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Abstract 

In this work an analytical formulation for solving partial differential equations is 

proposed. The method dispenses the use of Lie groups to produce maps between exact 

solutions, and generates nonlocal symmetries admitted by differential equations. The 

method is applied in water pollution problems, furnishing exact solutions for the 

advection-diffusion equation which describes the propagation of bacteria and chemicals 

in water bodies with arbitrary contours.  

1 - Introduction 

Solving water pollution problems are the first step to 

prevent environmental damages caused by industrial 

activity and domestic sewers along rivers and lakes. 

The simulation of water pollution scenarios provides 

crucial informations for lowering the costs demanded 

to treat the emissions and to improve the projects 

related to the implantation of new sewer systems. 

The most usual methods employed to simulate 

dispersion scenarios are finite differences (often 

implicit and time-marching schemes), and finite 

elements (usually based on Galerkin and least 

squares formulations). These numerical methods 

present some inconvenient features when applied to 

multidimensional problems in complex-shaped 

domains. The first is related to the time processing 

required to obtain the numerical solutions, which 

seldom can be accomplished using coarse meshes. 

The second is due to the difficulties associated with 

changes in the source terms. For many practical 

problems in Environmental Engineering one must 

simulate repositioning of the sewer loads or 

treatments for reducing the corresponding 

concentration, in order to evaluate the effect of the 

resulting concentration profile along the water body, 

an then decide whether a given change in the 

configuration of the sewer system can reduce the 

pollutant emissions in certain regions of interest. 

Since this application requires the simulation of 

several combinations of loading positions and 

concentrations, and each change in the source terms 

requires a new numerical simulation, the resulting 

time processing becomes prohibitive for planning 

sewer system configurations.  

In order to surmount this difficulty, a new analytical 

formulation based on auto-Bäcklund transformations 

(Zwillinger, 1992) is proposed. These 

transformations are nonlocal Lie symmetries 

admitted by a given differential equation (Bluman 

and Kummei, 1989), i.e., changes of variables that 

converts exact solutions of the equation into new 

exact ones through a discontinuous map, while the 

local Lie symmetries are continuous transformations. 

In this work these nonlocal symmetries are obtained 

by means of a generalized split formulation, which 

will be described in what follows, instead of 

employing Lie group analysis (Ibragimov, 1995), 

which is the procedure often adopted for solving 

partial differential equations. The main advantages of 

the proposed formulation relies on the resulting time 

processing, which is about 0.1% of the one required 

by solving two-dimensional advection-diffusion 

equations via finite differences (time marching 

schemes, for instance), the use of streamfunction and 

velocity potential as curvilinear coordinates in the 

solution obtained, which extends the application of 

the proposed method for arbitrary geometries, and 

the simplicity of the auxiliary equations to be solved, 

when compared with the so-called determining 

equations (Olver, 2000) for the coefficients of the 

generators which constitute the Lie group. Besides, 

there are many cases when some of the determining 

equations are more difficult to solve than the original 

one. Moreover, the Lie group approach requires the 

solution of an additional set of auxiliary equations 

which comes from the application of exponentials 

whose argument contains a linear combination of the 

generators, obtained after solving the determining 

equations. These advantages will become clear after 

presenting the proposed formulation. 

2. The auto-Bäckund transformation 

In this section a new analytical method to construct 

auto-Bäcklund transformations is described. The 

method is based on a sequence of non-homogeneuos 

splits for which the source terms appearing in the 

corresponding systems of differential equations can 

be readily obtained from any particular solution of 

the original equation (even the trivial one). The 

IFAC - 735 - ADCHEM 2006



novelty of the proposed method relies in the presence 

of the source term. The methods based on split 

generates only homogeneous systems of auxiliary 

equations (Polyanin, 2004). These methods produces 

solutions which satisfy a very particular set of 

boundary conditions. In the proposed formulation, an 

iterative scheme is obtained, in such a way that each 

iteration produces a new exact solution satisfying a 

wider set of boundary conditions. In order to start the 

iterative scheme, let us consider the equation  

0 ,Lf                                  (1) 

where L is a linear differential operator, which can be 

written in the following form: 

