
ADCHEM 2006 

International Symposium on Advanced Control of Chemical Processes 

Gramado, Brazil – April 2-5, 2006 
 
 
 
 
 
 

NEURAL MODELING AS A TOOL TO SUPPORT BLAST FURNACE IRONMAKING
 

 
 

F. T. P de Medeirosa, A. Pitasse da Cunhab, A. M. Frattini Filetic

 
 

a
Companhia Siderúrgica Nacional  (CSN), Brazil

b
MetalFlexi, Brazil

c
Chemical Systems Engineering Department, (UNICAMP), SP, Brazil

 
 
 

 
Abstract: This paper describes the development of a hybrid model based on artificial 

neural network and its industrial application to the ironmaking at Companhia Siderúrgica 

Nacional (CSN -Volta Redonda/Brazil). The Iron Blast Furnace is highly complex process 

subject to oscillations in raw material characteristics. A precise model is essential to 

adjust © 2002 charging and blow conditions to match productivity, chemical quality and 

costs targets. A neural model was developed in order to estimate chemical and thermal 

parameters to feed a first principles model capable of evaluating alternative operation 

standards. As a consequence, operation efficiency is enhanced leading to higher

productivity and lower costs. Copyright © 2002 IFAC
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1. INTRODUCTION

 
The impulse from the domestic market and the

abundance of quality raw materials have favored the 

development of the Brazilian steel industry, which is 

viewed as playing a fundamental part in the process 

of industrialization and development. CSN is one of 

the largest steelmaking groups in Latin America, 

with a production capacity of 5.8 million tons of raw 

steel per year.

The Iron Blast Furnace reduces iron ore, producing

liquid iron (hot metal) which is converted to steel by 

exothermic oxidation of metaloids dissolved in the 

iron in the basic oxygen steelmaking process. 

The Blast Furnace is a very complex processes in 

terms of chemistry, fluidodynamics and heat

exchange. The composition of the burden material to 

be loaded and the blast to be blown determines 

productivity, quality and costs. Designing burden and 

blast requires a fairly accurate process model to 

define an appropriate operation standard from an 

almost infinite set. Particular characteristics,

associated to both materials and equipment, are to be 

considered in the model requiring actual data to be 

analysed before applying first principle models. 

Many simple models exist to analyse the blast 

furnace process based on heat, mass and chemistry 

balance and some are even ingenuous.  However, 

chemical equilibrium mismatches and kinetics

parameters need to be estimated based on materials 

and equipment characteristics in order to quantify

performance indexes. Usually, to close that gap it is 

necessary to apply a comprehensive statistic model. 

Chemical composition analysis of every furnace

stream need to be taken (raw material, blow,

overhead gas and liquid metal), which introduces a 

dead time to the performance calculations.

One of the alternative and efficient tools, which 

enable one to obtain a numerical description of this 

kind of complex process, is the artificial neural 
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network (ANN). Interactions and the dynamics

among variables are readily captured from operating

data base presentation to the network. From past 

operating conditions and calculated mismatch

parameters, a network model allows performance 

indexes computation.

Neural networks are becoming an effective

component of the steel manufacture automation

system. There are various applications of neural

networks in the steel industry. Schlang et al. (1997) 

describes the use of neural networks in the control of 

flat steel rolling mills and electric furnaces (Siemens 

AG). Cox et al. (2002) explore the use of neural 

networks to predict oxygen and coolant requirements 

during the end-blow period of the Port Talbot basic 

oxygen steelmaking - BOS - plant (Corus Group). 

However, the authors report that the application of 

the neural model ‘in situ’ was to be carried out just in 

future work. Ping et al. (2003) describe the

implementation of an intelligent model for

controlling BOS end-points at WISCO’s No 2 steel 

shop. This static control model combines neural 

networks and first principles. Indeed for the iron 

Blast Furnace process there are few papers on neural 

networks. Radhakrishnan and Mohamed (2000)

describe a successful application of a neural network 

for the identification and control of blast furnace hot 

metal quality. 

