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Abstract: A novel neural network-based model was developed to predict N-linked
glycosylation site-occupancy characteristics. The model classified potential
glycosylation sites as displaying variable site-occupancy or robust glycosylation when
produced by CHO cell cultures under normal growth conditions. The term variable site-
occupancy describes heterogeneous glycan attachment to a specified protein site. This
phenomenon results in a heterogeneous mixture of glycosylated and unglycosylated
proteins when produced in mammalian cell culture. The model input consists of amino
acid residues around the site of glycosylation. Simulation of the model strongly
correlated with previously published experimental results by Kasturi et al. (1997) and
Mellquist et al. (1998). Copyright© 2006 IFAC
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1. INTRODUCTION

Glycosylated Pharmaceutical Proteins.  Protein
glycosylation is a vital post-translational modification
of many proteins with therapeutic properties. The
glycosylation pathway begins in the endoplasmic
reticulum of a cell with the attachment of an
oligosaccharide to a N-X-S/T (where X is not praline)
polypeptide sequence. The attachment of a glycan
structure is then followed by enzymatic trimming and
processing of the attached oligosaccharide (glycan)
structure (Kornfeld and Kornfeld, 1985; Roth, 1987,
Silberstein and Gilmore, 1996). Glycan attachment
and remodeling processes occur in the endoplasmic
reticulum (ER) and Golgi apparatus of many cell
types; however, only a select number of cell types
produce glycosylation variants compatible in
humans. Glycosylation is of great importance in
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bioprocessing because of its large influence on in
vivo properties of therapeutic proteins, including
specific activity. In addition, intramolecular
influences of glycosylation on protein structure
include: proper folding, intracellular location,
biological activity, solubility, antigenicity, biological
half-life and protease sensitivity. Similarly,
intermolecular characteristics affected by protein
glycosylation include: targeting to lysosomes, tissue
targeting, cell-cell adhesion and binding of pathogens
(Stanley, 1992). Cell types commonly selected by
the pharmaceutical industry, for expression of
glycosylated proteins, include human melanoma
cells, baby hamster kidney (BHK) cells, and Chinese
hamster ovary (CHO) cells.

Optimization with Respect to Glycosylation. The
heterogeneity observed with glycosylation during
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bioprocessing and its relevance on the biological
activity of therapeutic proteins has led to a new area
of optimization in the bioprocessing industry. This
new area of glycosylation optimization is currently
divided into two parts: (1) the initial attachment of
the oligosaccharide to the protein and (2) the
processing of glycan branches. For some proteins,
the initial glycan attachment process has been found
to be robust, resulting in a homogenously
glycosylated or unglycosylated polypeptide sequence.
However, for others, such as the recombinant tissue-
type plasminogen activator (r-tPA) protein, this
process is variable, resulting in a mixture of
heterogeneous isoforms (or glycoforms) of fully,
partially and unglycosylated species (Kornfeld and
Kornfeld, 1985; Grossbard, 1987; Wittwer and
Howard, 1990; Andersen et al., 2000; Senger and
Karim, 2003a). Manipulations of process variables
and culture medium conditions have been found to
largely impact the degree to which r-tPA is
glycosylated at site NI184.  However, culture
conditions resulting in homogenously glycosylated r-
tPA have not been found (Andersen et al., 2000;
Senger and Karim, 2003ab). Given that other
glycosylation sites of r-tPA experience homogenous
glycosylation (Grossbard, 1987; Wittwer and
Howard, 1990), a better understanding of the
mechanisms that cause a particular glycosylation site
to display variable site-occupancy is desired.
Glycosylation optimization is of great benefit to
pharmaceutical manufacturing in terms of production
costs and would result in tighter control of product
specific activity.

Neural Networks in Structural Bioinformatics.
Neural network-based models have been developed
for the prediction of many structural characteristics of
proteins, based on the protein amino acid sequence.
In particular, this area of structural bioinformatics has
expanded to predict secondary and some three-
dimensional structures (Rost and Sander, 1993;
Jones, 1999; Kelley et al., 2000; Pollastri et al.,
2002a,b; Baldi and Pollastri, 2003). In general,
neural networks have been an intricate part of these
model-developments in that their capability for
structure prediction has far exceeded that of first-
principle (deterministic) models. This is due in large
part to the expanding data bank of protein structure
and genomic research (Rost, 2001).

