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Abstract:A significant research work hasbeen carried out on m odeling, identifica-

tion and controlofprocesses represented by W ienerm odels. These m odels lnclude

a cascade connection ofa lineartim e invariant system and a staticnonlinearity.
Several approaches can be found n the literature to perform the identfication
process. In this article, we describe a param etric description for the system , that

allow s to describe the uncertainty as a set of param eters. T he proposed algorithm

is illustrated through a pH neutralization process.
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1. NTRODUCTION gory, Pearson and Pottm ann (2000), include three
m odel structures: the W dener m odel, the Ham -
N onlinear m odelbased control has been widely merstein model and the feedback blodck-oriented

di used am ong the chem ical engheering com m u- m odel. These m odels are built from the combi-
nity. The use of models based entirely on fun-nation of two com ponents: a static (m em oryless)
dam ental process understanding has the advan- nonlinearify () and a Ineartin e nvariant (LT I)

tage of possessing a clear physical interpretation. system H (z).
However, these models tend to be highly com - , ) . :

. . . . . . . In thispaperwe are nterested M W ienerm odels:
plexmaking impossible theirapplication in popu-

lJarm odelbased control strategies (Pottm ann and a cgscade oonn ) n of H () follwed by the
Pearson, 1998) static nonlineariMdy/() . The use of these m odel s

has been treated in literature m di erent con-
On the other hand, purely empirical m odels texts (Pearson and Pottm ann, 2000; Lussdn et
blackbox), based entirely on nput/ocutput data, al., 2003; Biagiol et al., 2004). Som e represen-
lack of physical interpretation.However, they aretation and identffication algorithm s for uncertain
known to be “successful” and to have good flexi- W iener M odels w ill be presented. The goal is to
bility. obtan a nom nal model of the process plus a
param etric description of the uncertainty, which
is the main contrbution of this work. For this
purpose, Laguerre polynom ials are used to m odel
the linear dynamic blodk, and a piecewise In-
ear (PW L) representation of the nonlnear static

A thid approach is used when som e physical
nsight isavaibble, but severalparam eters rem ain
to be determ ned from observed data.In thiscate-

1 Corresponding author. Email: figueroa@uns.edu.ar. block is provided. This m odeling approach show s
Phone: +54 291 4595101 ext. 3325. FAX: 454 291 4595154. to be advantageous due to its sin plicity, easy use
This work was financially supported by the CONICET, . .

CIC and the Universidad Nacional del Sur. and good app lication results.M oreover, them odel
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Fig.1.M odelunder uncertainties

uncertainty can be easily m apped on to them odel
param eters.

T he paper is organized as follows. In Section 2,
general concepts about models and uncertain-
ties are mtroduced. In Section 3 som e usual de-
scriptions and dentfication techniques of W dener
system s are reviewed. T he proposed uncertainty
m odel is presented I Section 4 and an algorithm
for param eter uncertanty characterization is n-
troduced. In Section 5, the resuls are evaluated
on the basisofa sin ulation ofa pH neutralization
process. Fnal rem arks are addressed in Section 6.

2. PROCESS NFORMATION ,MODELS AND
UNCERTAINTIES

Let us consider that process data are avail-
able In the form of two sets of process m-
puts @ = {ug,u1, ---,uy}) and outputs {y =
{vo,v1, -, yn}).Then,weain atfindingam ath-

em atical model which approxim ates these data.

This isperform ed I a two steps procedure.
In the first step, a “type model” is selected . W e
use the previous know ledge about the process:

Ok+1 = F Gks -+ k—nN, > Uk, == uk—nN,,0) @)

w here the predicted output at tin e k + 1 depends
of the previous mputs and predicted outputs and
of the set of param eters (@) to be determ ined.

In the second step, the param eters @) are com -

H(2)

u(k) v(k) NG) y(k)

Fig.2.TheW ienerm odel structure.

3.W IENER MODEL IDENTIFICATION

3.1 Model Description

Figure 2 depicts a W iener model . It consi sts of

a LTI system H (z) llowed by a static nonlin-
earity IV (). That is, the linearm odelH (z) m aps
the input sequence{u ()} hto the interm ediate
sequence {v ()}, and the overallm odel output is
yk)= N@E)). In the ollow ing, there is no loss
of generality in assum idd (1) = 1, since that
any other value of this gain can be ncluded in the
nonlnear block (Pearson and Pottm ann, 2000).

