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Abstract: Optimizing the operation of processes with hybrid dynamics is challeng-
ing since the discrete dynamics (i.e. abrupt changes of states or inputs) introduces
discontinuities with which gradient-based solvers often cannot cope very well. This
contribution suggests a scheme that combines model predictive control (MPC)
with genetic algorithms and embedded simulation of the hybrid dynamics. As
demonstrated for the example of a chemical reactor, the genetic algorithm provides
good results even if the prediction horizon includes points of discontinuities of the
continuous dynamics.
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1. INTRODUCTION

Automated industrial processes are suitably mod-
eled by hybrid dynamic systems if the evolution of
continuous quantities (like levels, temperatures, or
concentrations) is superposed by switching behav-
ior. The latter arises e.g. from discretely operated
actuators or autonomous abrupt changes between
qualitatively different dynamics. The considera-
tion of hybrid dynamics is particularly important
if the process performs transitions between signif-
icantly different operating points as they occur for
shutdown, start-up, or product changeover. This
contribution proposes a technique to algorithmi-
cally compute (near-) optimal control strategies
to realize such transition procedures. The starting
point is a hybrid model of the plant given as a
hybrid automaton with nonlinear continuous dy-
namics and discrete as well as continuous inputs.
An optimization problem is formulated to deter-
mine the optimal input trajectories to drive the
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hybrid automaton from an initial state into a state
within a target region such that an appropriate
cost criterion is minimized, the hybrid dynamics
is considered as a constraint, and unsafe state
sets are not reached during the transition. The
cost criterion represents the combination of the
transition time and costs formulated over the state
and the input trajectories.

Our previous work on this task revealed the fol-
lowing problems: If the optimization constraints
are approximated by algebraic discrete-time lin-
ear models and if the optimization problem is
solved iteratively using a model predictive control
(MPC) scheme and mixed-integer linear program-
ming (Stursberg and Engell, 2002), the solution
performance suffers from large numbers of auxil-
iary variables required to encode the switching dy-
namics (Till et al., 2004). If alternatively a graph
search algorithm with embedded nonlinear pro-
gramming (NLP) is used (Stursberg, 2004a; Sturs-
berg, 2004b), the non-smoothness arising from the
switching can lead to a lack of convergence in
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the NLP step. This paper introduces a method
that combines the advantages of the two previ-
ous approaches in the following sense: The search
for (near-) optimal state and input trajectories
is carried out using a moving horizon scheme to
benefit from the advantage of linearly increasing
complexity with the overall time period required
for the transition (if a fixed prediction horizon is
used). The optimization in any iteration of the
MPC scheme is carried out using a genetic al-
gorithm (GA) with embedded hybrid simulation.
Since this approach does not employ the gradients
of the cost function and of the constraints, the
convergence problems mentioned above for NLP
do not occur here.

Apart from the work referenced above, a num-
ber of alternative approaches to optimal con-
trol of hybrid systems were published in recent
years: While e.g. (Branicky et al., 1998; Suss-
mann, 1999; Shaikh and Caines, 2003) aim at
extending the maximum principle and calculus
of variations to discontinuities, the approaches in
(among others) (Shah and Pantelides, 1996; Buss
et al., 2000; Zhang and Cassandras, 2001; Bem-
porad et al., 2002; Lee and Barton, 2003; Stein
et al., 2004) address different issues for efficiently
computing optimal controllers for certain sub-
classes of hybrid systems (mostly piecewise affine
systems). To the knowledge of the authors of this
paper, only the publications (Wegele et al., 2002)
and (Olaru et al., 2004) consider the use of GA
for hybrid system optimization. While the first
does not propose a specific solution algorithm, the
second describes a method that solves the opti-
mization problem by GA within an MPC scheme.
In contrast to the approach proposed in this paper
(which considers continuous-time and nonlinear
continuous dynamics), the method in (Olaru et
al., 2004) is restricted, however, to MLD-systems,
i.e. discrete-time piecewise affine systems.

