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Abstract: This paper presents empirical modelling approach in predicting elemental 
composition of coal. The model is developed to estimate carbon, hydrogen and oxygen 
content of coal. In the present work, several methods are applied to formulate the model 
including multiple regression (MR), principal component regression (PCR), partial least 
squares (PLS) and back propagation neural networks (BP-ANN). The use of BP-ANN 
shows the best result among the tested methods and appears to be a promising tool for 
predicting elemental composition of coal because it gave the least root mean square of 
error (RMSE) and the highest correlation coefficient (R2). 
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1. INTRODUCTION 

Coal properties have many significant impacts on 
boiler operation and performance during coal 
combustion. Burning an unfamiliar fuel can reduce 
the efficiency of a power plant, increase pollutant 
emissions and, in some cases, actually damage the 
boiler or other system components. This can seriously 
affect the profitability and safety of a power plant. 
Power plant operators need to be confident that they 
can adequately know the coal properties and predict 
the consequences of using off-design or unfamiliar 
coals before they are fed into the boiler. 
Consequently, it is very important to provide coal 
properties data for power plant operators.*

Unfortunately, there are some limitations of existing 
assessment of coal properties especially by using both 
conventional laboratory procedures and current on-
line analysers. In laboratory procedure, chemical 
analysis was done on samples taken to the laboratory. 
Proximate analysis is relatively easy and quick to 
perform because it can be obtained using common 
laboratory equipment and is useful in practical 
application, however, it does not present detail 
information about the actual composition of coal. On 
the other hand, elemental analysis of coal requires 
highly trained analyst compared with proximate 
analysis, which only requires standard laboratory 
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equipment and can be run by any competent scientist 
or even a skilled operator. Additionally, elemental 
analysis can take a day to obtain the results and in 
process control point of view, this traditional 
laboratory analysis of coal samples does not allow 
real time control if some adjustments need to be made 
to the system, for example controlling air to fuel ratio. 
Meanwhile, current on-line analysers of coal such as 
prompt gamma neutron activation analysis (PGNAA) 
are expensive. On-line analyser can cost from about £ 
30,000 to £ 150,000 for a single parameter unit, with 
prices rising to as much as £ 400,000 for a prompt 
gamma neutron activation analysis (PGNAA) unit 
(Carpenter, 2002). Moreover, PGNAA still cannot be 
placed anywhere at the interface between the mine 
and the power plant (Yao et al., 2005). For these 
reasons, efforts must be directed to develop fast, 
reliable and inexpensive coal analyser which has 
capability for real time measurement / prediction. 

 One of the approaches is to establish suitable 
correlations to enable prediction of coal properties as 
a function of other available and easily obtainable 
coal properties. The mathematical models are 
developed using lab- and full-scale plant data as 
inputs to assess and predict other variables as on-line
system outputs.  Several variables exist in full scale 
and experimental data documented in power plant 
database and these data are used in the present work 
to develop process models. For determining elemental 
composition, proximate analysis can be used mainly 
due to its availability in power plant data base. 
However, due to great variability of coal properties, it 
is difficult to propose a suitable model, which can 

IFAC - 747 - ADCHEM 2006



represent the correlation between properties of coal. 
Coals are complex materials and can vary in qualities 
even from one mine to another or from one seam to 
another one. Therefore, extreme care must be taken in 
formulating a suitable model for representing the 
relationship between elemental composition and 
proximate analysis data. 

 To date, there is very limited work in the literature
relevant to the elemental prediction of coal using 
proximate analysis data. To the best of our 
knowledge, only Yao et al. (2005) has developed a 
model for predicting hydrogen content and 
demonstrated the potential use of BP-ANN to tackle 
the difficulties in predicting elemental composition. 
This paper will present a comparative study of 
empirical modelling to predict carbon (C), hydrogen 
(H) and oxygen (O) content in coal using proximate 
analysis. Several methods are applied to formulate the
model including multiple regression (MR), principal 
component regression (PCR), partial least square 
(PLS) and back propagation neural networks (BP-
ANN).  

2. THEORETICAL BACKGROUND 

Several mathematical tools are considered to arrive at
an empirical model which can predict elemental 
composition from proximate analysis. The description 
of several mathematical techniques and associated 
algorithms is presented below. 