One of the most common choices for the rep-
resentation of the Ilnear block are the Ratio-
nal Transfer Functions (Pearson and Pottm ann,
2000; Figueroa et al., 2004) . Another usual op-
tion are the Linear State Space Models (Lusstn et
al.,2003) .A drawback of these m odels is that we
need a large num ber of param eters to describe a
system with a slow im pulse response or a dam ped
System . A femative representations, where prior
know ledge about the dom nant poles can be used,
are the Laguerre and Kautz Models. For exam ple,
the Laguerrem odeldescribes the transfer finction
H (z) with the follow Ing basis fnction expansion,

Np
H@) =Y hilia) @)
=0
LiGoa)= 1-a (l az) a)
zZ-Q zZ-Q

w here the param eters of the m odel are the coe -
cients h; and a isafilter coe cient chosen a

puted tominimizethedi erencebetween the preriori. The nonlinear block N () is, in general, a

cess and model outputs (i - ) to any tine.

This isusually perform ed by m inin izing the least
squared error. In what follow s we denote this set

of param eters as nominal parameters Oy .

W hen the nterest ains at obtaining an uncer-
tainty related w ith this nom inalm odel, a typical

real -value function of one variable, § =N @).
W e describe the nonlnear function as

Nn

Y = ﬁgz W) @)
0

where the basi s functionB; ) have been prede-

temm ined, the valuefi are the param eters that
should be com puted andV,, w illbe referred to as
“order” of the nonlinearity. Once the basis func-
tions BZ- are fixed, the output is a linear function

of the parameters. Thisallowsus to uss a linear

approach is to define a set of possible models
to represent all the process behaviours. This is
perfom ed by considering a set ofm odelparam e-
ters such that when these param etersf

are used, the whole set of exciting mputsu is

“m apped” onto an output set which contains the
set of the output data (see Fig. 1). In this way,
we assum e the sam e form at for all the possible
m odels in the uncertain set. Thism odels fam ily is
defined I term s of a set of param eters.
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regression to estin ate the param eters. The two
basic advantagesof thisapproach are the low com -
plexity and the unigueness of the solution. Som e
possible choices for the basi s functi ondameer
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Series, Chebyshev Polynomials, Sigmoid Neural
Networks or Piecewise Linear Function PW L).In
particular, the PW L fiinctions have proved to be
a very powerfiil tool In the m odeling and analysis

of nonl inear system s. The general formulation of

PW L functionsallow sus to represent a non -linear
system through a set of IInear expressions, each of
them valid In a certain operation region.To m ake
this approxim ation, the dom ain of variables is
partitioned into a set ofnon-em pty regions ¢,

suchthat = |J_, *.Ineachoftheseregionsthe

should be persistently excited n thewholedom ain
of the nonlinear block, such that all the relevant
dynam icsis captured.

From Fig. 2, the signaly can be written as
v = H (z) euy, aswellay, = N7t yi) 6)
Equating both sides of these equations W ith the

inclusion of an error functiefk) to allow for
m odeling error) the follow Ihg equation iscobtained

non-linear finction isapproxim ated usinga linearx

(@ ne) representation. These functions allow a

system at ic and accurate treatm ent of the approx-

imating functions. It can be proved (&mlzf

al., 1999) that any nonl inear continuous function

N@): ™ ! can be uniquely represented
using PW L functions m the form ofEq. &) as:

Biw)= ©08) (5)

where [, are given param eters that define the
partition of the dom al ofv, and are functions
that nvolve nested absolute values. In this paper
weuse an orthonorm aldescription of the basisdue
to its Jocal properties.

3.2 Nominal Model Identification

Di erent methods for W iener m odels identfica-
tion have been reported, and they can be grouped
T threem ain approaches. T hefirst one isan itera-
tive algorithm forHam m erstein m odels dentifica-
tion (Warendra and G allm an, 1966) . If the system
is adequately param eterized, then the prediction
error can be lnearly separated nto each set of
param eters (the those of the lnear and the non-
Inear blocks) . The estin ation is then perform ed
by mininizng altematively, with respect to each
set of param eters.

A second approach, based on correlation tech-
nigues B illings and Fakhourd, 1978), relies on a
separation principle, but with the rather restric-
tive requirem ent on the put to be white noise.

A recent approach for the dentffication of blodk-
ordented m odels is based on least squares estin a-
tion and singularvalue decom position Bai, 1998).
D ue to the particular param eterization used, this
m ethod applies only for single input/single output
system s.6n ez and Baeyens (2004) perform ed a

m ore general param eteri zation to dealwith mul-

tiple mput/ multiple output M M O) system s.
T his approach w illbe herein followed fornom nal
m odel identification.