2. PREDICTIVE CONTROL OF HYBRID
AUTOMATA

The model considered in this contribution is
formulated as a hybrid automaton according to
(Stursberg, 2004a). Such a model is suitable
to represent the transition procedure mentioned
above, as it includes continuous and discrete
inputs, and it can express the state-dependent
switching between different (possibly unstable)
continuous dynamics:

Definition 1. Hybrid Automaton
A hybrid automaton with mixed inputs HA =
(X,U, V, Z, inv,Θ, g, r, f) consists of the following
elements:

• the state vector x defined on the continuous
state space X ⊆ R

nx ;

• the continuous inputs u defined on the continu-
ous input space U = [u−

1 , u+
1 ]× . . .× [u−

nu
, u+

nu
],

u−

j , u+
j ∈ R;

• a finite number nd of discrete inputs vj ∈

R
nv defined on the discrete input space V =

{v1, . . . , vnd
};

• a finite set of locations Z = {z1, . . . , znz
};

• an invariant mapping inv : Z → 2X which
assigns a polyhedral set inv(zj) = {x | ∃ npj

∈

N, Cj ∈ R
npj

×nx , dj ∈ R
npj , x ∈ X : Cj ·

x ≤ dj} to each location zj ∈ Z;
• the set Θ ⊆ Z × Z of transitions, denoted

by (z1, z2) for a transition from z1 ∈ Z into
z2 ∈ Z;

• a guard mapping g : Θ → 2X that associates
a polyhedral set g((z1, z2)) ⊆ X with each
(z1, z2) ∈ Θ. For each location z ∈ Z, it is
required for all pairs of transitions originating
from z that the corresponding guard sets are
disjoint;

• a reset function r : Θ × X → X assigning an
updated state x′ ∈ X to each (z1, z2) ∈ Θ and
x ∈ g((z1, z2));

• a flow function f : Z × X × U × V →

R
nx defining a continuous vector field ẋ =

f(z, x, u, v) for each pair z ∈ Z, v ∈ V .

Let T = {t0, t1, t2, . . .} be an ordered set of time
points, such that T contains the initial time t0
and all points of time at which an input change
or a transition occurs. The continuous states xk,
the locations zk, and the inputs uk and vk are
defined for the points tk ∈ T . The values of uk

and vk are piecewise constant on each interval
[tk, tk+1[, k ∈ N ∪ {0}. Σ denotes the set of all
valid hybrid states σk := (zk, xk) with zk ∈ Z and
xk ∈ inv(zk). For given sequences of values uk

and vk, a feasible run φσ of HA is then given as
a sequence φσ = (σ0, σ1, σ2, . . .) with σk ∈ Σ such
that:

• σ0 is initialized to a given z0 ∈ Z and x0 ∈

inv(z0) (but x0 not contained in any guard set).
• σk+1 results from σk by: (1) continuous evo-

lution: χ : [0, τ ] → X with τ = tk+1 − tk
and χ(0) = xk, χ(τ) =

∫ τ

0
f(zk, χ(t), uk, vk)dt

with χ(t) ∈ inv(zk) and for all t ∈ [0, τ [:
χ(t) /∈ g((zk, •)) for any guard set associated
with transitions leaving zk; and (2) a transition
(zk, zk+1) ∈ Θ if χ(τ) ∈ g(zk, zk+1), such that
xk+1 = r((zk, zk+1), χ(τ)) ∈ inv(zk+1), else
zk+1 = zk, xk+1 = χ(τ). ♦

The optimal control problem considered in this
paper is posed as follows: Assume that an initial
state σ0 ∈ Σ, a target set Σt ⊂ Σ with Σt =
{(zt, x)|∃1zt ∈ Z : x ∈ Xt ⊂ inv(zt)}, as well
as a forbidden state set F =