2.1 Multiple Regression (MR) 

In simple linear regression, a dependent variable (y) 
is predicted from a single independent variable (x). In 
multiple regressions, a dependent variable is 
predicted from several independent variables. For 
predicting C, H and O content using proximate 
analysis (ash content (ash), volatile matter (VM), 
moisture content (MC) and fixed carbon (FC)), the 
models are formulated as follows: 

C= ++++ MCVMash CCCC 3210 αααα
                               εα +FCC4                            (1) 

H= ++++ MCVMash CCCC 3210 αααα
                               εα +FCC4                            (2) 

O= ++++ MCVMash OOOO 3210 αααα
                               εα +FCO4                            (3) 

where 4321 ,,, ααααα ando are the model 

parameters and ε  is the error term.  As a note, 
sometimes, multiple regression models are developed 
involving interaction terms among independent 
variables to improve its prediction performance. 
Based on linear regression, one can 

estimate 0α , 1α , 2α , 3α  and 4α  with reasonable 

accuracy. The estimates of 0α , 1α , 2α , 3α  and 4α , 

will be denoted as 4321 ,,,, aandaaaao . The 

predicted values of C, H and O using these estimates, 
will be further denoted as Ĉ, Ĥ and Ŏ so that 

Ĉ= ++++ MCaVMaashaa CCC 3210

                                    FCa C4                                (4) 

Ĥ= ++++ MCaVMaashaa HHHH 3210

                                    FCa H4                                (5) 

Ô= ++++ MCaVMaashaa OOOO 3210

                                    FCa O4                                (6) 

To get estimates for 4321 ,,,, aandaaaao , use the 

values of 4321 ,,, ααααα ando  that result in 

minimum values of the sum of squared errors (SSE). 
In other words, if Ci, Hi and Oi is an observed value 
of C, H, and O, the values of 

4321 ,,,, aandaaaao  are obtained so that the 

following parameters are as small as possible (Berk 
and Carey, 2004; Draper and Smith, 1998; Brereton, 
2003)

                       SSEC= ∑
=

N

i 1

(Ci – Ĉi)
2                    (7) 

                         SSEH= ∑
=

N

i 1

( Hi – Ĥi)
2                   (8) 

                      SSEO= ∑
=

N

i 1

(Oi – Ô)2                    (9) 

2.2 Principal Component Regression (PCR)  

If X is the matrix of predictor / independent variables 
(proximate analysis: ash, VM, MC and FC) and Y is 
the matrix of response / dependent variables 
(elemental composition: C, H or O), principal 
components of X are constructed through principal 
component analysis (PCA) which can be expressed as 
follow 

                      X =   UVT + E                       (10) 
where U is X-scores ,V is X-loadings and E is X-
residuals. Principal component regression (PCR) takes 
the scores from the decomposed X matrix and 
regresses them on the dependent data set, Y (Beebe et 
al., 1998;  Martin et al, 1995; Brereton, 2003). 

2.3 Partial Least Square (PLS) 

If X is the matrix of predictor / independent variables 
(proximate analysis: ash, VM, MC and FC) and Y is 
the matrix of response / dependent variables 
(elemental composition: C, H or O), the correlation 
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between Y as function of X usually can be described 
as follows 

                      Y =    X b                          (11)
where vector b contains the model coefficient. The 
PLS model has the form 

X =   UVT + E                       (12) 
                      Y =   WZT+F                         (13) 

The matrices on the right-hand side of these models 
are defined by U=X-scores, W=Y-scores, V=X-
loadings Z=Y-loadings, E=X-residuals, and F=Y-
residuals. The final PLS prediction model can be re-
expressed as 

                                  Ŷ = XβT                             (14)
                        ΒT = P(PTP)-1QT                     (15)

where Ŷ are the predictions of Y and β are the 
regression coefficient vectors (Ramadhan, 2005; 
Martin et al., 1995; Brereton, 2003). 

2.4 Back Propagation Artificial Neural Networks 
(BP-ANN) 

Let X be a set of n input neurons, Y a set of m output 
neurons, ξ i real input potential and yi real output of 
neuron i. The neuron’s output for this type of network 
is defined by the equation: 

                                yi = ( )iξσ                         (16) 

 where the activation function,σ , maybe linear, 
threshold, sigmoid, hyperbolic tangent or radial basis 
function. 
The network error E(w) related to a training set is 
defined as a sum of square errors Ek(w) of network 
concerning each training example and depends on the 
configuration of network w. 