Let us assum e that an Iput-output data set is
available, noted as up and yj, respectively. To
obtain these data sets, several aspects should
be taken into acoount. For exam ple, the process
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N
Zfi,Bz’ i) = holo wy) + Zhili W)+ ek) (7)
i=0 i=1

or, equivalently,

N, N
ek) = ZfiBi i) — holo wr) - Zhili W) (8)
i=0

i=1

which isa linear regressi on.Defining

9= D"valv "'7fN,L7h17h'27 "'7h/Nl]T (9)
¢= BO(yk)7B1 (yk)v ”'7BNn (yk)a
~ly g, = I k), -+, = Iy, )1, (10)

Then, Eq. (8) can be written as

ek) =0T - 1o W) (11)
Now, an estinate § of §# can be computed by
m Inin izing a quadratic criterion on the prediction

errors € (k) (ie. the least squares estin ate). It is
wellknown that thisestimate isgiven by:

=(~ 5"« (12)
where = [lg@), -+ ~loy)] and =
B@a),- ---,¢WIN)] are form ed using the set of the

N data available from the process.

Now,est'matesoftheparametersﬁ @=0,---,Ny),
ho = 1and h; G = 1, --+, N;) can be com puted
by partitioning the estim ate 6 , accordng to the
definition of  In (9). It is in portant to rem ark

that we are identi fying the inverse of the nonlin-

earity, which is frequently used in many control
applications.

4. UNCERTAINTY CHARACTER IZAT ION

In this section we develop an algorithm , based
on the ideas of Section 2, to characterize the
uncertainties of the m odel obtamned in Section 3.
W e mtroduce a set of parameter for the Inear
dynam icblodk and a s=F for the param eters of
the inverse of the nonl inearblock:
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Fig.3.Uncertainty setsin W ienerM odel

H:{h:h:ﬁ+§h,h§§55fghglgigNl} (13)
F={f:f=Ff+o <o/ <fr1<i<nN.} (19)

To define these bounds, let us define som e sets.

G iven the Tnput data ui, the lnear uncertain
system defined b m aps at som e spectic tine
k overa set

N,
v, = {v v = Zhili (we), h H} (15)
i=0

G iven an inputuy, the Laguerre term of oxders,
l; wr) is a realnumber and the st V,, takes the
form ofV, = {v:vy v wu}.

On the other hand, if we consider the uncertamn
description of the param eters In F , a given output
Yr T aps at som e gpectic tinek over a set

N’!L
v, = {v =Y fiBik), f F} (16)

=0

This situation is chowed n Fig. 3. From this
picture it is clear that the param eters set will
describe the uncertainties description of Section
21ifv, V, = .In thisway, the pontu; is
mapped onto V,, through H . Then, sinceV,

Vy = , thispoint willbe m apped 1y, through

the nverse ofF . Then, it is only necessary to

com pute the param eters bounds to satisfy this
condition. The nom nal Inear m odel param eters
Ei can be written as a vector, by considering that
the Laguerre basi d; (uy) are a set of realnum bers
for each inputuy . Let [ (uy) be the vector which
i*" entry is the Laguerre basid (). Then, the
expression of the linearm odel is

o k) = AT1 ). (17)
In a sin farway, the PW L basis B; (yx) are a set
ofpositive realnum bers foreach outputyi . B Wyx)

is the vector whose i** entry is the PW L basis
B; yr) . Then, the lnear m odel expression is:

vk) = fTB o). (18)

In the llow ing, let us analyze the boundson the
Pparam eters.
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4.1 Uncertainty concentrated in the linear block

In this case, ket us assum e that the uncertainty
is concentrate in the lnear block. Then, we are
Iooking for the uncertan m odel that m aps the
set of data u to the set v = fT B (y). To define
an uncertain m odel that allows to describe the
complete st of data, we should com pute the set

{h ch=h+ ot hl o hy}.Now, shce that
the entries ofl (ux) could be positive or nega-
tive, it is possble to split the vector! () by
defining It (i) = maz ( @), 0) and I~ @wy) =
min ( Wwg),0). Then, form ing the vector v =

(- 0 @), 0" (uk))T]T, we can compute the

uncertainties bounds as
N,
min Y (kL + hY) (19)
hl,hu
i=1
skt.

[eHT, 0Ty e®), fek) 0k=1,--- N

- [eHT, 0Ty ek), Eek) 0;k=1,-- N
RL,RY 0
where  ek) = "'Bup) - ATlw,)  (20)

4.2 Uncertainty concentrated in the nonlinear
block

In this case, ket us assum e that the uncertainty
is concentrated In the nonlinear stationary block.
Then, we are Iooking for the uncertain m odel that
maps the set of data y to the set v = Tl ).
Then, to define an uncertain m odel that allow s
to describe the com plete set of data, we should

oomputetheset{f :f=f+5f,fil 5{ f;‘}
Now , sihce that the entries of B (yi) are positive,
we can com pute the upper bound uncertainties as

Ny,
ned st e
f i=1
ek),k=1 N
fit 0
and the lower bound as

. l
i @2)
mp) f

st. - (HY"Bur) ek),k=1,++N
fi o

st.  (fTBw)

