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Abstract: A novel modular network is proposed in this work for supervised pattern 

classification.  The parameters of the hidden layer are determined using polygonal line 

algorithm. No further training of the network is required. Firstly, an abnormality is 

detected and responsible sensors identified using polygonal line based radial basis 

function network algorithm. Furthermore, the proposed strategy is applied for fault 

diagnosis. A continuous pilot plant is selected as the case study to show the efficiency of 

the proposed strategy. The result shows that, the proposed framework is a promising 

direction towards fault detection and diagnosis in real time, non-linear systems. 
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1. INTRODUCTION 

The advent of faster and more reliable computer 

systems has revolutionized the manner in which 

industrial processes are monitored and controlled. 

Once thought of as just data logging and storage 

units, these computer systems now perform 

sophisticated computer-based control strategies, and 

real-time simulation and optimization. These 

advances have resulted in the generation of a large 

amount of process data, yet the task of interpreting 

and analysing these data is daunting. 

Fault detection and diagnosis is the primary module 

for any process monitoring framework.  Principal 

component analysis (PCA) and projection to latent 

structure (PLS) are one of the most used multivariate 

statistical process control (MSPC) techniques. The 

major drawback of this method is that, it assumes 

linear correlation between data which is not always 

true in case of process data that are generally 

nonlinearly correlated. However, the philosophy 

behind these approaches is to reduce the 

dimensionality of the problem by forming a new set 

of latent variable to obtain an enhanced 

understanding of the process behaviour.  

Many methodologies have been proposed for 

nonlinear principal component analysis (NLPCA). 

Kramer (1991) proposed a NLPCA based on five 

layer auto associative neural networks. Dong and 

McAvoy (1996) proposed NLPCA based on principal 

curves and neural networks. The principal curve 

method was used to calculate the associated score 

and corrected data point for each original data point. 

But, since principal curve method does not produce a 

nonlinear principal component in the sense of 

principal loading, Dong and McAvoy (1996) 

developed an alternative approach based on multi 

layer perceptron to model the calculated data. Two 

three layer neural networks were trained separately to 

map the data to lower dimensional feature space and 

remapping the data back to the sample space.  The 

number of hidden layer nodes was decided using 

cross validation scheme. A methodology based on 
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“well – defined” architecture of radial basis function

(RBF) network and polygonal line (PL) has been

suggested by Bhushan and Romagnoli (2005) for

dimensionality reduction and fault detection. The

data of the normal operating region is used to fit the

polygonal lines and the output generated has been

used for determining the architecture of the network

and to train the model. Online data are projected to

the RBF-PL model and an abnormality is indicated 

whenever the prediction is significantly different

from the projected measurements. Furthermore, the

measured variables that makes significant

contribution towards the deviation in the model

prediction is identified. However, this information is 

insufficient for the operator to find the root cause,

since the operator needs to infer the root cause which

is difficult in case of process with large number of 

variables.

Vedam and Venkatasubramanian (1999) proposed an

integrated approach based on PCA and signed

digraphs (SDG) for fault detection and diagnosis.

Fault detection is performed using PCA. Whenever

an abnormality is detected, the contribution of

measured variables is presented as an input to the

SDG to perform fault diagnosis.

Leonard and Kramer (1992) suggested a

decomposition strategy based on modular neural

network approach for solving large scale fault 

diagnosis problems. Though, RBF networks are

many time faster than similar back propagation

networks (BPN); it still required large computational

resources. Two decompositions are proposed for this

work: decomposition in time, reducing the

dimensionality of the input space; and decomposition

among the fault classes, reducing the size of the

training set for each subnet.

In this work, a novel modular network is suggested to

accomplish the diagnosis task. The advantage of this

methodology over others is that it uses the same PL 

algorithm of fault detection to decide the architecture

and related parameters of each module of the 

network. Furthermore, there is no additional training

required of the network and hence it is 

computationally very less expansive. The output of

the proposed network can be the partial

belongingness of the input pattern to more than one

fault classes and the strength of the fault.

The remaining part of the paper is organized as

follows. In section 2, a brief introduction of  RBF-PL 

methodology for fault detection and identification is

given. The proposed network for classification is

explained in section 3. Section 4 contains the results

and discussion on the application of the entire

strategy to a real time pilot plant environment.

