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Abstract: A detailed dynamic model has been developed for the molecular weight
distribution (MWD) of styrene bulk polymerization in a continuous stirred tank
reactor (CSTR). The moment techniques are applied to formulate the MWD
parameters based on the Schultz-Zimm distribution. In order to provide a general
model for MWD control, the B-spline approximation has been introduced into
the dynamic MWD modelling and the scanning least-square algorithm has been
used for parameter estimation of the B-spline weights model. Under simulation
environment, this model has been proved to be efficient for feedback MWD control.
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1. INTRODUCTION

The B-spline neural network has been considered
as an efficient tool for modelling the output prob-
ability density function (PDF) because it provides
a general form in describing arbitrary continuous
functions. Using the B-spline approximation, the
output PDF will be described by the weights of
the pre-specified basis functions. Dynamic char-
acteristics of the weights vector can be developed
from the data pairs of control input and output
PDF so as to formulate the B-spline model for
PDF control. In most of the previous works on
output PDF modelling and control, it is normally
assumed that the weights dynamics are known or
the weights vector is available for the PDF ap-
proximation. This is partly because some of those
works are concentrated on PDF controller design
rather than B-spline modelling. It is also because
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that the B-spline modelling process itself is quite
challenging considering the complexity of a dy-
namic PDF system. Many technical details have
to be addressed carefully in order to guarantee the
modelling efficiency. A scanning identification al-
gorithm has been developed for the B-spline PDF
modelling (Wang, 2000), however, it has been used
mainly for static PDF systems or linear dynamic
weights systems (Wang and Wang, 1998; Zhang
and Yue, 2004). No work has been reported on B-
spline modelling using the input and output PDF
data from a nonlinear dynamic process so far. This
motivates the endeavor of the work in this paper.

A molecular weight distribution (MWD) system
has been taken as the case for study. The PDF
data used for B-spline modelling are produced
from the first-principle MWD model. Although
the theory of B-splines is well-developed in ap-
proximation theory and linear control (Zhang et
al., 1997; Sun et al., 2000; Kano et al., 2003), to
our knowledge, no applications to MWD systems
have been reported except for a few works by
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the authors (Yue et al., 2004; Wang et al., 2005).
The MWD calculation in the previous works
is not based on real dynamic models, only the
static solution at different situations are con-
sidered. In this paper, the MWD model is de-
veloped from the polymerization reaction mech-
anisms with dynamic behaviors. Although the
first-principle MWD model can be described by
the well-known Schultz-Zimm distribution for this
example, the model is further developed by B-
splines. This is simply because a general-form
MWD model is expected for the purpose of MWD
control using PDF control strategies.

Notations

I initiator or its concentration (mol · L−1)
I00 initial initiator concentration (mol · L−1)
I0 controlled initial initiator concentration (mol ·
L−1)
Kd initiator decomposition rate constant (min−1)
Ki initiation rate constant (L · mol−1 · min−1)
Kp propagation rate constant (L ·mol−1 ·min−1)
Ktrm chain transfer rate constant (L · mol−1 ·
min−1)
Kt termination rate constant (L ·mol−1 ·min−1)
M monomer or its concentration (mol · L−1)
M00 initial monomer concentration (mol · L−1)
M0 controlled initial monomer concentration (mol·
L−1)
Rj live polymer of chain length j or its concentra-
tion (mol · L−1)
R total concentration of live polymer radicals
(mol · L−1)
Pj dead polymer of chain length j or its concen-
tration (mol · L−1)
P total concentration of dead polymer (mol ·L−1)
T reaction temperature (K)
F total feed flow rate (L · min−1)
V volume of reaction mixture (L)
θ average residential time (min)

2. POLYMERIZATION PROCESS

The process of interest is a styrene bulk poly-
merization reaction in a continuous stirred tank
reactor (CSTR), in which styrene is the monomer
for polymerization and azobisisobutyronitrile is
used as the initiator. These two flows are injected
into the CSTR with the input ratio defined as

c =
FM

FI + FM
(1)

where FM is the flow of monomer and FI is
the flow of initiator. By changing c, the initial
concentrations of the two main reaction species
will be changed, which will change the output
molecular weight distribution. To simplify the
process, the reaction temperature is assumed to
be kept constant during the control process.

The following free radical polymerization mecha-
nisms are considered for the system.