                          ( ) ( )∑
=

=
p

k
k wEwE

1

                  (17) 

        where ( ) ( )( )∑
∈

−=
Yj

kjkjk dxwywE 2,5.0   (18) 

Partial network error Ek(w) related to the k-th 
Training example is directly proportional to a sum of 
square of difference between the real network value 

and the desired output where ( ) kjkj dxwy −, is the j-

th output error for the k-th training sample. An error 
of zero would indicate that all the outputs pattern 
computed by the neural network perfectly match the 
expected values and the network is well trained 
(Haykin, 1999, Bulnová and Kostúr, 2003, Pham, 
1995). 

3. RESULTS AND DISCUSSION 

Four methods are used to develop elemental 
composition predictor of C, H and O content in coal 
using proximate analysis. The total data set sizes are
167 x 4 for X and 167 x 1 for Y. The data from 
different countries and mines (Pisupati et a.l, 1992; 
Furimsky et al., 1990; Artos and Scaroni, 1993; 

Peralta et al., 2001; Coimbra et al., 1993; Fan et al., 
1999; Visona and Stanmore, 1997; Armesto et al., 
2003; Bailey et al., 1990; Peralta et al, 2002; 
Lockwood et al., 1998; Brewster et al., 1995; Su, 
1999, Carlson, 1996; McLennan et al., 2000; Guo et 
al., 1997; Charland et al., 2003) were considered for 
developing and testing the models. 75 % of the data is 
used to develop the models and a quarter of the total 
data is used as independent data for testing the 
models. The range of data used for training and 
testing is presented in Table 1. 

Table 1 Proximate analysis and elemental 
composition of coals (%)

  

  Average Range 
Proximate analysis  

Ash 11.33 0.5 - 40.4 
VM 30.34 2.6 - 54.9 
MC 6.76 0.1 - 36.8 
FC 52.72 23.6 - 87.6 

Elemental Composition  
C 74.07 40.6 - 94.6 
H 4.45 0.4 - 6.7 
O 10.61 0.2 - 38 

3.1 Multiple Regression (MR) 

The multiple regression model predicts C, H and O as 
a linear function of ash, VM, MC and FC. All the 
results, root mean square of error (RMSE) and 
coefficient correlation of the linear fit of measured
and predicted (R2) data are summarized in Tables 2, 3 
and 4.  

   

3.2 Principal Component Regression (PCR) 

PCR is done for each possibility where we generate 
matrices U and V into one, two, three and four 
components. The result for each number of 
components (RMSE and R2) is listed in Tables 2, 3 
and 4. 

    

3.3 Partial Least Square (PLS) 

PLS is done for each possibility where we generate 
matrices U, V, W and Z into one, two, three and four 
components. The result for each number of 
components (RMSE and R2) is shown in Tables 2, 3 
and  4.      
  

3.4 Back Propagation Artificial Neural Networks (BP 
– ANN) 

Training process is done to develop suitable models 
for predicting C, H and O content. In this case,  
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Levenberg-Marquardt algorithm is used for the 
learning process and constructing the topology of BP-
ANN containing input layer with four nodes (ash, 
VM, MC, and FC), one hidden layer and one output 
layer with one node (C, H, or O). To find the 
optimum number of neurons in the hidden layer, the 
number of neurons was changed from 2 up to 50 and 
arrived at optimum results which give minimum 
value of RMSE and maximum value of R2. The 4-22-
1 network for predicting C, 4-10-1 network for 
predicting H and 4-9-1 for predicting O give the most 
accurate prediction for this present study. The 
prediction performances   are summarized in Tables 
2, 3 and 4.  

