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Abstract: This paper presents an approach based on the use of correspondence analysis (CA) 

for the task of fault detection and diagnosis. Unlike other tools (PCA / DPCA) that are used 

for this latter task, CA is shown to use a different metric to represent the information content 

in the data matrix X. Decomposition of the information represented in the metric is shown to 

yield superior performance from the viewpoints of data compression, discrimination and 

classification as well as early detection of faults. We demonstrate these performance 

improvements over PCA and DPCA on the Tennessee Eastman problem, which is a 

representative benchmark problem used in the literature. CA is shown to yield vastly superior 

performance for the monitoring of the TE problem, when compared with PCA and DPCA. 
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1. INTRODUCTION 

Early detection of the occurrence of an abnormal 

event in an operating plant is very important for plant 

safety and maintaining product quality. Tremendous 

advancements in the area of advanced 

instrumentation have made it possible to measure 

hundreds of variables every few seconds. These 

measurements bring in useful signatures about the 

status of the plant operation. A wide variety of 

techniques, for detecting faults, have been proposed 

in the literature. These techniques can be broadly 

classified into model based methods and historical 

data based methods. While model based methods can 

be used to detect and isolate signals indicating 

abnormal operation, such quantitative (or qualitative) 

cause-effect models may be difficult to develop from 

the first principles.  

Historical data based methods for fault detection 

attempt to extract maximum information out of the 

archived data and require minimum physical 

knowledge of the plant. Due to the high 

dimensionality and correlation amongst the variables 

of the plant data, multivariate statistical tools, which 

take correlation amongst variables into account, are 

better suited for this task. Dimensionality reduction is 

also a very important aspect of historical data based 

methods. 

Generally, the information content in a data matrix 

X  can be quantified in terms of a number of criteria 

or metrics. The most commonly used metric, the 

variance or the multivariate analysis of the variance 

(MANOVA), usually yields a wealth of knowledge 

from the information embedded in the matrix X .

Multivariate statistical tools, such as PCA, are based 

on decomposition of the variances and address issues 

related to correlation along the column or the row 

spaces. PCA determines the lower dimensional 

representation of the data, in terms of capturing the 

data directions that have the most variance. This is 

done via singular value decomposition (SVD) of a 

suitably scaled (mean centered and variance scaled) 

data matrix ( X ) and retaining those principal 

components that have significant singular values. 

PCA achieves dimensionality reduction in the 

column space by considering the correlation amongst 

the variables. The statistical model thus built, 

characterizes the normal plant operation. PCA has 

been used for fault detection using statistical control 

limits Q (Squared Prediction Error) and/ or T² 

statistics (Nomikos and MacGregor, 1995). Once a 

fault is detected using either Q or T² statistics, 
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contribution plots (Miller et al., 1998) have been 

used to help fault isolation. One of the drawbacks of 

PCA, however, is that it is representation-oriented 

and not discrimination-oriented. As shown in Chiang 

et al. (2000), there are other algorithms such as 

multiple discriminant analysis that can better 

discriminate between the normal and abnormal 

operating regions in the data and hence yield smaller 

misclassification rates during on-line monitoring. 

An important aspect that also needs to be considered 

is that the variance need not be the best metric for 

capturing cause and effect relationships. Usually, 

such cause and effect relationships are dynamic and 

can be more effectively analyzed by assessing the 

row (sample) versus column (variable) associations. 

In PCA or in the multiple discriminant analysis 

(MDA) approach, such dynamic relationships require 

expanding of the column space to generate a static 

map of the dynamic relationships. This latter strategy 

has drawbacks in terms of larger matrix and data 

sizes and increasing computational intensity.  

This paper proposes to address the above problems 

using an approach that is based on CA for the task of 

FDD. Correspondence Analysis (CA) (Greenacre, 

1984; Greenacre, 1993; Hardle and Simar, 2003) is a 

powerful multivariate statistical tool, which is based 

on generalized SVD (GSVD). CA is a dual analysis, 

as it simultaneously analyzes dependencies in 

column, row and the joint row-column space in a 

dual lower dimensional space. Thus, dynamic 

correlation can be represented relatively easily 

without having to expand and deal with larger data 

sizes. CA primarily uses a measure of the row-

column association and decomposes it to obtain 

directions in the lower dimension space which 

discriminate as well as compress information. Unlike 

its earlier counterparts such as PCA and MDA, it 

represents the cause-effect relationships in terms of a 

chi-square (
2 ) value, that measures row-column 

associations. Since, decomposition of the 2  value 

takes joint row-column association into account; it 

can be expected to perform better than conventionally 

used variance decomposition based methods, such as 

Principal Components Analysis (PCA).  

