the process design and control 

objectives, helping to cope with the complexity of 

chemical processes. Essentially, the Operability 
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measure can quantify the ability of a process to 

change from one steady-state to another and reject 

expected disturbances utilizing a limited control 

action available. This measure is important because 

once the design is fixed, no control methodology can 

overcome limitations on operability. It is only with a 

tool to evaluate the operability of a chemical process 

that one could analyze appropriately the economic 

aspects of the process. A review of the literature on 

integration of process and control design related to 

square systems can be found in Vinson (2000). A 

survey concerning mathematical and process-

oriented approaches in plant-wide control was 

presented by Larsson and Skogestad (2000).  

Based on the linear and steady-state Operability 

framework initially developed by Vinson and 

Georgakis (2000), the objective of this paper is the 

development of a multivariable non-square
Operability methodology for linear systems. This 

would help in the design of non-square Model 

Predictive Controllers (MPC), with more outputs 

than inputs, commonly encountered in industrial 

chemical processes. Basically, MPC controllers are 

model-based controllers which account for process 

constraints. Based on the input constraints, generally 

specified a priori due to physical limitations of the 

process, an important task is to define the output 

ranges or constraints within which we want to 

control the process. The problem is that very tight 

constraints make the control design difficult, with the 

possibility of not being able to find the appropriate 

input variables to achieve the control objective. On 

the other hand, if the constraints are not tight enough, 

output specifications, such as desired product quality 

or environmental regulations, cannot be achieved. 

Therefore the Operability methodology can serve an 

important role in solving this problem. Through this 

framework it is possible to verify achievability of 

control objectives before implementing the MPC 

controller. In addition, according to Vinson (2000) 

some of the main features of the MPC strategy, such 

as being predominantly linear and using constraints 

for each manipulated and controlled variable, are 

directly associated with the developed operability 

framework. This problem functions as motivation for 

the current effort. The outline of this paper is the 

following: first a summary of the prior work 

concerning non-square systems and operability 

issues is given. Then, the basic theory used in the 

development of this paper is explained. The results 

from the analysis of some simple systems are 

presented next, closing with conclusions.  

1.2 Summary of prior work

Non-square systems with more outputs than inputs 

are quite common in chemical processes. Apart from 

the common non-square nature of some chemical 

processes, a system with more outputs than inputs 

may occur if one of the actuators of an original 

square system is operating at constantly saturated 

levels. Several studies that analyze aspects of non-

square systems can be found in the literature. Reeves 

and Arkun (1989) developed a block relative gain 

array (RGA) measure for non-square linear systems 

as a tool to analyze and evaluate control structures in 

steady-state before the controller design in order to 

specify the appropriate control structure. Similarly, 

Chang and Yu (1990) extended RGA for non-square 

multivariable systems, defining the non-square 

relative gain array (NRG). Both studies suggested 

that for non-square systems with more outputs than 

inputs, the outputs have to be controlled in the least 

square sense, minimizing offsets. One very important 

contribution that examines the design of non-square 

systems is the concept of Partial Control introduced 

by Shinnar (1981), and mathematically analyzed by 

Kothare et al. (2000).  This methodology helps the 

control engineer to choose the appropriate set of 

measured variables to be controlled at the set-point, 

in a system having limited degrees of freedom. This 

choice must be made so that the other outputs can 

still be controlled at specified ranges while satisfying 

all the input and performance variable constraints 

and rejecting all the expected disturbances. This 

methodology would be useful in selecting the 

variables in the control design stage after the process 

operability quantification proposed here has been 

evaluated.  

The Operability Index (OI) was introduced by 

Vinson and Georgakis (2000) and Vinson (2000) as a 

measure to access the input-output open-loop 

controllability of a multivariable square chemical 

process. The concept of operability given by Vinson 
(2000) is the following: A process is operable if the 

available set of inputs is capable of satisfying the 

desired steady-state and dynamic performance 

requirements defined at the design stage, in the 

presence of the set of anticipated disturbances, 

without violating any process constraints. Vinson 

and Georgakis (2002) have demonstrated that the 

Operability Index is independent of the inventory 

control structure. This property allows one to 

compare the operability of competing designs before 

the process control structure is selected or 

implemented, i.e., during the process synthesis stage. 

Vinson and Georgakis (2000) have also shown that 

this measure can be applied to SISO and MIMO 
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systems and is more appropriate than other design 

tools such as RGA or minimum singular values. 

Concerning non-square systems, Vinson (2000) 

analyzed the ability of the OI to enhance the 

performance of a non-square MPC controller, 

specifically DMCplusTM (AspenTech). Finally, an 

overview of all Operability definitions and concepts 

has been done by Georgakis et al (2003). In the next 

section, a brief explanation of the concepts and 

definitions of the Operability framework is given.  

2. PROPOSED APPROACH FOR PROBLEM 

SOLUTION 

The Operability Index (OI) was introduced by 

Vinson and Georgakis (2000) for analyzing square 

systems. It provides a quantitative result for 

multivariable systems and a graphical representation 

for systems less than 3-D, permitting the design to be 

modified in order to improve process operability 

before the control structure selection.   