⋃nf

j=1 Fj ⊂ Σ with
Fj = {(zf,j , x)|∃1zf,j ∈ Z : x ∈ Xf,j ⊂ inv(zf,j)}
are given. (Xf,j is polyhedral, and Xf,j ∩ Xt =
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∅). Assume furthermore that the ordered set of
time points T = {t0, t1, t2, . . . , tf} is finite, and
that the inputs can only be changed at tk ∈

Ts ⊂ T . Let Φu,s contain all possible continuous
input trajectories φu = (u0, u1, u2, . . . ) defined on
Ts, and Φv,s correspondingly all discrete input
trajectories φv = (v0, v1, v2, . . . ). Note that φσ

remains defined on T , and that a run of HA
according to Def. 1 is deterministic for any choice
of φu and φv.

The control task is to determine input trajectories
φ∗

u and φ∗

v that lead to a run φ∗

σ of HA from
σ0 into Σt such that no hybrid state in F is
encountered and a cost function Ω is minimized:

min
φu∈Φu,s,φv∈Φv,s

Ω(tf , φσ) (1)

s.t. φσ = (σ0, . . . , σf ) with σ0 = (z0, x0),

σf := (z(tf ), x(tf )) ∈ Σt, and for φσ applies

in each phase of continuous evolution acc. to

Def. 1: (zk, χ(t)) /∈ Fj ∀ Fj ∈ F, ∀ t ∈ [0, τ ].

σf denotes the first hybrid state along φσ which is
contained in Σt. Since computing the solution of
the problem in Eq. 1 requires that |Ts| choices are
made for the values of v and u, the solution space
of the optimization problem grows exponentially
with |Ts|. In order to allow for a computationally
tractable solution also for larger sets Ts, the ap-
proach presented here approximates the problem
in Eq. 1 by employing a moving horizon scheme.
The optimization problem is divided into |Ts| − 1
subproblems which are solved iteratively and yield
a solution φ̂u ∈ Φu,s, φ̂v ∈ Φv,s of the control task,

which leads to a run φ̂σ of HA. Starting from
t0, a subproblem is solved for every tk ∈ Ts as
follows: for a given h ∈ N

>0, an ordered time set
Tk = {tk, . . . , tk+h−1} denotes the time horizon
for which the problem:

min
φu∈Φu,h,φv∈Φv,h

Ω
(
tk, . . . , tk+h, φσ

)
, (2)

is solved. The input trajectories are defined as
φu = {uk, . . . , uk+h−1}, φv = {vk, . . . , vk+h−1}

and are taken from the sets Φu,h and Φv,h of all
input trajectories of length h. The value of h is
either equal to a user-specified parameter, or, if
Σt is reached within the horizon, equal to the
number of time steps required to reach Σt. φσ =
(σk, . . . , σk+h) denotes the corresponding feasible
run of HA, and in each iteration k, σk is set
equal to the hybrid state σk+1 of the run obtained
from the optimization in the preceding iteration.
The optimization according to Eq. 2 is subject to
the same constraint for the forbidden sets as the
optimization according to Eq. 1. The cost function
Ω depends on the time points tk ∈ Tk, since
the fraction of each time interval [tk, tk+1], for
which the evolution of HA is outside of Σt, leads
to a cost contribution. A second contribution is
determined as the distance between each σk ∈ φσ

and Σt. (All state variables are normalized to the
interval [0, 1] for the distance computation.)

When all subproblems are solved, the complete
continuous input trajectory φ̂u is obtained from
concatenating the first elements uk of every tra-
jectory φu. φ̂v is constructed accordingly.