In this paper, we show how Correspondence Analysis 

(CA) is superior to PCA and MDA and can be used 

for the purpose of fault detection and have also 

defined statistics based on CA that can be used for 

online process monitoring. It has also been found that 

the performance of statistics based on CA is better as 

compared to conventional PCA. The dimensionality 

reduction achieved using CA is more effective as it 

takes joint row-column association into account. 

Also, due the special kind of scaling it employs, CA 

is also shown to be able to cluster and aggregate the 

data more effectively (Ding et al., 2002). 

The objective of this paper is (i) to demonstrate the 

usefulness of CA for fault detection, (ii) to define 

new statistics which are equivalent to Q and T2

statistics for PCA and (iii) to evaluate and compare 

performance of PCA, DPCA and CA for detecting 

faults in a realistic chemical process simulation. We 

show here that the proposed statistic performs better 

than the existing PCA and DPCA statistics when 

applied to the Tennessee Eastman process. The paper 

is organized as follows. First, PCA and DPCA are 

briefly presented. Then, CA is described followed by 

the proposed approach to fault detection using CA 

based statistics. Finally, PCA, DPCA and CA are 

applied to the data collected from the Tennessee 

Eastman process simulator. We conclude with 

comparative study of results. 

2. Principal Components Analysis (PCA) 

Any matrix m nX  consisting of m-observations and 

n-variables, collected from an operating plant has a 

wealth of information regarding the health of the 

plant. PCA decomposes the variance in the data, 

based on dependencies along the columns, to achieve 

dimensionality reduction. PCA computes a set of new 

orthogonal principal directions, called loading 

vectors. Loading vectors are obtained by solving an 

optimization problem involving maximization of 

variance explained in the data matrix by each 

direction. For example, the first direction is obtained 

as a solution of the optimization problem in the space 

of the first linear combination 1 1t Xp  as, 

1

1 1 1 1max T T T

p
t t p X Xp  (1) 

Such that 1 1 1T
p p .

It has been shown that the singular vector 

corresponding to the largest singular value provided 

by the SVD of X , is the solution to the above 

optimization problem. Because of correlation 

amongst variables, only first k (substantially smaller 

than n) loading vectors may explain most of the 

variance in the data. Thus, PCA decomposes the 

matrix X  as, 

T
X TP E  (2) 

where, P  contains only first k ( k n ) loading 

vectors. The matrix T  is called the scores matrix. 

The matrix E  contains the component of variance of 

matrix X , such as noise, which can not be explained 

by T
TP , and is also known as residual matrix.  

2.1. Fault detection using PCA 

The statistical model developed using PCA, from 

the normal operating data, can be used for the 

purpose of online monitoring and fault detection. 

When employed online, new scores are obtained by 

projecting the new measurements onto the loading 

vectors. Normal operation of the plant can be 

characterized by Hotelling’s T2 statistic (Equation 

(3)), based on the first k loading vectors (principal 

components) retained. The status of the plant is 

considered normal if the value of T2 static stays 

within its control limit. 
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2 1T T T
x P P x  (3) 

where, x  is the new measurement vector and  is 

a diagonal matrix containing first k eigen values of 

the covariance matrix of X .

The control limit (threshold) for the T2 statistic 2T

can be calculated from Equation (4) (Ku et al., 

1995). A value of T2 statistic greater than the 

control limit ( 2T ) indicates occurrence of a fault. 

2
1

T ,
m k

F k m k
m k

 (4) 

where, ,F k m k  is the upper 100 %  critical 

point of F-distribution with k and m k  degrees of 

freedom. 

However, monitoring only T2 statistic is not 

sufficient, as it only detects variation in the 

direction of the first k PCs. Variation in the space 

corresponding to n k  PCs (having smallest 

associated singular values) can also be monitored 

using Q statistic (Jackson and Mudholkar, 1979). 