2.1 Operability of Square Systems: Servo  
      Operability Measure 

To make the idea of the Operability measure clear, it 

is necessary to define some useful spaces. The 

Available Input Space (AIS) is the set of values that 

the process input variables can take based on the 

design of process, limited by process constraints. 

Mathematically for an n x n square system: 
min max

, , ,| ;1A i A i A iAIS u u u u i n .

Moreover, the Desired Output Space (DOS) is given 

by the desired values of the outputs of the process 

and is represented by:                                                

min max
, , ,| ;1D i D i D iDOS y y y y i n .

Based on the steady-state model of the process, 

expressed by the process gain matrix (G), the 

Achievable Output Space (AOS) is defined by the 

output values that can be achieved using the inputs 

inside the AIS. We will use the notation AOSu(d
N) for 

the AOS calculated considering all points inside AIS

(subscript u) when the disturbances lie in their 

nominal values (dN), i.e., for the servo problem. For 

this problem, the outputs in the AOSu(d
N) are 

calculated by: y=G(u), where AISu . Based on 

those definitions, the Servo Operability Index with 

respect to the outputs is the following: 

                ( ( ) )

( )

N
u

y

AOS d DOS
s OI

DOS
                  (1) 

Where µ represents a function that calculates the size 

of the space, for example for 3-D it is the volume 

and in 2-D the area. This index quantifies how much 

of the region of desired outputs can be achieved 

using the available inputs in the absence of 

disturbances and is useful in analyzing changes in 

the existing plant design to enlarge AOS. This Index 

has a value between 0 and 1. A process is considered 

completely operable if the index is equal to 1. If the 

OI is less than one, some regions in the DOS are not 

achievable. It is worth emphasizing that to calculate 

the OI, mathematical operations involving 

intersections of polytopes have to be performed. In 

this work, the MATLAB (MathworksTM, Inc) 

Geometric Boundary Toolbox (GBT) has been used. 

It was developed by Veres et al (1996) to evaluate 

those intersections. Details concerning the servo 

Operability Index with respect to the inputs and the 

Desired Input Space (DIS) can be found in Georgakis 

et al (2003), as well as in Vinson and Georgakis 

(2000). 

2.2 Operability of Non-Square Systems

In order to quantify the operability of non-square 

linear systems, some modifications to the definitions 

initially proposed by Vinson and Georgakis (2000) 

are required. First, it is worth classifying the process 

outputs according to the way that they have to be 

controlled into two categories: set-point controlled:

variables that are controlled in their exact set-point 

(for instance, production rates and product qualities); 

set-interval controlled: variables that are controlled 

at specified ranges (pressure, temperature and level); 

the operability in the latter case is defined as interval 

operability. The set-point and range variables can be 

chosen according to an economic objective and given 

by a supervisory strategy. The idea of the new 

definition of operability is to fix critical outputs at 

their set-points, allowing the others to vary within 

their maximum and minimum limits defined a priori. 

This definition should also recognize the necessity to 

control some outputs at ranges rather than require 

that all points of the DOS be reached. In interval 

operability, process outputs must have at least one 

feasible operating point within the desired interval 

for the process to be considered operable. Using the 

same AOS definition as in the square case will lead 

us to a poor definition of operability. Therefore, it is 

necessary to redefine the Achievable Output Space in 
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order to analyze the non-square operability issue 

properly. At this point, it is necessary to define the 

Expected Disturbance Space (EDS). This space 

represents all the steady-state disturbances that affect 

the process which can also be used to reflect 

uncertainties in model parameters employed in the 

design. Finally, the goal is to formulate a 

multivariable steady-state methodology to obtain the 

AOS, given EDS and AIS, to quantify the operability 

of any non-square linear system. As a starting point 

in this development, we will examine 2 simple cases 

in the next section which involve sub-systems of the 

Steam Methane Reformer (SMR) process that has 4 

manipulated, 1 disturbance and 9 controlled 

variables. 

3.  RESULTS 

A 2 x 1 sub-system of the SMR model cited in the 

previous section will be used as a starting point to 

demonstrate the importance of the proposed problem. 

It is worth mentioning that the SMR model has only 

non-integrating outputs, and the process dynamics 

are neglected here since we are studying steady-state 

Operability. Using the same notation as above and 

considering the effect a disturbance has on the 

process, we write:

     1 11 1

1 1 1 1

2 21 2

   d

y a d
y G u G w u w

y a d
     (2) 

Where w1 represents the Expected Disturbance Space 

( 1 1| 1 1EDS w w ) and Gd is the disturbance gain 

matrix. 1 1| 1 1AIS u u and 2 | 1DOS y y .

Rearranging equation (2); we have: 

       
1 1 1

1 11 1 1 1 1

11

1 1 1
2 21 1 2 1 2 21 2 1

11

                           (3)

         (4)

y d w
y a u d w u

a

y d w
y a u d w y a d w

a

Based on the system of equations above, two cases 

result. 