3. A GA-BASED OPTIMIZATION
ALGORITHM

The subproblems in Eq. 2 are solved employ-
ing genetic algorithms (GAs), which were first
introduced in (Holland, 1975). GAs provide an
efficient means to solve optimization problems,
even if discontinuities in the cost function or the
constraints are present. Fig. 1 shows the scheme
of the algorithm consisting of three modules: the
genetic algorithm, an evaluation module, and a
module that performs the simulation of the hy-
brid dynamics of HA. In an iteration k of the
MPC scheme, the GA is initialized with the initial
hybrid state σk and the horizon Tk (see Sec. 2). It
performs nmax iterations to update the population
Pn = {s1,n, . . . , sµ,n}, which is the set of individ-
uals considered in iteration n, and µ ∈ N

>0 is an
even number which represents the population size.
nmax is determined as the number of generations
after which no increase in the best fitness value
(see below) is observed. Each individual s repre-
sents a combination of continuous and discrete
input trajectories. While continuous inputs are
represented using real-valued numbers, the dis-
crete inputs are encoded as bit sequences. These
elements, the genes, lead to individuals defined by:

si,n := (si,n,1, si,n,2, . . . , si,n,h−1), (3)

with si,n,j := (a1, . . . , anu
, b1, . . . , bn,v). (4)

The parameter al ∈ R with l ∈ {1, . . . , nu} rep-
resents the value of the continuous input ul, and
a bit sequence bp ∈ B

1×�log(cp)�, p ∈ {1, . . . , nv}

encodes the value of the discrete input vp (where
cp is the number of possible discrete values of vp).
The individuals of the initial population P1 are
generated randomly.

Fig. 1. Scheme of the algorithm.
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In every iteration n, the algorithm carries out the
following steps: For the input trajectories φu,i, φv,i

encoded by an individual si,n in Pn, the corre-
sponding state trajectory φσ,i,n is computed. This
is accomplished by numerical simulation which
approximates the run of HA for the time horizon
Tk according to the semantics in Def. 1. The
fitness of φσ,i,n is then determined by evaluating
the function:

fs(si,n) =
1

Ω′(tk, . . . , tk+h, φσ,i,n)
, i ∈ {1, . . . µ},

in which Ω′ is the cost function from Eq. 2, but
with two extensions: (a) an additional term is
added which penalizes state trajectories that enter
the forbidden hybrid state sets F ; (b) the hybrid
states in φσ,i,n are weighted over the time horizon
Tk. The weighting factors w for the hybrid states
are determined according to

w(tk+o) =

{
1 , o = h
fw · w(tk+o+1) , o = 1, . . . , h − 1

,

with fw ∈ R
>0.

After the fitness evaluation, the population Pn+1

for the next iteration of the GA is determined.
Fig. 2 shows the algorithm used for generating
Pn+1 from Pn.

Pn+1 := ∅;
WHILE (|Pn+1| < |Pn|) DO {

p1 := select(Pn);
p2 := select(Pn);
(c1, c2) := crossover(p1, p2, wc);
c1 := mutate(c1);
c2 := mutate(c2);
Pn+1 := Pn+1 ∪ {c1, c2};

}

Pn+1 := elitist(Pn, Pn+1)

Fig. 2. Algorithm for generating Pn+1 from Pn.

First, two individuals p1 and p2 (the parents)
are selected from Pn by the function select. This
function stochastically chooses an individual us-
ing a rank-based selection mechanism. In a large
number of experiments in which several selection
mechanisms were tested, it was found that this
mechanism allows for good optimization results
for the application example described in the fol-
lowing section. Assuming that Pn is sorted in as-
cending order with respect to the fitness of its in-
dividuals, the probability that an individual si,n,
i ∈ {1, . . . , µ}, is selected from Pn is computed as:

ws(si,n) =
pos(si,n)∑
i pos(si,n)

,

parent 1 parent 2

child 1 child 2

Fig. 3. Two-point crossover.

where the operator pos returns the position of si,n

within Pn.