A growing literature within the field of chemical 

processes describing the use of artificial neural

networks has evolved for a diverse range of

engineering applications such as fault detection,

signal processing, process modelling and control

(Himmelblau, 2000). According to the author,

because neural networks are nets of basis functions, 

they can provide good empirical models of complex 

nonlinear process useful for a wide variety of

purposes.

Considering the difficulties outlined above, obtaining 

accurate mismatch parameters for first principles

models in iron and steelmaking has proved to be a 

very hard task. Usually two kinds of models are 

employed to blast furnace operation: those very 

simple using estimated mismatch parameters that are 

corrected as operation goes on and complex models 

with to many parameters to be of practical use. 

The present work is concerned with developing a 

hybrid model - neural network and mass and heat 

balances – and its application to the ironmaking blast 

furnace at CSN (Brazil). The main goal is to obtain a 

tool to design burden and blast conditions in order to 

match the targets of productivity, chemical quality 

and costs of the liquid metal.

1. METHODS

2.1 Process Description

Companhia Siderúrgica Nacional’s steelworks

entails three blast furnaces, two of them in operation 

and one out of service. Blast Furnace 2 produces 

nearly 4,000 tons of hot metal per day whereas Blast 

Furnace 3 produces between 9,500 and 11,000 tons 

per day. Iron ore sinter, pellets and lumpy hematite 

constitute the ferrous burden. As reducing agents, 

metallurgical coke and pulverised coal are used,

being the latter injected through the tuyeres.

Sometimes dolomite or quartzite are used as fluxes to 

control slag composition. The blast composition (air, 

oxygen and steam) and the rate of coal injection are 

the main and most sensitive parameters of control. 

Operation aims at production rate, hot metal

chemical composition and temperature and

ultimately, low cost. Because the plant is self-

sufficient in coke, a small proportion of it is imported 

bringing significant characteristic variations to the 

mixture.

The core of the process is a counter-flow reactor 

where a series of chemical and thermal exchanges are 

performed in several ent internal zones (Figure 1).

As the ferrous burden descends it is first dried, then 

reduced by the up -coming process gas containing CO 

and H2 . This zone, called upper granulated zone, or 

preparation zone or even indirect reduction zone, 

ideally produces wustite (FeyO) to be reduced to 

metallic Fe in the inferior zones . The index y, in this 

case, approaches 0.95. In real terms, however, the 

wustite will have an excess of oxygen which is 

quantified in terms of kg-mol of O / kg-mol of Fe. 

This parameter is necessary to establish a proper 

mass and thermal balance of the process and will be 

designated by ω (Rist and Maysson, 1967). The 

thermal balance also needs a parameter to represent 

real conditions. This is the heatloss that will be 

represented by λ.  
 

 
Fig. 1. The Iron Blast Furnace internal zones. 

The main heat source is the combustion of coal and 

coke that produces mixture of CO, CO2, H2, H2O and 

N2. CO is regenerated in the direct reduction zone 

and below by the Boudouard reaction (Eq. 2) . H2

also plays an important role and the C-H-O will be in 

equilibrium in most sub-processes.

The basic chemical reactions involved are:
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CO + 1/2 O 2 → CO2 (1)

CO2 + C →  2CO (2)

H2O+ CO → H2 + CO2 (3)

3Fe2O3 + CO →   2Fe3O4 + CO2 (4)

yFe3O4 + CO →  3FeyO + (4y –3)/2 CO2 (5)

FeyO + CO →  yFe + CO 2 (6)

SiO 2 + C → SiO (gas) + CO (7)

SiO (gas) + C → Si + CO (8)

Silicon is partially reduced from silica into gaseous 

silica monoxide and incorporated to the liquid by 

further reduction. This process is rather complex and 

the metal silicon content is very hard to estimate.

The other impurities in the metal, manganese and 

phosphorous, do not represent a difficult estimation 

task depending more on the raw materials

composition than on the process conditions. 
 