Finally, section 5 contains the conclusion and future

direction of the work.

2. FAULT DETECTION AND IDENTIFICATION

Polygonal line algorithm proposed by Verbeek, et al.,

2002 is used for fitting the data. Each data point is 

projected orthogonally onto the PL. Thus for each

data points there are corresponding lengths t1, t2, …,

tn along the curve where n is the number of data

points in d-dimensional space.

In analogy to PCA, this length represents the non-

linear scores of the data points. Thus the sample

vector can be represented as

X = f1 (t(X)) + E1 (1)

where t is the non-linear principal component score

and E1 is the residual vector.

The next non-linear component score can be found

by projecting the data points of E1 on the PL 

constructed using E1. These steps are repeated until

all the information is extracted. It is found that the

first few nonlinear principal components explain

most of the variance of the dataset. Though, this

method is quite effective in reducing the data

dimensionality, it is to be noted that f has no 

parametric form, and it is quite cumbersome and

memory expensive to use it for online application. A

RBF network is trained to model the relationship.

This network is further used for fault detection and

identification. A non-parametric approach based on 

kernel density estimation (KDE) is used to determine

the confidence limit. The detail of this methodology

can be found in Bhushan et. al. (2005).

3. SUPERVISED CLASSIFICATION AND FAULT

DIAGNOSIS

It should be noted here that each segment of the PL

in the sample space represents a localised region

around which the data is concentrated.  We propose 

that each of these regions in the input space can be

represented by a multidimensional Gaussian function

(Figure 1).

Fig. 1: Schematic representation of the region

covered by each segment of PL.
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The Gaussian function with equal spread in all the

directions is defined as:

2

2

2

||cx||
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where || x – c || is the Euclidean distance of x = (x1,
x2, …, xd) from the vector centre c = (c1, c2… cd) and

 is the spread. When the spread of the data points is 

not uniform, a multidimensional Gaussian function

takes the form
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where  is the centre of the region and is defined as

the mean of the data contained in the region i and

 represents the standard deviation of the dataset in

the region.

ic

i

Since it is the supervised classification, the class of 

each training data set is known in advance. The

training data set is grouped according to its class.

Each group is presented to the PL algorithm. The

number of segments required to fit the polygonal line

is found out. However, segments which have just

been used to construct the PL and do not contain any

data points are neglected.

Fig. 2: Proposed modular fault diagnosis network.

Figure 2 shows the proposed modular fault diagnostic

system. The system contains five layers. Nodes at 

layer one are input nodes representing the input

variables and the last layer is the output nodes. The

number of nodes in the output layer is same as the

number of fault classes. A node at layer two

represents a region in the domain of a specific fault, 

in other words, it is one of the segment of the PL

which fitted that fault class. The nodes of a fault class 

constitute one module in layer two and there will be 

as many modules as the number the fault classes. The

number of nodes at layer three is the same as the fault

classes and each node of this layer is linked to the 

nodes of only one module of layer two. The nodes in

this layer calculate the maximum strength of the

input data in that particular class. Each node in layer 

four is linked with only one node of layer three and

decides whether the strength of the belongingness is

strong enough to be considered as a fault or not.

Finally, the nodes in layer five decide the

contribution of each fault class to the abnormality.

The function of a node in each layer of the proposed

network is described in detail next.

Layer 1: The input vector is presented to the nodes of 

this layer. The number of nodes is same as the

dimension of the input vector and each element is

linked to one of the node of this layer. The nodes in

this layer transmit the input data to the next layer

without any change.

The output from this layer  is defined as1
jy

,11
jj xy j = 1, …, d   (4)

Where denotes the output of node j in layer one

and denotes the input to node j at layer one.