The function crossover either performs a two-
point crossover of p1 and p2 (with probability
wc ∈ [0, 1]) or leaves p1 and p2 unchanged (with
probability 1 − wc). The main idea of the two-
point crossover is to generate individuals, the
children, which combine the advantages of both
parents. Two cut-off points of the parents are
determined randomly, and the children c1 and
c2 are constructed by exchanging the segment
between the cut-off points (Fig. 3), which may
involve continuous and discrete variables. If no
crossover is performed, p1 and p2 are just copied
to c1 and c2.

The function mutate is used to randomly change
genes of the two children. Each gene of a child ci

is changed with probability wm = 1/|ci|, with the
number |ci| of genes of ci. Modified real-valued
genes a′

j are created from the original gene aj

according to a′

j = aj + mn; mn is a realization
of a normally distributed random variable with
expected value 0 and decreasing variance over
the iterations n. Binary-valued genes are changed
according to b′j = 1 − bj .

The procedure of selection, crossover, and muta-
tion is repeated until the number of individuals in
Pn+1 and Pn is equal. Finally, the function elitist
replaces an arbitrary individual in Pn+1 with the
individual from Pn with the highest fitness value.
This function is used to avoid that a good solution
for the optimization according to Eq. 2 is lost by
applying crossover and mutation.

After nmax iterations of the GA, the input trajec-
tories encoded by the individual of Pnmax

with the
highest fitness value determine the solution of the
optimization in iteration k of the MPC scheme.

The set of time points Tk+1 for the next iter-
ation of the scheme is computed according to
Tk+1 = (tk+1, . . . , tk+h−1, tnew). The last time
tnew is obtained from tnew = tk+h−1 + ∆t with

∆t =
f∆t

(‖f(zk+h, xk+h, uk+h−1, vk−h−1)‖2)
, (5)

where f∆t is a tuning factor, (zk+h, xk+h) = σk+h

is the last hybrid state of φσ, and uk+h−1 and
vk+h−1 are the last entries of φu and φv. This
procedure adjusts the time interval ∆t to the
dynamics of HA for the current value of the state
variables and the inputs.
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4. APPLICATION EXAMPLE

The approach is illustrated for the start-up pro-
cedure of a chemical reactor as described in
(Stursberg, 2004a). It consists of a tank equipped
with two inlets, a heater, a cooling device, and one
outlet.

The state variables considered for optimization
are the volume of liquid VR, the temperature
TR, and the concentrations cA and cB of two
substances A and B, which react exothermically
to form a product. The system has five input
variables: the inlet flows F1, F2 as well as a
variable sH (representing the status of the heater:
on or off ) can be switched between two values.
In this example, however, the discrete input set
V is restricted to four combinations of values by
assuming that the inlet flows F1 and F2 are always
equal. Hence, the discrete input vector is given
by v := (F1, F2, sH)T, F1 = F2. The continuous
inputs of the system comprise the outlet flow
F3 and a cooling flow FC , thus u := (F3, FC)T.
According to Def. 1, the state vector is defined
as x := (VR, TR, cA, cB)T ∈ X. The vector of
locations is given by Z = {z1, z2}, with inv(z1) =
{x | x ∈ X : VR ∈ [0.1, 0.8[} and inv(z2) =
{x | x ∈ X : VR ≥ 0.8} to account for the fact that
the heating is only effective for a certain range
of VR (i.e. in z2). The set of transitions is Θ =
{(z1, z2), (z2, z1)} with g((z1, z2)) = g((z2, z1)) =
{x | x ∈ X : VR = 0.8}. The flow functions for the
two locations are specified as:

f I := f(z1, x, u, v) =⎛
⎜⎜⎜⎜⎜⎝

F1 + F2 − F3

(F1(T1 − TR) + F2(T2 − TR))/VR

+ FCk1(TC − TR)(k2/VR + k3) − k4q

(F1cA,1 − cA(F1 + F2))/VR + k9q

(F2cB,2 − cB(F1 + F2))/VR + k10q

⎞
⎟⎟⎟⎟⎟⎠

,

(6)