Using Neural Networks to Predict Glycosylation Site-
Occupancy Characteristics. A novel neural-network
model has been developed in this research for
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predictions of glycosylation site-occupancy as
homogeneous (robusf) or heterogeneous (variable).
The development of this model has allowed insight
into many  questions  concerning  protein
glycosylation. The phenomena of variable site-
occupancy, in the absence of substrate limitation, was
found related to primary sequence characteristics.
The number of amino acid residues around the site of
glycosylation with influence on glycosylation
characteristics was found much larger than what has
been cited by previous research. Thus, the goal of
this research is to develop a model of glycosylation
site-occupancy so the optimization problem of
glycosylation site-occupancy may be addressed
through site-directed mutations of the protein
sequence rather than manipulation of cell culture
variables.

2. SYSTEMS AND METHODS

and Amino  Acid  Residue
Quantification. Data for the construction of a
glycosylation site-occupancy prediction model
consisted of glycosylation sites, the amino acid
sequence around this site and whether a particular
site promoted  homogeneous  (robust)  or
heterogeneous  (variable)  glycosylation  site-
occupancy when produced by mammalian cell
cultures. All data was acquired from a literature
search interfaced with protein sequence databases.
The entire data set consisted of 48 glycosylation sites.
Five sequences (~10%) were reserved as a neural
network testing data set. Greater than 40% of
sequences of the data set were -classified as
displaying variable site-occupancy in the literature.
For the input of particular amino acid residues into a
neural network model, the identities of all amino
acids were first converted to numerical values.
Individual amino acid residues were grouped into
eleven classes based on similar characteristics, such
as charge, size, and hydrophobicity and assigned
numerical values based on research by Kasturi et al.
(1997) and Mellquist et al. (1998). Quantification of
the target (site-occupancy classification) was also
required. Glycosylation sites displaying variable
site-occupancy were assigned the value /, and robust
sites were assigned 0. It is noted that a robust site
may be  homogeneously  glycosylated  or
homogenously unglycosylated.  Statistical models
have been developed to discern between these two
types of robust site-occupancy (Petrescu et al., 2004).

Acquired  Data
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Table 1 Primary Sequence Quantification

Amino Acid Amino Assigned
Classes Acids Value
Hydroxy T 1
Hydroxy S 2
Basic KRH 3
Thioether M 4
Alkyl AVLI 5
Carboxamide NQ 6
Unsubstituted G 7
Acidic DE 8
Mercapto C 9
Aromatic FYWw 10
Cyclic P 11

Neural Network Architecture.  Elman recurrent
neural networks were used for the construction of the
neural network-based model.  Recurrent neural
networks are renowned for their ability to learn non-
causal data sets. The neural network inputs consisted
of quantified amino acid residues around the site of
glycosylation. Targets consisted of glycosylation
site-occupancy assigned values. All neural networks
consisted of a single hidden layer with hyperbolic
sigmoid transfer functions. A single output neuron
was used with a log sigmoid transfer function. A
single perceptron neuron was used following the
output neuron for two-dimensional classification.
Thus, this neuron acted as a rounding function of the
recurrent neural network output value. The number
of hidden layer neurons was adjusted so that the
number of adjustable network parameters (weight
and bias values) always remained less than the
number of data points used in the training procedure.
Initial (prior to training) weight and bias values were
assigned random values. Network training was
performed using gradient decent with momentum and
adaptive learning rate back-propagation. All neural
networks were trained for 2000 epochs. Each neural
network was independently initiated and trained 100
times. Results were averaged. The entire data set
was cross-correlated using a testing set size of
approximately 10% of the training set size.

Optimization of the Amino Acid Input Sequence. The
number of amino acids on the N-terminus and C-
terminus sites of the glycosylation site was varied,
and neural network training and testing set analysis
was performed in each case. This goal of this study
was to identify relevant amino acids in prediction of
glycosylation site-occupancy classification. In this
study, the objective function of optimization problem
was the mean-square error between the target values

IFAC -727 -

of glycosylation site-occupancy and the neural
network-predicted values.