The value of Q statistic and its control limit can be 

calculated as follows: 

T
T TQ I PP x I PP x  (5) 

01/

2 0 00 2

1 2

1 1

12
1

h

h hh c
Q  (6) 

where, 
2

1
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i j

j k

, 1 3
0 2

2

2
1

3
h , c  is the 

normal deviate corresponding to 1  percentile 

and j  is jth singular value. When a fault occurs 

that results in change in covariance structure of the 

normal operating data, it gets reflected by a high Q 

value. 

2.2. Dynamic PCA 

Monitoring using PCA statistics implicitly assumes 

that the measurements at one time instant are 

statistically independent to the measurements at the 

past time instances. The assumption is generally 

not valid for most processes due to dynamics of the 

plant. The PCA method can be extended to take 

into account the serial correlations, by augmenting 

each observation vector with a few past 

observations and stacking the data in a bigger 

matrix.

1A t t t lX X X X  (7) 

By performing PCA on the augmented data matrix 

( AX ), a multivariate auto regressive (AR) model is 

extracted directly from the data (Ku et al., 1995). 

This however, requires working with considerably 

larger data matrices than the conventional PCA. 

The T2 and Q statistics and their control limits can 

be generalized directly to DPCA. 

3. CORRESPONDENCE ANALYSIS 

The aim of correspondence analysis is to develop 

simple indices to highlight associations between the 

rows and the columns. Unlike PCA, which 

canonically decomposes the total variance in the 

matrix X , CA decomposes a measure of row-column 

association, typically formulated as the total 2

value, to capture the dependencies. CA can be 

presented in terms of weighted Euclidean space as 

follows. In general, through an optimization 

procedure, we seek a lower dimension (say k)

approximation of the matrix X  in an appropriate 

space S . In terms of the row and column points, 

each row of X  can be represented as a point ix

1, 2..i m  in an n-dimensional space. When one 

seeks to estimate the lower dimensional space 

(approximation) S  that is closest to this cloud of 

row points, one could solve optimization problems 

that are formulated in several possible ways. One 

such optimization problem to determine the space S

could then be minimize a weighted Euclidean 

distance defined as,  

2 T
d x x D x x  (8) 

It can be shown (Greenacre, 1984) that the solution to 

the problem of minimizing the weighted distances in 

Equation (8) can be given by decomposition of 
inertia of row (or column) cloud, i.e. generalized 

SVD of the matrix 1/ Tg X rc . The vectors r

and c  are the vectors of row sums and column sums 

of 1/ g X , respectively (Equation (9) & (10)).  

1/ gr X 1  (9) 

1/
T

gc X 1  (10) 

where, 1  is a vector of all 1’s of appropriate 

dimension. The matrix rD  is then defined as 

( )r diagD r  and similarly, ( )c diagD c .

The inertia of the row cloud and the column cloud 

can be shown to be the same (Greenacre, 1984) and is 

given by the 2  value divided by g . The weight 

matrix D  is chosen as diagonal matrix of the row 

sums ( rD ) or the column sums ( cD ). The 

generalized SVD of this matrix is defined as  

1/ T Tg X rc AD B  (11) 
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such that, 1T
r m mA D A I  and 1T

c n nB D B I .

The generalized SVD results of Equation (11) can 

also be realized via the SVD of an appropriately 

scaled matrix X , as explained below. We define the 

matrix P  as,

1/ 2 1/ 21/ T
r cgP D X rc D  (12) 

Then, the regular SVD of the matrix P  gives the 

required singular vectors.  The problem of finding 

principal axis for the row cloud and the column cloud 

are dual to each other and A  and B  define the 

principal axes for the column cloud and the row 

cloud respectively. In general, major part of the 2

value can be explained by retaining only first k

( ,k m n ) principal axes corresponding to the 

largest singular values. The co-ordinates (scores) of 

the row profile points and column profile points for 

the new principal axis can be computed by projection 
on A  and B  (only first k columns are retained), 

respectively. 