f II := f(z2, x, u, v) =(
f I
1 , f I

2 + sHk6(TH − TR)(k7 −
k8

VR

), f I
3 , f I

4

)T

,

(7)

with q = cAc2
B exp(−k5/TR) and appropriate

constants T1, T2, TC , cA,1, cB,2, TH and k1 to k10.
State resets do not occur, and the model comprises
three forbidden regions F1 = (z1, {x | x ∈ X :
TR ≥ 360}), F2 = (z2, {x | x ∈ X : TR ≥ 360}),
and F3 = (z2, {x | x ∈ X : VR ≥ 1.8}).

The optimization task is to drive the system
from an initial state σ0 = (z1, x0) with x0 =
(0.1, 300, 0, 0)T, which corresponds to an almost
empty reactor, into an operating region in which
the reactor is filled, the temperature has a desired
level, and the production rate is sufficiently high,
i.e. the concentrations of A and B have low values.

F1

Substance
A

M

Product
D

Substance
B

Heating

Cooling

F3

F
C

F2

V

T

c

c

R

R

A

B

s
H

Fig. 4. Scheme of the CSTR.

The target location is z2, and Xt ⊂ inv(z2) is a
hyper-box given by Xt = [1.49, 1.51]× [343, 347]×
[0.46, 0.5] × [0.18, 0.22].

Several parameters of the algorithm presented in
Sec. 3 can be adjusted to tune the performance
for the given example. These parameters include
the optimization horizon h, the factor determin-
ing the weighting of the hybrid states in the fit-
ness computation fw, the population size µ, the
crossover probability wc, and the tuning factor for
the computation of the time steps f∆t.

In a large number of simulation studies with sys-
tematic variation of the values of these parame-
ters, the following effects were observed: The cost
function value obtained for the complete transi-
tion has a minimum for an optimization horizon
of length h = 4. The fact that the costs increase
for higher values of h may be attributed to the
exponential growth of the search space with an
increasing value of h, and thus a relatively sparse
sampling of the search space for fixed numbers
of generations and individuals in the population.
Increasing µ or decreasing f∆t increases, not sur-
prisingly, the optimization performance (i.e. leads
to lower transition costs) but also the computa-
tion time. However, since the gain in optimiza-
tion performance is negligible for higher values of
these parameters, it is reasonable to limit them
to relatively low values (see Tab. 1) for the sake
of a small computation time. Maybe surprisingly,
it was found that the crossover probability has
only a very small influence on the optimization

Fig. 5. Optimized state trajectories.
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Table 1. An efficient parameterization.

h fw µ wc f∆t

4 0.2 60 0.4 0.5

Fig. 6. Optimized input trajectories. F1 and F2

are switched between the values 0.03 l
s

and

1.125 l
s
.

performance. The numbers shown in Tab. 1 rep-
resent the parameterization that was identified as
a suitable compromise between the optimization
performance and the computation effort. The fig-
ures 5 and 6 depict the trajectories of the state and
input variables determined as the optimization
result for the parameterization in Tab. 1.

5. CONCLUSION

This paper describes an approach for using GA
embedded into an MPC scheme for the opti-
mization of hybrid dynamic models. The solu-
tion is qualitatively and quantitatively compa-
rable to the one obtained with the approach in
(Stursberg, 2004a). In contrast to the latter, the
method proposed here has no difficulties to cope
with the discrete dynamics of HA. For an ex-
tended version of the example, this result has been
obtained also for the case that reset functions
introduce discontinuities into the state trajectory
of the hybrid model (rather than only in the flow
functions). By defining an absolute upper limit
for the number of generations nmax and choosing
suitable parameters of the algorithm, the required
optimization time per MPC iteration can be held
sufficiently small for online application. In this
case, the outputs uk and vk are applied to the
plant in order to obtain the real state (zk+1, xk+1)
for the next iteration.
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