L A B               (2) 

in which the inverse of A is known. Hence, equation 

(1) can be expressed as   

,Af Bf                             (3) 

or, equivalently, as a non-homogeneous system of 

differential equations: 

Af Q                        (4)   

and 

,Bf Q               (5) 

where the source term must be determined. It will be 

showed that when the comutator [A,B] is null the 

source term can be replaced by any exact solution of 

equation (1). Indeed, applying operator B over 

equation (4), it yields: 

.BAf BQ                (6) 

Applying operator A over equation (6) it results 

.ABf AQ               (7) 

Subtracting equation (7) by (6) and taking into 

account the linearity of both operators, the following 

result is obtained: 

, .A B f AQ BQ              (8) 

Therefore, when [A,B] = 0 , the source term Q obeys 

the same differential equation satisfyied by the 

unknown function f. The former result allows to 

carry out and iterative scheme which can be recasted 

in the following fashion: 

1k kAf f                (9) 

and

1 .k kBf f             (10) 

The system can be solved in a straightforward way. 

Starting with any particular solution f0 of the original 

equation, which can be even the trivial one, equation 

(9) is solved, furnishing:  

1

1 ,k k Af A f h            (11) 

where hA denotes a function belonging to the 

nullspace of A. Substituing the solution obtained into 

equation (10) it results 

1

1 .k k ABf BA f Bh           (12) 

Equation (12) is often readily solved for the arbitrary 

elements contained in hA . Eventually, this equation 

must be splitted, producing another system of non-

homogeneous differential equations, whose solution 

is obtained by applying the same procedure already 

described. 

The new solution obtained is then replaced on the 

right hand side of equations (9) and (10) and the 

process is repeated. Notice that at each iteration a 

new exact solution arises. In other words, the 

procedure above described does not constitute a 

iterative scheme which converges to a given exact 

solution. It is important to bear in mind that the 

iterations stops when the solution obtained becomes 

flexible enough to satisfy the initial and boundary 

conditions imposed in a given subdomain. It means 

that the number and nature of the arbitrary elements 

(constants or functions) contained in the solution will 

define the extension of the subdomain in which this 

solution remains valid. Roughly speaking, the 

number of iterations determine whether the solution 

can be used in a “chunk” or in the whole domain.  

In the case when A and B do not commute, the 

proposed method must suffers a slight modification, 

by defining the g-commutator, denoted by: 

[ , ] ,gA B AgB BgA           (13) 

where g is an unknown function.  As in the former 

case, it is easy to show that when the g-commutator 

is null and analogous iterative scheme can be 

performed: 

1
k

k

f
Af

g
                                        (14)

      

and                 
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1
k

k

f
Bf

g
            (15) 

In fact, multiplying equations (14) and (15) by g, 

applying operator B over equation (14) and operator 

A over equation (15), and finally subtracting the 

resulting equations, it yields 

1[ , ] ,g k k kA B f Af Bf                (16) 

In order to ensure the “g-commutativity” between A 

and B, the function g must satisfy some auxiliary 

differential equations which are often simpler than 

the original equation to be solved. Moreover, for 

most practical purposes, it becomes possible to map 

the original equation in such a way that [A,B] = 0 , 

and even when the operators do not commute there 

are infinite solutions for the auxiliary equations 

which comes from the condition [A,B]g = 0 .  

3. Application in water pollution problems 

The propagation of conservative pollutants in rivers 

and lakes for complex-shaped domains is given by 

2 2

2 2

1

D

C C C
    (17) 

Where D is the mass diffusivity,  is the stream 

function and  is the potential function. In this 

equation the hydrodinamic boundary layer effects 

over the concentration profile are not considered, 

because the boundary layer thickness are negligible 

when compared to the geographic scale of the water 

body. In this case the operators A and B are given by 

2

2
A               (18) 

and 

2

2

1
.