1
rF D AD  (13) 

1
cG D BD  (14) 

3.1. Singular values and inertia 

The sum of the squared singular values gives the 

total inertia of the cloud. The inertia explained by 

each principal axis can then be computed by 

2

2

1

th i

n

j

j

IN i axis  (15) 

where, i  is ith singular value.  

Similarly, cumulative inertia explained up to the ith

principal axis is the sum of inertias explained up to 

that principal axis. This gives a measure of 

accuracy (or quality of representation) of the lower 

dimensional approximation. Although several 

mathematical criteria do exist for selecting the 

number of principal axis, there is no generally 

fixed criterion proposed to determine how many 

principal axes should be retained.  

4. PROCESS MONITORING USING CA 

Correspondence analysis has been used to build 

statistical models for ecological problems, study of 

vegetation habit of species, social networks, etc. Here 

we propose to build the statistical model for the plant 

data pertaining to normal operation using CA. As 

discussed earlier, CA takes joint row-column 

association into account while decomposing the 2

value. CA has also been shown to give better 

aggregation and clustering (Detroja et al., 2005). CA 

also scores over PCA, which assumes statistical 

independence of samples (rows), as well as DPCA, 

which requires augmentation of the data matrix. 

Once the statistical model is built from the normal 

operation data, the next task is to define control limits 

which can be used for the purpose of online statistical 

process monitoring of the plant. Motivated by Q and 

T2 statistics used in PCA and DPCA, we defined here 

similar statistics for CA. 

For online process monitoring, when a new 

measurement arrives, it is projected onto the PCs to 

obtain the new row scores (co-ordinates). The new 

measurement vector x  is given by 

1 2

T

mx x xx  (16) 

The row sum of this measurement vector, r is given 

by

1

m

i

i

r x  (17) 

and the new row scores can be obtained as  

11
T

T

r
f x GD  (18) 

4.1. T2 statistic for CA 

Hotelling’s T2 statistic effectively captures normal 

operating region for the multivariate data in PCA. 

For the statistical models that are built using CA, a 

similar statistic can be used to characterize the 

normal plant behavior. The T2 value for CA model 

is defined as in Equation (19). 

2 2T T
f D f  (19) 

where, D  contains first k-largest singular values, 

which were retained. 

Control limit for the T2 statistic based on CA, 

follows from the Equation (4). 

4.2. Q statistic for CA 

As explained earlier, monitoring the plant using 

only T2 statistics is not adequate for fault detection, 

as it only monitors the variation along the principal 

axes which were retained in the statistical CA 

model. Any significant deviation in the direction of 

n k  PCs (corresponding to smallest singular 

values), is also indicative of a fault. 

The value of Q statistic for CA is defined as in 

Equation (20). 
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1 1
T

Q
r r

Bf x c Bf x c  (20) 

The control limit for the Q statistic is chosen as 

95% confidence limit from the normal operating 

residual values. 

Correspondence analysis, along with the statistics 

defined here, can be very useful in fault detection. In 

the next section, we demonstrate the usefulness of 

CA for fault detection and compare the performance 

of statistics based on CA, PCA and DPCA. 

5. APPLICATION TO TENNESSEE 

EASTMAN CHALLENGE PROBLEM 

Figure 1: A diagram of the Tennessee Eastman 

process 

The Tennessee Eastman process proposed by Downs 

and Vogel (1993) has been a benchmark problem for 

plant-wide control strategy and fault detection 

(Russell et al., 2000). The test problem is based on an 

actual chemical process where only the components, 

kinetics and operating conditions were modified for 

proprietary reasons. Figure 1 shows a diagram of the 

process. The simulation code allows 21 pre-

programmed major process disturbances as shown in 

Table 1. The plant-wide control structure 

recommended in Lyman and Georgakis (1995) and 

was used by Russell et al. (2000) for their study of 

fault detection using PCA and DPCA was used to 

generate the closed loop simulated process data for 

each fault. 

The statistical models were built from the normal 

operation data consisting of 500 samples. All 

manipulated and measurement variables except the 

agitation speed of the reactor’s stirrer for a total of 52 

variables were used. The data was sampled every 3 

minutes. Twenty-one testing sets were generated 

using the pre-programmed faults (IDV 1-21). 