2.2 Artificial Neural Network (ANN)

Theory. ANN are mathematical models constituted

by several neurons, arranged in different layers

(input, hidden and output), interconnected though a 

complex network. The multi-layer feedforward, that 

is the most popular of the much architectures

currently available, was used. According to

Equation (9), a neuron is responsible for the

summation of all signals from previous layer’s

neurons, yi,j (amplified or weakened by weight 

values, wi,j,k) and a value called bias, bi,j. i represents

the order of the layer whereas j and k indicate the 

order of the neuron in the layer. An activation

function, f - such as hyperbolic tangent, sigmoid or 

linear function – is used for the activation of the 

neuron output, yi,k.

yi,k  = f(Σ  (wi,j,k yi-1,j) + bi,k)   (9)

The data processing within the ANN structure is 

executed collectively and simultaneously through the 

dense network of neurons and their connections.

Those characteristics were crucial for the this

technique to be chose and not other multivariate 

regression ones which tend to give too much weigh 

to extreme values of the input variables.

Training the ANN. Once the network weights and 

biases have been initialized, the network is ready for 

training. The training process requires a set of

examples of proper process behavior -network inputs 

and target outputs. During training the weights and 

biases of the network are iteratively adjusted to 

minimize the network objective function. The basic 

training algorithm is the backpropagation algorithm, 

in which the weights are moved in the direction of 

the negative gradient (Demuth and Baele, 2002).

The first method for improving generalization is

called regularization. This involves modifying the 

objective function, which is normally chosen to be 

the sum of squares of the network errors on the 

training set. It is possible to improve generalization if 

we modify the objective function by adding a term 

that consists of the mean of the sum of squares of the 

network weights and biases:

F = β. SSE + αSSW (10)

where SSE is the sum of squared errors, SSW is the 

sum of squares of the network weights, and β and α
are objective function parameters (Demuth and

Baele, 2002).

According to Foresse and Hagan (1997), using this 

objective function will cause the network to have 

smaller weights and biases, and this will force the 

network response to be smoother and less likely to 

overfit. One feature of this algorithm is that it 

provides a measure of how many network

parameters, (weights and biases) are being

effectively used by the network. This effective

number of parameters will be called p. P is the total 

number of parameters in the network. 

Neural network training can be made more

efficiently if certain preprocessing steps are

performed on the network inputs and targets. Then, 

before training the network the training data was 

normalized in the range [0.1, 0.9], as follows:

y0,j = 0.8 ((xj- xminj) / (xmaxj – xminj)) + 0.1  (11)

where y0,i is the normalized value for the variable xj,

and xminj and xmaxj are the minimum and maximum 

of each variable xj.

Modeling and data set . A neural model was

developed in the present work to predict: the

equilibrium mismatch parameter for the oxygen mass 

balance (ω), the thermal loss parameter for the heat 

balance (λ), the gas flow resistance parameter (ρ),

the hot metal Silicon content ([Si] ) and the sulfur 

partition coefficient between slag and metal (Ks).

Feeding those parameters to a simple mass and heat 

balance, a precise operation pattern is defined to 

guide operators and technical staff for immediate and 

strategic decision making.

Table 1 shows the final variables selection and their 

meaning. Coke drum (x15) and reactivity (x16)

indexes quantify physical strength and chemical

activity, respectively, and are important both to gas 

flow and chemistry in the process. 

Three years of Blast Furnace 3 operation were

observed. Records were condensed into 23 input 

variables. Sets corresponding to days with missing or

inconsistent data were filtered out . Records include 

those acquired by the furnace digital automation 

system, works and mines laboratories. Finally a 28 x 

820 data bank was gathered, randomized and fed into 

a MATLAB®  program. The final data-base was then

split into two sets, one for training and the other for 

generalization tests (15% of the data). It was
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carefully checked the range of each variable since it 

should be similar to both sets.