Comprehensive  Model  Construction. Once
successful neural networks were identified, with an
optimum input sequence length, a comprehensive
model was constructed and further tested on
published experimental data. The comprehensive
model consisted of 20 neural networks that were
found to correctly classify all elements of the neural
network testing data sets. Networks from all cross-
correlation iterations were used to construct the
model. This composition of the comprehensive
predictive model enabled the model to return an
overall prediction value as well as a confidence
interval. In particular, all neural networks were
simulated, and results were averaged before
perceptron classification. This method returned an
overall model prediction. The confidence interval
represents the fraction of neural networks returning
the dominant classification. Thus, the overall model
prediction consisted of a value of either / or 0, and
the confidence level of prediction was a value
between 0.5 (low confidence) and 1 (high
confidence).

Further Simulations. Published experimental data by
Kasturi et al., (1997) and Mellquist et al., (1998) was
used to further test the comprehensive neural
network-based model. The published data focused
on the effects of site-directed mutations around
variable site-occupancy glycosylation site N39 of the
rabies virus glycoprotein (rgp). Results of this work
found that specific site-directed mutations resulted in
the transformation of this glycosylation site from
variable to robust site-occupancy. All of these
sequences were simulated using the predictive model.
In addition, further simulations were performed on
simple theoretical sequences to examine the effects of
charged amino acid residues around the site of
glycosylation. Alanine  (uncharged), lysine
(negatively-charged) and aspartate (positively-
charged) residues were used in this study.

3. RESULTS AND DISCUSSION

Optimization of the Glycosylation Window Length.
The number of amino acids surrounding the site of
glycosylation was termed the glycosylation window.
Optimization of the glycosylation window length was
performed by full neural network analysis with
various input sequence lengths. Previous research
has identified amino acid residues of the N-X-S/T-Y
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glycosylation sequence as having significant
influence  over  glycosylation  site-occupancy
characteristics (Shakin-Eshleman, 1996; Kasturi et
al., 1997; Mellquist et al., 1998; Petrescu et al.,
2004). The data-based method of analysis of this
research allowed for the impact of 20 amino acid
residue sites to be analyzed for influences on
glycosylation characteristics. For each input
sequence, the mean-square error was calculated
between averaged neural network predictions and
target values (glycosylation classification). Results
are displayed as Figure 1. The starting residue of the
input sequence is displayed on the abscissa as (n-x).
The ending residue of a glycosylation window is
displayed on the ordinate axis as (n+y), where » is the
site of glycosylation. For example, a glycosylation
window originating at (n-5) and extending to (n+4)
contains a total of 10 amino acids: 5 residues on the
N-terminus side of the glycosylation site, the
glycosylation site itself (#) and 4 residues on the C-
terminus side of the glycosylation site. The average
standard deviation of all data points of Figure 1 was
calculated as approximately 5% of the given data
point value. Results showed a minimum mean-
square error value of 0.0767 for the glycosylation
window originating at (r-5) and extending to (n+4).
The size of this glycosylation window is larger than
others determined by experimental methods, and
these are the first results of our knowledge to suggest
influence of residues on the N-terminus side of a
glycosylation site on glycosylation site-occupancy.
For comparison, the data set was predicted by
random values (in the absence of neural network
training). These results were classified by the
perceptron to yield and average mean-square error
value of 0.7.

—
o
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(n-x)

Fig. 1. Glycosylation window length optimization.
Starting residue (abscissa). Ending (ordinate).
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Simulations of rgp Wild-Type and Mutants Using

Comprehensive  Predictive ~ Model. The
comprehensive neural network-based predictive
model was constructed using the optimized
glycosylation window input length. The model