Case 1: Consider the following scaled steady-state 

gain matrices: 1.41, 0.66 ; 1,  0 ; 
T T

dG G In this 

particular case, since d2=0, equation (4) can be 

rewritten as: 

               1 1 1
2 21 1 2 21

11

                          (5)
y d w

y a u y a
a

Thus, the base case servo AOS (AOS when w1 = 0) is 

given by a straight line. In this particular case, the 

disturbance gains shift the servo AOS horizontally. 

This can be observed in Figure 1, where we have 

also sketched the DOS.

Figure 1: servo AOS, shifted AOS and DOS 

The movement of the AOS with different disturbance 

values depends on the values of Gd. If Gd = [0, 1]T,

the servo AOS would be moving vertically rather 

than horizontally as in the previous case. For every 

value of the disturbance, a different straight line is 

obtained. The union of all the Achievable Output 

Spaces that correspond to all the expected 

disturbance values will be called AOS(d). This space 

and the DOS are plotted in Figure 2, along with the 

Achievable Output Interval Space (AOIS). This new 

space, AOIS represents the rectangle that touches, but 

does not cross, the lines associated with the 

minimum and maximum disturbance values of 

AOS(d). This means that if we control the two 

outputs within some constraints that are not larger 

than the AOIS, the process will not be interval 

operable with the available input ranges and in the 

presence of the expected disturbances. In other 

words, the system will be interval operable if DOS
covers AOIS completely. Therefore, the Interval 

Operability Index with respect to the outputs (IOIy)

can be now defined as: 

                      ( )

( )
y

DOS AOIS
IOI

AOIS
                        (6) 

Where µ is the area of the corresponding polygon in 

this example, and the volume for the 3-D case. It is 

worth mentioning that we are assuming a rectangular 
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DOS. If the DOS is not rectangular, the solution has 

to be modified appropriately.  

Figure 2: AOS(d), DOS and AOIS for case 1 

Case 2: Disturbance inserted in both output 

variables: Assume the same AIS, DOS and EDS from 

the previous case and the following gain 

matrices:  1.41, 0.66 ; 0.6,  0.4 ;   
T T

dG G

In this case, the system of equations (3) and (4) 

holds. The servo AOS is now shifted along a 

diagonal, as shown in Figure 3. In this figure we 

have also plotted an example of a DOS and AOIS

calculated for this case.   

Figure 3: AOS(d), DOS and AOIS for case 2 

For both 2x1 cases above, the system is fully interval 

operable, since DOS is large enough to cover AOIS.

We can actually see that if we make the DOS smaller 

than the AOIS, the process will not be interval 

operable. 

An inoperable case would happen if the disturbances 

affecting the process were increased in absolute 

value: 1 1| 3 3EDS w w . Thus, the AOIS would 

also be enlarged. Figure 4 shows AOS(d), DOS and 

AOIS for this scenario. In this case, we notice that 

the IOIy would be smaller than 1. This means that the 

system is only interval operable for some disturbance 

values considered. In order to make it fully operable, 

the process constraints should be relaxed, which 

means the DOS should be enlarged to cover the AOIS
entirely.

Figure 4: AOS(d), DOS and AOIS for inoperable case 

Now, the problem of controlling 3 outputs at ranges, 

when having only 2 inputs, will be presented here. 

The system of equations considered is: 

1 11 12 1
1

2 21 22 2 1
2

3 31 32 3

                          (7) 

y a a d
u

y a a d w
u

y a a d

The gain matrices from the SMR process are the 

following: 
 1.41    0.27 0.2

-0.39   -0.20 ;   0.4 ;   

 0.66    0.49 0.4

dG G

Also: 3 2| 1 ,  | 1  DOS y y AIS u u and EDS is                             

assumed the same as before.  

The AOS(d) is now the union of all planes, instead of 

straight lines, corresponding to different values of 

disturbances affecting the process. Thus, AOS(d) will 

be an oblique parallelepiped, and DOS and AOIS are, 

in general, orthogonal parallelepipeds and, in this 

case, cubes. AOS(d) and DOS are displayed on 

Figure 5. Figure 6 shows AOS(d) and AOIS, and 

Figure 7 shows DOS and AOIS.

Observing Figure 6, one notices that AOIS touches 

both extreme planes of AOS(d). As drawn in Figure 

7, the DOS is quite larger than the calculated AOIS.

This implies that the DOS can be reduced in size and 

the process will continue to be output operable as 

long as AOIS continues to be a subset of DOS.
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Figure 5: AOS(d) and DOS - 3x2 problem 

Figure 6: AOS(d) and AOIS - 3x2 problem 

Figure 7: DOS and AOIS - 3x2 problem 

4. CONCLUSIONS 

In this paper we presented an extension of the 

previously defined concept of operability to the case 

of non-square systems, where some of the output 

variables need to be controlled within intervals rather 

than a set-point. Through the detailed examination of 

2 case studies we have demonstrated the motivation 

for calculation of the Achievable Output Interval 

Space (AOIS) as the smallest possible interval 

constraints for the outputs that can be achieved with 

the available range of the manipulated variables and 

when the disturbances remain within their expected 

values.  
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