Table 2 Summary of Prediction Performance of C
   

Training Test 
Model 

RMSE R2 R2 

MR 6.259187 0.6915 0.6762 
1 comp 6.71869 0.6568 0.7866 
2 comp 6.56509 0.6672 0.776 
3 comp 6.51491 0.6741 0.7678 

PCR 

4 comp 6.40771 0.6874 0.6737 
1 comp 6.69081 0.6546 0.7853 
2 comp 6.48453 0.6757 0.7494 
3 comp 6.3821 0.6875 0.6776 

PLS 

4 comp 6.40771 0.6874 0.6737 
BP-ANN 4.99097 0.879 0.91 

Table 3 Summary of Prediction Performance of H

Training Test Model 
RMSE R2 R2 

MR 0.56654 0.705 0.3969 
1 comp 1.24138 0.0063 0.0055 
2 comp 0.6664 0.6628 0.4262 
3 comp 0.61319 0.6628 0.4563 

PCR 

4 comp 0.58019 0.7006 0.3942 
1 comp 1.18171 5E-05 0.0142 
2 comp 0.63392 0.6436 0.4288 
3 comp 0.57805 0.7005 0.3998 

PLS 

4 comp 0.58019 0.7005 0.3942 
BP-ANN 0.44272 0.899 0.888 

3.5 Discussion 

From the results of each methods used in the present 
work, it is obvious that BP – ANN based predictor of 
C, H, and O content of coal show the best result 
compared with other methods (the prediction 
performance of BP-ANN is the best). Overall, it 
appears that BP-ANN based model is a valuable tool 
to assess the coal properties for any coal-fired power
plant. The residual plots for prediction of C for each 
method are as shown in Figures 1, 2, 3 and 4. It can 

be seen that the Figure 4 for BP-ANN show the most 
random residual plot indicating the good fit of this 
model compared with the other three methods. 

Table 4 Summary of Prediction Performance of O

Training Test Model 
RMSE R2 R2 

MR 4.273568 0.5902 0.5118 
1 comp 7.59932 0.3684 0.5101 
2 comp 4.69999 0.5137 0.4032 
3 comp 4.47801 0.5608 0.5516 

PCR 

4 comp 4.34347 0.5902 0.5115 
1 comp 7.28019 0.5902 0.4428 
2 comp 4.55755 0.542 0.4474 
3 comp 4.32669 0.59 0.5186 

PLS 

4 comp 4.34347 0.5902 0.5115 
BP-ANN 2.33773 0.939 0.894 
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Fig. 1. Residual Plot for Prediction of C using MR 
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Fig. 2. Residual Plot for Prediction of C using PCR 
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Fig. 3. Residual Plot for Prediction of C using PLS 
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Fig. 4. Residual Plot for Prediction of C using BP-
ANN 

The linear fit of measured values of C, H, and O and 
their predicted values using BP-ANN based model 
are shown in Figures 5, 6 and 7. Predicted values are 
within ± 10 % from the measured elemental 
compositions.  
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Fig.5. Measured and Predicted Values of Carbon  
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Fig.6. Measured and Predicted Values of Hydrogen 
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Fig. 7. Measured and Predicted Values of Oxygen 

5.  PRACTICAL IMPLICATIONS 

Most of the coal-fired power stations receive coal 
from different mining operations. The coal, generally 
vary in quality even from the same coal mine. 
Moreover, due to the changing nature of the coal, off-
line ultimate analysis may not be so accurate when the 
coal reaches the mill inlet. The challenge is to monitor 
the coal through the process and the quality of coal at 
the mill inlet is known so that the combustion can be 
appropriately controlled. Empirical model such as BP-
ANN model would be a useful tool in this regard to 
provide the on-line information of elemental 
composition of coal, which can be used to determine 
the stoichiometric air requirement for various coal 
samples. Thus, the empirical model can provide fast 
and reliable prediction of elemental composition of 
coal to enhance performance of the combustion 
control system for power utilities. 

6.  CONCLUSION 

In this paper, four empirical modelling approaches 
were applied to predict C, H, and O content in coal 
based on the proximate analysis data. The methods 
included multiple regression (MR), principal 
component regression (PCR), partial least square 
(PLS) and back propagation neural networks (BP-
ANN). The use of BP-ANN gave the best result 
among the tested methods and appears to be a 
promising tool as elemental composition predictor. 
However, further improvements are needed for BP-
ANN by utilizing additional data for training the 
model and using other learning algorithms. Also it is 
important to find the optimum value of number of 
epoch and learning rate of the networks. Furthermore, 
development of a good estimator for predicting 
complete elemental compositions of coal (C, H, N, S, 
and O) is also challenging which could potentially 
provide useful and valuable data for power plant 
operators. 
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