consisted of 20 independent neural networks, and
represented all iterations of the cross-correlation
analysis. All neural networks of the comprehensive
model classified corresponding testing data sets with
100% accuracy following perceptron classification of
recurrent network output values. To further verify
the predictive model, wild-type and site-directed
mutations of the rgp protein glycosylation site N37
were simulated and compared to published
experimental observations by Kasturi et al. (1997)
and Mellquist ez al. (1998). These experimental
studies examined the influence of amino acid
residues at positions X and Y of the N-X-S/T-Y
glycosylation sequence. These sites correspond to
(n+1) and (n+4) using the terminology developed for
the glycosylation window length optimization.
Results reported by Kasturi ef al. and Mellquist et al.
(1998) reported glycosylation efficiency. In short, the
glycosylation efficiency is defined as the fraction of
fully glycosylated rgp (N37).  Thus, reported
glycosylation efficiency between 0 and 1 corresponds
to variable site-occupancy glycosylation. A
glycosylation efficiency value of 1 corresponds to
homogeneous  (robusf) glycosylation, and a
glycosylation efficiency of 0 corresponds to a
glycosylation site that is homogeneously (robust)
unglycosylated. Values of glycosylation efficiency
were interpolated from the published experimental
studies, taking into account experimental error, and
these are listed in Table 2. A total of 19 rgp mutants,
in addition to the wild-type protein, were evaluated
by the comprehensive predictive model.  The
sequence identity (details of site-directed mutations),
the overall predictive model classification and the
confidence level are also reported in Table 3.

Discussion of Prediction Results.  Overall, the
predictive model showed 95% accuracy in predicting
glycosylation site-occupancy characteristics for this
set of published experimental data. One rgp mutant
(simulation 15a; S39T G40W) was incorrectly
classified by the predictive model. However, in this
case, the confidence level of the prediction was low
(0.65). Although, the unsuccessful model prediction
contained an aromatic residue (tryptophan), other

predictions involving aromatic residues were
classified correctly (simulation 8a).  Sequences
displaying  variable  site-occupancy, to a

glycosylation efficiency of 0.9 (simulations 2a-4a, 8a,
10a-13a, 14a-15a) were correctly classified by the
model as promoting variable site-occupancy. For
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sequences that were constructed that resulted in
glycosylation efficiency of or exceeding 0.95, most
model predictions (simulations 6a, 7a, 20a) classified
these sequences as having robust glycosylation. The
exception in this case was for the L38N S39T mutant
(simulation 6a), which displayed a glycosylation
efficiency of approximately 0.95. Variable site-
occupancy was predicted in this case, but a lower
confidence level in this case (0.7) suggested that
many neural networks of the predictive model
recognized this sequence as promoting robust
glycosylation. In addition, given the experimental
error in the case of simulation 6a of roughly 5%,
variable site-occupancy may accurately describe this
system. The other sequences of simulations 7a and
20a displayed glycosylation efficiencies that
exceeded 0.95. Of further importance is that the
sensitivity of the predictive model was evaluated by
this set of simulations. In short, this set of model

predictions correctly classified a polypeptide
sequence as having variable site-occupancy
glycosylation  characteristics for  glycosylation

efficiencies ranging between 0.1 to >0.95.

Simulations of Theoretical Sequences. Due to the
success of the comprehensive predictive model in
classification of rgp wild-type and variant sequences,
the same simulation technique was applied to
theoretical sequences. Glycosylation site-occupancy

Table 2 rgp variant and wild-type predictions with
confidence level and published experimental results

Overall Model Published
Sim. Sequence Classificationand ~ Glycosylation
Confidence Level Efficiency
la Wild-type 1 (1.00) 0.35
2a S39T 1(0.95) 0.80
3a L38N 1 (1.00) 0.70
4a L38S 1 (1.00) 0.90
Sa L38W 0 (0.60) 0.10
6a L38N S39T 1(0.70) 0.95
Ta L38G S39T 0(0.60) >0.95
8a G40F 1(0.75) 0.40
9a G40P 0(0.75) 0.05
10a G40H 1 (1.00) 0.55
11a G40M 1 (1.00) 0.70
12a G40N 1(1.00) 0.80
13a G408 1(1.00) 0.80
14a G40C 1(0.90) 0.80
15a  S39T G40W 0(0.65) 0.80
16a S39T G40H 1(1.00) 0.85
17a S39T G40M 1 (1.00) 0.90
18a S39T G40N 1(1.00) 0.90
19a S39T G40T 1 (1.00) 0.90
20a S39T G40C 0(0.55) >0.95

Sim. is an abbreviation for “Corresponding Simulation.”

The Confidence Level is listed in parentheses.