4.8 Uncertainty in both the linear and nonlinear
blocks

In this case, we consider the m ost general case,
whereuncertamnty ispresent in both m odels .Note
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that the intersect ion of the uncertainties in the
Inear and nonlinearm odels should be non em pty.
This can be solved as:

min (hﬁ;+h%‘+ f7l+f7“)
hl,hu,fl,f’u, 2
T u\T  (puyT v
st.[- 6O, - o', (797 {B@k)} e k),
ifek) 0;k=1,---,N
_ T _ gunT T v
[- B, - ),(f)][B(yk) e k),
ifetk) 0;k=1,---,N

5. PROCESSDESCRIPTION

To illustrate the dentfication procedure, sinula-

(k)
°

. . . . . . .
0 50 100 150 200 250 300 350 400
Time (samples)

Fig.4.Simultion for the nom nalW ienerm odel

In a first step, we compute a nom mhal W iener
M odelasdescribed In Section 3.W e consider three

tion results were cbtained. The exam ple consi std@guerre polynom &als (ie. Ny = 3) with a = 0.7

of the neutralization reaction between a strong
acd (HA) and a strong base (BOH) 1 the
pressnce of a bu er agent (BX) (Galn, 2000).
The neutralization takes place m a CSTR with
a constant voluime V. An acidic solution wih a
tim e-varying flow g4 () of com positiorxy; ¢) is
neutralized using an alkaline solution with flow
qp ) of known com position m ade up of baszs;
and bu er agent x3; . For this specfic case, under
som e assum ptions, the dynam ic behavior of the
process can be described considering the state
variabls:z; = A7,z = Btland z3 = X 1.

Then, the m athem aticalm odel of the process is:
1= qa/V xii- @Qa+qs)/V i ([3)
do = qp/V x2i — ga + qB)/V 22 (24)
3= qp/V x3i - (@a+ qB)/V w3 (25)

F@) &+ ao+ x3- 21 - Ky/€
—x3/ 0L+ (K. &/Ky)l= 0 (26)

where ¢ = 107PH | The param eters of the system
are addressed I Table 1.Ushg thismodel a st

Table 1.N eutralization Param eters

Parameter  Value

T1; 0.0012 mol HCL/1

T2, 0.0020 mol NaOH/!
T3; 0.0025 mol NaHCO3/l
Kz 10~7 mol/l

Ky 10~ mol? /12

94 Li/m

14 2.51

of data is generated by simulating 2000 samples
with a sampl tine Ty = 0.5. A random signal
uniform Iy distrbuted I D, 1] is applied to the

m anipulated variableqp, this input changes each
five samples. A random gaussian noise with zero
media and variance 0.5 is added to the m easured
PH . Before proceeding with the identfication, the
steady values are rem oved from mput (@p = 0.5)
and output (pH = 7.7182), regpectively.
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to represent the lnearmodeland a PW L with 8
sections partition to describe the nonlnear static
gain. The dentfication is perform ed using a set
0f 1000 data, and the rem aining data are used for
validation. Figure 4 shows a set of these results,
restricted to 400 sam ples half or dentification
and half for validation). Two curves are shown:
the signalv (k) as the output of the linear block
and as the output of the inverse of the nonlinear
blodk N~! (y (k)). T he param eters are:

h" = [1 -0.2022 0.1386]
fT= F 0.660 - 0.445 - 0.416 — 0.389 - 0.374
- 0.303 - 0.042 0.132 0.204 0.219 0.557]
for the linear and the nonlinear blodks, respec-
tively.

In a second step, we assume the uncertainty is
concentrated n the lnear blodk. By solving the
problem described in Section 4 1, the uncertainty
(see Fig. 5) I the param eters is described by:

h* = [0.5320 0.120 0.315]

hl = [0.427 0.174 0.319]

The case with uncertain nonlinear param eters is
now oconsidered. Solving the problem of Section
4.2, the param eterbounds (see Fig. 6) are:

f%= D.000 0.083 0.060 0.074 0.056 0.135
0.293 0.355 0.216 0.478 0.053 ]T
fl= [0.000 0.137 0.260 0.000 0.273 0.304

0.404 0.054 0.295 0.206 0.0791"
Fially, ket us consider the case with uncertainty

I both blodks. Solving the problem ofSection 4 3,
the param eter bounds (see Fig. 7) are:

I

0.029 0.156 0.082 0.131 0.124 0.147
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] R S o robustmodel ing capabilities.PW L functionswere
—foundzint used to represent thenonlheargain, w ith benefits
due to its good approxin ation level. T he sin ulta-
neous dentificat ion approach herein used showed
I a slight advantage In tem s of approxin ation er-
d

T

i F{kit] rors. These errors exhibit a linear dependence on
' i U n the m odel param eters, which reduces the com -

(k)

-15
[}

plexity of the dentfication form ulation.
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6. CONCLUSIONS
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