In the search for the architecture that could yield the 

best possible prediction model accuracy, a study was 

performed to establish the number of nodes in the 

network hidden layer.

Table 1. Input ( x) and output (y) variables 

used for the neural modeling.

Blast variables

x1 kg-mol of N2 in blast  / ton of metal

x2 kg-mol de H2O in blast / ton of metal

Burden variables

x3 kg of slag / ton of metal 

x4 Primary slag B4

x5 Hearth slag B4

x6 blast temperature (oC)

x7 kg of small-coke / ton of metal

x8 kg of injected coal / ton of metal

x9 kg of lumpy hematite / ton of metal

x10 kg of pellets / ton of metal

x11 kg of quartzite / ton of metal

x12 external coke / total coke

x13 pulverized coal ash content

x14 pulverized coal oxygen content

x15 average coke Drum Index

x16 average coke Reactivity Index 

x17 coke mean size (mm)

x18 hematite < 6,35 mm fraction

x19 hematite > 38 mm fraction

x20 hematite Decrepitation Index

x21 kg of stock sinter / ton of metal

Equipment and environmental variables

x22 rain fall index (mm)

x23 tapping hole campaign index (1 or 0)

Output variables

y1 wustite stoichiometric index (ω )

y2 gas flow resistance (ρ)

y3 metal silicon content ([Si] )

y4 heat losses in MJ / ton of metal (λ)

y5 sulfur in slag / sulfur in metal (Ks)

The predicted parameters are combined with other

variables in a deterministic model to estimate the 

overall process pattern. The parameter θ  represents 

the ratio between metal and gas produced. φ
represents the unity gas flow calculated from the 

predicted gas resistance, ρ , and the pressure

imposed by the equipment, blower and reactor. The 

overall performance index, π, is the final product of 

the model, meaning the amount of metal produced in 

a unity time for each cross section area unit and 

results form the product φ  x θ. Figure 2 shows a 

cause and effect diagram for the hybrid model. The 

four final variables: [Si] , [S], µ and π are efficient 

process performance indexes. The first two indicate 

metal silicon and sulfur content, respectively. The

parameter µ, as defined by Rist (Rist and Misson,

1967) quantifies the specific consumption of

reducing agents (C + H2) and ultimate the metal cost. 

The index π quantifies the amount of metal per unity 

area, therefore, the overall process productivity.

2.3 Experimental Industrial Application

The operation process using the model as supporting 

toll at Blast Furnace 3 is shown on Figure 3. The 

application will be extended to Blast Furnace 2 after 

the experimental application to Blast Furnace 3.

Fig 2.  Data flow diagram for the hybrid model.

Fig 3. Industrial application procedure flow diagram.

3. RESULTS

Fig 4. Relationship between effective parameter ratio 

(p/P) and the number of neurons in the hidden 

layer (n1).

Figure 4 shows how the ratio between initial number 

(P) of network parameters - weights and bias – and

the number of effective parameters after training (p)
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behaves with the increase in the number of neurons 

in the hidden layer (n1).

According to Foresse and Hagan (1997 ) the

decreasing effective parameters ratio (p/P) indicate 

that the number of neurons is excessive. Another 

criterion leads to the same conclusion, as illustrated 

by Figure 5. It is clear that the larger number of 

hidden layer neurons does not contribute to a smaller 

mean quadratic error for the generalization set

although the mean error for the training set

decreased. In conclusion, the best network

architecture was found to be 23x23x5.

Fig 5. Relationship between mean quadratic errors 

(mean e
2
) and the number of neurons in the 

hidden layer (n1).

In this study and for the chosen architecture, the 

neuron activation function used in the hidden layer 

was a sigmoid one while a linear function was

chosen for the output layer neurons. 

Table 2 shows the mean square error for each of the 

5 output variables expressed in terms of respective 

standard deviations. As expected, smaller mean

quadratic errors are obtained for training sets. Mean 

errors for generalization sets were considered

acceptable.