1
jy

1
jx

Layer 2: The output of each node of layer one is

presented to each node of this layer.  This is one of 

the most important layers of this network. As 

mentioned earlier, the parameters of each node are

determined using the data of that region.
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where is the centre of the region k in class c, Ik

represents the data points in region k and C is the

number of classes or modules.  The spread of kth node

in class c is defined as

k
cjc ,

k
cj

k
cj ,, . d1,2,...,jCc ;,...,2,1  (6)

where is the standard deviation of the input

vectors contained in region k of class c in jth

dimension and

k
cj ,

is a user defined parameter which

ensures the optimum receptive field covered by each

region.
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A Gaussian membership function is constructed with

 and  as the centre and the width

respectively. Each node in this layer is represented by

one such function and all the nodes generated by

using segments of the PL of a group constitute a 

module. Therefore, we have as many modules as the

number of classes. The output from this module

defines the belongingness of a input vector to a

particular region.
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where is the output from node representing

region k of class c in layer two.

k2,
cy

Layer 3: The output from each module is fed to not

more than one node of this layer. Hence the number

of nodes is same as the number of fault classes. The

output of the node from this layer represents the

strength of the belongingness of the input data in a 

particular class. An input vector may belong to more

than one region of the same class; however, the

belongingness of the vector in a class is dictated by

the maximum membership value. Therefore, the

output of each node from this layer is defined as:

)y,...,y,max(yy k2,
c

2,2
c

2,1
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where k represents the number of regions in class c.

Layer 4: The nodes in this layer decide whether the

output from previous layer is strong enough to assign

the data in to a particular class or not. This task is 

accomplished by a function defined as follows: 
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where is a user defined parameter.

Layer 5: This layer is the decision making layer. It 

gives an idea to the operator which fault is more

severe if there are multiple faults. The output from

this layer is defined as: 
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It should be noted that once the network is build

there is no further requirement of the training since

there is no weight adjustment required.

4. APPLICATION TO PILOT PLANT

ENVIORNMENT

To test the overall strategy in real time, a general-

purpose pilot plant facility is used. The process

contains two CSTRs, a mixer, a feed tank and a

number of heat exchangers.

Each CSTR consists of a reaction vessel, a steam

jacket, a cooling coil and a stirrer. Material from the

feed tank is heated before being fed to the first

reactor and the mixer. The effluent from the first

reactor is then mixed with the material in the mixer

before being fed to the second reactor. The effluent

from the second reactor is, fed back to the feed tank 

and the cycle continues. The pilot plant is well 

instrumented to provide many possible control

scenarios and configurations.

Nine variables [Fin (feed flow rate in), Tin

(temperature of feed in), Tc,in (temperature of

cooling water in), Ts,in (temperature of steam in),

Lvl (level of the reactor), Fout (feed flow rate out),

Tout (temperature of feed out), Tc,out (temperature

of cooling water out), Ts,out (temperature of

condensate)] related to the first CSTR are considered

for this study. Once the plant reached its normal

operating condition, 100 training data points at 5 

second interval were collected. All variables in the

training data set were normalized in order to give

equal weights to each.  The training data set were 

exposed to PL algorithm (kmax = 24) and the

nonlinear scores were found by projecting the data

point onto the polygonal line. The residual was

calculated and was exposed again to PL algorithm 

and so on. The PL algorithm fitted the training 

dataset into nine segments yielding a RBF mapping

network with nine input nodes, nine hidden layer

nodes and two output nodes. The centre and spread

of the hidden layer nodes were calculated using the

centre and standard deviation of the segments and

hence only weights of the output layer were to be

calculated. GA with 100 generations was used to first

get near an optimum solution followed by BFGS

Quasi-Newton algorithm for faster convergence. The

total time taken for training was 12.80 seconds. The

demapping layer with two input nodes, nine hidden

layer nodes and nine output layer nodes was trained

using the similar strategy, however all the parameters

were trained and hence the training time was 35.46

seconds.

HX3

KDE is used for finding the two warning limits at 

95% and 99%. 95% and 99% warning limit was

found to be 9.19592 and 10.8476 respectively. SPE 

along with these warning limits were constructed to

facilitate fault detection. Any violation to the 95%

warning limit, fault identification algorithm is

triggered to identify the measurements responsible

for out of control signal followed by the fault

diagnosis model to decide the root cause.
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For this paper, two different fault scenario were

planned. Firstly, process condition under normal

operation was achieved that was similar to when data

were collected to train the network. Secondly, to 

simulate a process upset scenario, the feed flow rate

was increased from 0.6 l/min to 1.0 l/min. This

change affected many other variables including the

reactor level and the effluent flow rate. For

simulating the single sensor failure condition, a 

random bias of mean 6 (30% of the actual) and 

standard deviation 2 was added to the feed

temperature. 100 values at 5 second interval for all

these conditions were captured.