• Initiation
I

Kd−→ 2R∗

R∗ + M
Ki−→ R1

• Chain propagation

Rj + M
Kp−→ Rj+1

• Chain transfer to monomer
Rj + M

Ktrm−→ Pj + R1

• Termination by combination

Rj + Ri
Kt−→ Pj+i

Accordingly, the mass balance equations are de-
rived to be

dI

dt
= (I0 − I)/θ − KdI (2)

dM

dt
= (M0 − M)/θ − 2KiI − (Kp

+Ktrm)MR (3)
dR1

dt
=−R1/θ + 2KiI − KpMR1

+KtrmM(R − R1) − KtR1R (4)
dRj

dt
=−Rj/θ − KpM(Rj − Rj−1)

−KtrmMRj − KtRjR (j ≥ 2) (5)
dP2

dt
= KtrmR2M + KtR

2
1 − P2/θ (6)

dPj

dt
= KtrmRjM +

Kt

2

j−1∑
l=1

RlRj−l − Pj/θ

(j ≥ 3) (7)

where θ = V/F is the average residential time of
the reactants in the CSTR. Denote

R =
∞∑

j=1

Rj (8)

P =
∞∑

j=2

Pj (9)

as the total concentrations of radicals and poly-
mers, respectively, the following formulations can
be established from (4) to (7)

dR

dt
=−R/θ + 2KiI − KtR

2 (10)

dP

dt
=−P/θ + KtrmM(R − R1) +

Kt

2
R2 (11)

R1 in (11) can be ignored compared with R due
to its low concentration, i.e.,

dP

dt
= −P/θ + KtrmMR +

Kt

2
R2 (12)
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3. FIRST-PRINCIPLE MWD MODEL

3.1 Static MWD Model

The static solution to the concentrations of the
reaction species can be derived from their dynamic
equations. Denote

α = 1 +
Ktrm

Kp
+

KtR

KpM
+

1
KpMθ

(13)

By taking the differential equations(2),(3), (10)
and (12) to be zero, there are

I =
I0

1 + Kdθ
(14)

R =
−1/θ +

√
1/θ2 + 8KtKiI

2Kt
(15)

M =
M0

1 + (Kp + Ktrm)Rθ
(16)

P = θ(KtrmMR +
Kt

2
R2) (17)

Similarly, from equations (4)-(7), the static con-
centrations of radicals and polymers are

R1 =
2KiI + KtrmMR

KpMα
(18)

Rj = α−1Rj−1 = α−(j−1)R1, (j ≥ 2) (19)

P2 = θ
(
KtrmMR2 + KtR

2
1

)
(20)

Pj = θ

(
KtrmMRj +

Kt

2

j−1∑
l=1

RlRj−l

)
,

(j ≥ 3) (21)

Substituting (19) into (20) - (21), and dividing
(20) and (21) by the total concentration P , the
normalized MWD at static state can be obtained
to be

P2 =
θ

P
(α−1KtrmMR1 + KtR

2
1) (22)

Pj =
θ

P

(
α−(j−1)KtrmMR1

+
j − 1

2
α−(j−2)KtR

2
1

)
, (j ≥ 3) (23)

It can be seen that
∑∞

j=2 Pj = 1. Therefore, the
static MWD can be taken as a discrete probability
density function of the chain length.

3.2 Dynamic MWD Model

For the dynamic MWD model, the distribution of
Pj is not only a function of the chain length, but
also a function of time. In this work, the moment
method is introduced to setup the dynamic MWD
description.

The moments of the number chain-length distri-
butions of radicals and polymers are defined as

Uk =
+∞∑
j=1

jkRj , k = 0, 1, 2, · · · (24)

Zk =
+∞∑
j=2

jkPj , k = 0, 1, 2, · · · (25)

It can be seen from (8) and (9) that U0 = R and
Z0 = P . Using the generation function technique,
the differential equations of the leading moments
for radicals are derived to be

dU0

dt
=−U0/θ + 2KiI − KtU

2
0 (26)

dU1

dt
=−U1/θ + 2KiI + KpU0M − KtU0U1

+KtrmM(U0 − U1) (27)
dU2

dt
=−U2/θ + 2KiI + KpM(2U1 + U0)

−KtU0U2 + KtrmM(U0 − U2) (28)