Table 2 – Square mean errors for the output variables in 

terms of respective standard deviations

training generalization

ω 0.503 0.722

ρ 0.400 0.651

[Si] 0.560 0.822

λ 0.354 0.496

Ks 0.531 0.729

Figure 6 shows how estimated standardized values 

(horizontal axis) match actual ones. It could be also 

noted from Figure 6 the tendency of experimental 

seen and unseen points to follow the diagonal line, 

indicating the accuracy of the network approach. The 

estimation of low values of ω and high vales of Ks

was deficient for a few cases. 

It should be pointed out that φ, θ and, consequently, 

π will depend not only on the values estimated by the 

network but also on other process variables.

Therefore there is no point in estimating them at this 

moment.

Fig 6. Dispersion plots of the network output

variables (predicted values x actual values) for 

both training (Ο) and generalizat ion (♦) sets. 

Axes cross at the mean value.

3.2 Experimental Industrial Application

Following the steps previously described (Figure 3), 

the experimental industrial application was carried 

out during a twenty-day period. During the first 

twenty days of September 2005, the Blast Furnace 

number 3 operation was guided by the model.

According to Figure 2, four variables were taken to 

access the prediction capacity of the model: coke-rate

(CR), metal silicon content [Si] , sulfur metal content 

[S] and Ergun fuidodynmic resistance index (K).

Figures 7 shows the results of the industrial

observations while in Table 3 results can be

numerically compared. 

Table 3 – Statistical analysis of indexes observed

during the test period without and with model

error

mean

error
sd

set
sd

population
sd

CR (kg/t)? 2.8 2.7 4,6 36.9

[Si] x104 0.8 2.9 4,4 13.5

[S] x 105 1.5 3.8 4,4 7.9

K 19.0 11.42 8,9 24.0

It can be observed from table 3 that the error standard 

deviation was smaller than the relative standard for 

the experimental set and much smaller than the 

standard deviation observed in actual operation. For 

the fluidodynamic resistance it can be pointed out 

that the test period did not present sufficient variation 
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for the adequate assessment of the model on this 

aspect.

.

Fig 7 – Results of experimental industrial tests.

Because operational corrective actions were still too 

timid, fuel-rate corrections were allowed some hot 

metal temperature variations which contaminated

sulfur control. This can be observed in Figure 8. In 

future, better heat control, with more confident use of 

the model, will also improve chemical quality,

because chemical equilibrium is strongly connected 

to temperature.

Figure 8 – Influence of  hot metal temperature on the

prediction error for hot metal sulfur

4. CONCLUSIONS

The main contribution of the present work is the 

development of a neural model which can increase 

prediction accuracy and operation performance while 

reducing costs for the blast furnace process at 

Companhia Siderúrgica Nacional (CSN -Volta

Redonda/ RJ/ Brazil). Obtaining liquid iron in stable 

conditions is a very hard task, because the Blast 

Furnace is a complex process, conjugating several 

sub-processes. Some of them are continuous, some 

transient, occurring in the same reactor and still 

subject to oscillations in raw material composition.

The developed hybrid model, based on mass and heat 

balance associated to an artificial neural network, 

aims at supporting both operational and strategic 

decision making.

A 23x23x5 feedforward network proved to be an 

efficient architecture, using sigmoid and linear

activation functions for the hidden and output

neurons, respectively. 

Except for fluidodynamic resistance, in other words, 

permeability, the period in which the model was used 

to guide industrial furnace operation proved to be 

predictable and  consistent. For assessment of the 

permeability prediction a longer period will be

necessary to allow for significant variation of that 

parameter.

The analysis of alternative raw materials or practice 

standards can be held also with the support of the 

model as long as the variables are kept inside the 

operating range studied.

It could be concluded that the neural model is a 

relevant tool to support an iron Blast Furnace

operation since some corrections and retraining are 

carefully carried out by expert human operators in a 

systematic way. These procedures are crucial for 

adopting the neural model as a standard operating 

practice.
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