The data of these three conditions (normal, process

upset and sensor failure) were fed to the PL

algorithm which fitted it into 9, 22 and 12 regions

respectively. Therefore, the structure of the fault

diagnosis network was 9-43-3-3-3. The value of

and  used are 1.5 and 0.05 respectively. The result

of the fault detection and diagnosis are as follows:

1) Process Change (Flow rate increased from 0.6

l/min to 1.0 l/min)

Figure 3(a) and 3(b) shows the SPE and contribution

plot for process upset respectively. It should be noted

that as soon as feed flow rate was increased, SPE

crossed both the warning limits and was well above

this condition throughout the period this condition

prevailed.

However, the contribution plot shows that though the

contribution by feed flow rate was high in the

beginning, in the later part, prime contribution was

due to the level measurement which is readily

expected for this process. Also, this change in the

process condition affected the effluent flow rate.

From the process point of view, these three variables

are related to each other and they are also being 

reflected in the result.

 (a) 

Square predicted error (process upset)
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(b)

Contribution Plot (Process Upset)
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Figure 3: (a) Square predicted error plot (b)

contribution plot in case of process upset.

Table 1:  Results of the fault diagnosis in case of 

process upset

Normal Process Upset Sensor Failure

0.00 1.00 0.00
0.00 1.00 0.00
0.00 1.00 0.00
0.00 1.00 0.00
0.00 1.00 0.00
0.00 1.00 0.00
0.00 1.00 0.00
0.00 1.00 0.00
0.00 1.00 0.00
0.00 1.00 0.00

Table 1 shows the result of the proposed fault

diagnostic system. The result for first ten points is 

only shown however it detected correctly for all the 

testing data. In the result, 0 indicates that this

condition is not prevailing in the process whereas 1

indicates that according to the knowledge of the

network this condition is 100% present.

2) Sensor failure (a random noise of 30% of the

actual with std. dev of 2 was added to feed 

temperature)

In case of sensor failure, SPE is above the warning

limits in most cases (Fig. 4(a)), though in some cases

the magnitude of SPE is not very high because of the

presence of noise in the measurements the normal

feed temperature is quite close to the value in case of 

the faulty sensor (maximum normal feed

temperature: 28.83 0C, minimum feed temperature in 

case of sensor fault: 31.13 0C). The contribution plot

(Fig. 4(b)) clearly identify feed temperature sensor as

the sensor which has the highest contribution in fault.
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(a)

Square predicted error (single fault)
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(b)

Contribution Plot (Single fault)
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Figure 4: (a) Square predicted error plot (b)

contribution plot in case of single fault.

The result of the fault diagnostic module is shown in

table 2. It should be noted that a module for this fault

was already included in the network; hence it did

diagnose all the conditions correctly.

Table 2: Results of the fault diagnosis in case of 

Sensor failure

Normal Process Upset Sensor Failure

0.00 0.00 1.00
0.00 0.00 1.00
0.00 0.00 1.00
0.00 0.00 1.00
0.00 0.00 1.00
0.00 0.00 1.00
0.00 0.00 1.00
0.00 0.00 1.00
0.00 0.00 1.00
0.00 0.00 1.00

5. CONCLUSION AND FUTURE WORK 

In this work, a novel modular network is proposed

for supervised classification. The key feature of this

network is its simplicity and less computational

complexity. First, the training data were separated

into different classes, and each set was fed to the PL 

algorithm for finding the optimum number of regions

in that class. Each region was used to find out the

parameters of the network. There was no further

training required. This work is integrated with non

linear PCA based on RBF and PL for simultaneous

fault detection and diagnosis. The proposed

methodology is used for monitoring the condition of 

a continuous pilot plant. Two different types if

abnormalities were simulated to test the capability of

the framework. The results show that the fault was 

detected and diagnosed in both of the cases correctly.

However, the model needs to be validated for

controller faults and multiple faults which will be a 

part of future work.
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