Similarly, the three leading moments of polymers
are derived to be

dZ0

dt
=−Z0/θ + KtrmMU0 +

Kt

2
U2

0 (29)

dZ1

dt
=−Z1/θ + KtrmMU1 + KtU0U1 (30)

dZ2

dt
=−Z2/θ + KtrmMU2 + KtU0U2

+KtU
2
1 (31)

The mean and variance of the MWD are linked to
the moments by

µ =

∑+∞
j=2 jPj∑+∞
j=2 Pj

=
Z1

Z0
(32)

σ2 =

∑+∞
j=2(j − µ)2Pj∑+∞

j=2 Pj

=
Z2

Z0
− Z2

1

Z2
0

(33)

Theoretically, an exact formulation of a molec-
ular weight distribution requires countless num-
ber of moments, which is infeasible because of
the computational load. An alternative method is
to choose an appropriate distribution function to
approximate the real MWD. For the polymer dis-
cussed in this work, the well-known Schultz-Zimm
distribution is selected to describe the molecular
weight distribution. It makes a simple analytical
expression available for the scattering from the
distribution. The normalized Schultz-Zimm distri-
bution is defined by (Angerman, 1998)

f(n) =
hhnh−1exp(−hn/Mn)

Mh
nΓ(h)

, (n ≥ 0) (34)

where n is the chain length, h is the parameter in-
dicating the distribution breadth, Γ is the gamma
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function, Mn is the number average chain length
which is defined as Mn = Z1/Z0. When h =
1, the Schultz-Zimm distribution reduces to the
exponential Flory distribution, which is another
commonly used distribution for MWD. The mean
and variance of the Schultz-Zimm distribution are

µ =

∞∫
0

nf(n)dn = Mn (35)

σ2 =

∞∫
0

(n − µ)2f(n)dn =
h + 1

h
M2

n − µ2 (36)

By comparing (32), (33) with (35) and (36), the
two parameters of the Schultz-Zimm distribution
can be obtained to be

h =
Z2

1

Z0Z2 − Z2
1

(37)

Mn = Z1/Z0 (38)

The calculation of the dynamic MWD can be
divided into three steps:
(1) Get Z0, Z1, Z2 from (2), (3), (26)-(31);
(2) Get h and Mn from (37) and (38);
(3) Formulate the MWD by (34).

4. DYNAMIC B-SPLINE APPROXIMATION

Although the dynamic MWD in this case can be
described by the analytical Schultz-Zimm distri-
bution function, it is not of a general form for the
feedback PDF control scheme. Therefore, the B-
spline approximation is introduced for the further
model development. Consider a continuous PDF
γ(y, uk) defined on [a, b] interval, the linear B-
spline neural networks can be used to approximate
γ(y, uk) as:

γ(y, uk) =
n∑

i=1

ωi(uk)Bi(y) + e0 (39)

where uk is the control input at sample time k;
Bi(y)(i = 1, · · · , n) are the pre-specified basis
functions defined on the interval y ∈ [a, b]; n is
the number of the basis functions; ωi(uk)(i =
1, · · · , n) are the expansion weighs; e0 represents
the approximation error which satisfies |e| < δ1

(δ1 is a known small positive number). To simplify
the expression, e0 is neglected in the following.
Denote

L(y) =
Bn(y)∫ b

a
Bn(y)dy

(40)

ci(y) = Bi(y) − L(y)

b∫
a

Bi(y)dy,

i = 1, · · · , n − 1 (41)

C(y) = [ c1(y), c2(y), · · · , cn−1(y) ] (42)

Vk = [ ω1(uk), ω2(uk), · · · , ωn−1(uk) ]T (43)

the static B-spline PDF model (39) can be repre-
sented in a compact form as

γ(y, uk) = C(y)Vk + L(y) (44)

Equation (44) is the static PDF model approxi-
mated by the B-spline neural networks, in which
C(y) and L(y) are known when the basis functions
are chosen. Denote

fk(y) = γ(y, uk) − L(y) (45)

and consider the linear dynamics of the weights
vector, the output PDF can be described by the
following state-space B-spline model:

fk(y) = C(y)Vk (46)

Vk+1 = EVk + Fuk (47)