D
B            (19)     

The corresponding system generated by split is 

written as  

2

2

C
Q                           (20) 

and 

2

2

1
.

D

C C
Q            (21) 

Starting with Q=0 and solving equation (20) it results  

1 2( , ) ( ). ( ) .C f f          (22)

Replacing the former result in the equation (22), an 

auxiliary equation arises: 

2 2

1 2 1 2

2 2

1 1
. . 0 .

D D

df df d f d f

d d d d
           

(23) 

The equation above produces two new auxiliary 

equations: 

2

1 1

2

1
0

df d f

D d d
           (24)

and

2

2 2

2

1
0 ,

df d f

D d d
          (25)

whose solutions are obtained by direct integration: 

1 1 2( ) . Df c c e                          (26)

and

2 3 4( ) . .Df c c e                        (27) 

Substituing (26) and (27) in (22) the first exact 

solution is obtained 

1 2 3 4( , ) ( . ). . .D DC c c e c c e                                     

                                                                               (28)

Since [A,B] = 0 , the process can be restarted with  

1 2 3 4( . ). . ,D DQ c c e c c e        (29)

which is replaced on the right hand side of equations 

(20)  and (21) . Following the same steps above 

mentioned, a new exact solution arises:  

3

1 2 3

2

4 1 2

5 6 3 4

7 8

1 1
( , ) ( . ). (

6 2

. ). ( . ( . )

. ). . ( .

) . .

D

D D D

D D

D D

C c c e c

c e c c e e

c e c c c e

e c e c

                                                                  (30) 
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Although the process can be easily continued, the 

former solution is suitable to simulate a wide class of 

water pollution problems since the shape of the 

domain is depends only upon the expressions for 

and . In order to write the solution in the original 

variables, it becomes necessary to define the 

streamfunction and the velocity potential. The stream 

function near an arbitrary contour is given by 

, arctan ,x y U y a b y m x

                 (31) 

where a and b are numerical parameters which 

accounts for the mean declivity of the margins, and 

m(x) is the function describing (locally) the countors. 

The velocity potential, which is obtained by means of 

the Cauchy-Riemann conditions (Churchill, 1975), 

x y
             (32) 

 and      

     

,
y x

           (33)

 results 

,
, .

f x y
x y U x dy k

x
       (34) 

4. Results and conclusions 

 The proposed method was applied to obtain two-

dimensional concentration distributions along the 

Guaiba lake (Figure 1), by solving equation (17), 

with boundary conditions of second kind imposed 

along the margins (  = 0)  and a boundary 

condition of first kind upstream, which specifies the 

concentration profile at  = 0. In this water body, 

a~800 and b~0,01 in equation (31). 

The concentration distribution for coliforms, showed 

in Figure 1, presents reasonably agreement with the 

experimental data. The mean square deviation 

between numerical and experimental values is about 

20%, the same magnitude of the dispersion between 

the own measurements. 

===== less than 200  

===== 200 to 1.000 

===== 1.000 to 4.000 

4.000 to 10.000 

===== 10.000 to 50.000 

greater than 50.000 

Figure 1 – Concentration distribution for coliforms 

(org/100ml) 

Figure 2 shows the concentration distribution for 

phosphorus (PO3 and PO4 forms). In this case, the 

mean square deviation are roughly about 10%, which 

is also the same uncertainty verified between the 

experimental data.  
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===== less than 0,08  

===== 0,08 to 1,0 

===== 1,0 to 2,0 

2,0 to 5,0 

===== 5,0 to10,0 

greater than 10,0 

Figure 2 – Concentration distribution for phosphorus 

(mg/L) 

In both cases, the time processing required to 

perform the simulations is about 5 minutes (Sempron 

2.8 GHz, 512 Mb RAM, using Visual Basic 6.0).  
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