Published glycosylation efficiency values were interpolated
from Kasturi ef al. (1997) and Mellquist er al. (1998).
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classification in the presence of charged amino acid
residues was studied in the following simulations.
For consistency, only alanine (A) was used as the
uncharged residue outside of the required N-X-S/T
glycosylation sequence. In addition, aspartate (D)
and lysine (K) were used as the negatively and
positively-charged residues, respectively.
Simulations suggested that a sequence consisting of
alanine or aspartate residues throughout the
glycosylation window (except for the glycosylation
sequence at (n) and (n+2) would result in robust
glycosylation with a high confidence level. With
positively-charged lysine residues occupying the
glycosylation window and serine or threonine at
position (n+2), variable site-occupancy glycosylation
was predicted with a confidence level of 0.95.
Further simulations examined the influence of
particular locations within the glycosylation window.
For example, a glycosylation window consisting of
lysine residues was substituted with aspartate and
alanine residues until a robust glycosylation site-
occupancy prediction was achieved. A summary of
these simulation results is presented in Table 3, and
the actual simulation results are given in Table 4.
These types of simulation experiments were
performed for both serine and threonine in the (n+2)
position. It was found through simulation that
replacement of serine in the glycosylation sequence
with threonine increases the robustness of glycan
attachment. This evidence further supports this idea,
as it was suggested by previous research (Kasturi et
al., 1997; Mellquist et al., 1998; Petrescu et al.,
2004).

Table 4 Generalizations from simulations

Type of influence on
glycosylation site-
occupancy:
Promotes variable

Residues:

Lysine (positive charge)
As.partate Promotes robust
(negative charge)

Promotes robust with less
influence than aspartate
Level of influence on
glycosylation site-
occupancy:

(nt+1) Highest influence
(nt3), (nt+4), (n-1) Moderate influence
Lowest influence, but
(n-5)...(-2) significance was observed
Threonine results in more
robust glycosylation

Alanine (no charge)

Location in glycosylation
window:

(n+2)
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Table 5 Amino acid residues and simulation results
of theoretical sequences

S5 4 3 2 - o 4+ 12 43 4 ((C)f:)

A A A A AN A S A A 007
A A A A AN A T A A 0(100)
A A A A AN P S A A 0(00
A A A A AN P T A A 0(.00
K K K K K N K S K K 1(1.00
K K K K K N K T K K 1(095
D DDDUDND S D D 0(.00
D DDDUDND T D D 0(.00
A A A A AN K S A A 10095
A A A A AN A S K A 1070
A A A A KN A S A A 0(0.60
A A A A AN K S K A 1(1.00
A A A A AN D S D A 0(00
A A A K KN A S A A 0(0.60
A A K K K N A S A A 1(065
K K K K K N A S A A 1(080)
A A K K KN A T A A 0(0.60
A K K K K N A T A A 1(070)
D D K K K N A S A A 0(080)
D DDDUDN K S D D 1(090)
D DDDUDN A S D D 0(090)
D DDDUDNK T D D 1050
K K K K K N D S K K 0(085)

0O.C. is an abbreviation for “Overall Model Classification.”
C.L. is an abbreviation for “Confidence Level.”
The Confidence Level is listed in parentheses.

4. CONCLUSIONS

A novel neural network-based predictive model has
been developed for the classification of N-linked
glycosylation as heterogeneous (variable) or
homogeneous (robusf) for proteins produced by
mammalian cell culture. Amino acid residues around
the site of glycosylation were found to impact site-
occupancy characteristics. In particular, an
optimization study found that 5 residues on the N-
terminus side and 4 residues on the C-terminus side
of the glycosylation site directly influence these
characteristics. The neural network-based predictive
model classified published experimental findings
regarding the impact of amino acid residues on site-
occupancy characteristics with 95% accuracy.
Further simulations with theoretical amino acid
sequences revealed negatively-charged promote
robust glycosylation and that the (n+1) position of
the glycosylation window had the most influence
over glycosylation site-occupancy characteristics.
Elimination of variable site-occupancy will have
significant impact in the pharmaceutical industry.
Robust glycosylation results in homogenous product
production. This is of utmost importance to quality
control and optimization of biological activity of
glycosylated recombinant proteins with therapeutic
properties.
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