Here E and F are model parameter matrices.
fk(y) can be further represented as

fk(y) = C(y)(I − z−1E)−1(Fuk−1) (48)

and expanded to the following form according to
matrix theory (Wang, 2000)

fk(y) =
n−1∑
i=1

aifk−i(y) +
n−2∑
j=0

C(y)Djuk−1−j (49)

where

Dj = (dj,1, · · · , dj,n−1) (50)

By writing

θ = (a1, · · · , an−1, D0, · · · , Dn−2) (51)

φ = (fk−1(y), · · · , fk−n+1(y), C(y)uk−1,

· · · , C(y)uk−n+1) (52)

Equation (49) can be written in the parameterized
form of

fk(y) = θφT (53)

Assume that the definition interval [a,b] can be
discretized by a set of sampling points, the pa-
rameters ai and dj,i can be estimated by the
so-called scanning identification algorithm with
the standard least-square update towards (53)
(Wang, 2000). Figure 1 is provided to clarify the
scanning process, in which y stands for the chain
length varying from 2 to N, m is the total number
of sampling points in terms of time.
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Sample time k = 1

y=y+1

Sample point y = 2

y < N

y = N

k=k+1

collect f, u and update

k < m

k= m

end

Scanning

operation

LS update of θ

Start  with  pre-specified

C(y) and initial φ

φ

Fig. 1. scanning LS identification algorithm

5. MODEL VALIDATION

For the polymerization system in Section 2, firstly,
the dynamic MWD data was produced from the
first-principle model (fig. 2). The control input
c was created randomly for the training purpose
of the B-spline neural networks. Reaction system
parameters are given in Table 1. In order to verify
the formulation of the dynamic MWD, the steady-
state solution of the dynamic model is compared
with the results from the static MWD model.
When c = 0.5, the MWD from the static model
is given in fig. 3 and the steady-state MWD from
the dynamic model is shown in fig. 4. The two
curves are highly closed to each other, although
the MWD in static model is an exact solution
while the dynamic MWD is produced from the
moments method, the generation function tech-
nique and finally represented by the Schultz-Zimm
distribution. It shows that the moments method
and the Schultz-Zimm distribution are appropri-
ate for formulating this dynamic MWD model.

Secondly, the B-spline model was developed with
the MWD data produced from the first-principle
model. The scanning LS identification algorithm
is used to obtain the parameter vector θ in (51). In
this simulation, 10 fixed, 3rd-order B-splines are
chosen for the MWD approximation. The training
data length is 1500. The approximated MWDs
with the trained B-spline weights are shown in
fig. 5. It can be seen from fig. 5 and fig. 2 that the
dynamic approximation is satisfactory.
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Fig. 2. Original MWDs from first-principle model
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Fig. 3. Static MWD with c=0.5
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Fig. 4. Steady-state MWD with c=0.5
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Fig. 5. Approximated MWDs from B-spline model
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Table 1. Model parameters

Kd 9.48 × 1016exp(−30798.5/rT )

Ki 0.6Kd

Kp 6.306 × 108exp(−7067.8/rT )

Ktrm 1.386 × 108exp(−12671.1/rT )

Kt 3.765 × 1010exp(−1680/rT )

V 3.927

F 0.0286

T 353

I00 0.0106

M00 4.81

r 1.987

c [0.2,0.8]

Finally, the B-spline model was used for dynamic
MWD control to see if the proper feedback control
can be achieved with this model. The standard
output PDF control is adopted with the following
quadratic performance function (Wang, 2000).

J =

b∫
a

(γ(y, uk) − g(y))2dy +
1
2
λu2

k (54)

where g(y) is the target distribution and λ > 0
is a weighting factor for control energy. Fig. 6
shows the initial, final and target MWDs. Fig.
7 shows the development of output MWDs dur-
ing the control process. Although there exists
a small steady-state MWD tracking error, the
controller successfully moves the output MWD
from its initial shape towards the target shape.
This means that the B-spline model can provide
reliable MWD estimation for the feedback MWD
control.
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Fig. 6. Initial, final and target MWDs

6. CONCLUSIONS

In this paper, a dynamic first-principle MWD
model has been developed and then approximated
by the general B-spline functions. It makes the
feedback MWD control feasible with the recently
developed output PDF control strategies. Based
on this model, further progresses on MWD con-
trol with different control strategies have been
achieved and results will be distributed in the
future.
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Fig. 7. Output MWDs during control
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