The normal operation data was used to build 

statistical model from PCA, DPCA and CA. Data 

compression is an important aspect of multivariate 

statistical tools. The number of PCs to be retained in 

PCA can be determined via several criteria such as 

cross validation or scree test. Earlier work (Russell et 

al., 2000) retained 11 PCs which explained 

approximately 55% of the variance in the data. When 

the analysis was done using CA, it was found that 

when 12 PCs were retained 96.65% of the total 

inertia was effectively captured. It should be noted 

here that these values of variance explained by PCA 

and inertia explained by CA can not be directly 

compared. Nevertheless, the representation given by 

CA would appear to be better as through modeling of 

the row-column associations it is better able to 

capture inter-relationships between variables and 

samples. 

The objective of the fault detection technique is that 

it should be independent of the training set, sensitive 

to all the possible faults of the process, and prompt 

towards the detection of the fault. Since the fault 

alarms are inevitable, an out-of-control value of a 

statistic can be the result of a fault or of a false alarm. 

In order to decrease the rate of false alarms, a fault 

can be indicated only when several consecutive 

values of a statistic have exceeded the threshold. In 

this study, the fault is indicated only when six 

consecutive statistic values have exceeded the control 

limit, and the detection delay is recorded as the first 

time instance in which the threshold was exceeded. 

This was done exactly in accordance with what has 

been reported by Russell et al. (2000) so that results 

can be compared. The missed detection rates for 

faults 3, 9, and 15 were found to be fairly high, 

because no observable change in the mean or the 

variance could be detected by visually comparing the 

plots of each associated observation variable (Russell 

et al., 2000). Therefore, these faults are not 

considered when comparing the methods. 

Table 1: Process faults for the Tennessee Eastman 

process simulator

Fault Description Type 

IDV(1) A/C Feed ratio Step 

IDV(2) B component Step 

IDV(3) D feed temperature Step 

IDV(4) Reactor cooling water 

(RCW) inlet temperature 

Step

IDV(5) Condenser cooling water 

(CCW) inlet temperature 

Step

IDV(6) A feed loss Step 

IDV(7) C header pressure loss Step 

IDV(8) A, B, C feed component Random 

IDV(9) D feed temperature Random 

IDV(10) C feed temperature Random 

IDV(11) RCW inlet temperature Random 

IDV(12) CCW inlet temperature Random 

IDV(13) Reactor kinetics Slow drift 

IDV(14) RCW valve Sticking 

IDV(15) CCW valve Sticking 

IDV(16) Unknown  

IDV(17) Unknown  

IDV(18) Unknown  

IDV(19) Unknown  

IDV(20) Unknown  

IDV(21) The valve for Stream 4 was 

fixed (steady state position) 

Constant 

position 

The detection delays (in minutes) for all 18 faults 

(excluding fault 3, 9 and 15), are tabulated in Table 2. 

Statistic having minimum detection delay is shown 
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bold faced. All faults could be detected by the 

statistics defined based on CA. It can also be seen 

that the Q and T2 statistics based on CA performed 

better as compared to statistics based on PCA. In can 

also be seen that the CA statistics has also performed 

better than DPCA statistics, which is expected to 

perform (and have performed) better than PCA 

statistics. CA based Q statistic is relatively faster in 

detecting faults when compared with statistics 

generated via PCA and DPCA. An important 

observation needs to be made in relation to Fault 19. 

As seen in Table 2, this fault was not detected by any 

other statistic except the Q-DPCA and Q-CA. 

however, even here, CA is seen to detect the fault 

much more rapidly than the DPCA (30 v/s 246 

minutes respectively). Detection delays are also seen 

to be reduced considerably for other fault cases as 

well. The false alarms were also fewer in CA when 

compared to PCA (results are not included due to 

brevity). 

Table 2: Detection delays (in minutes)

Fault PCA 

Q

PCA 

T2
DPCA 

Q

DPCA 

T2
CA 

Q

CA 

T2

IDV(1) 9 21 15 18 6 21

IDV(2) 36 51 39 48 24 36
IDV(4) 9 -- 3 453 3 -- 

IDV(5) 3 48 6 6 21 45 

IDV(6) 3 30 3 33 3 3 

IDV(7) 3 3 3 3 3 3 

IDV(8) 60 69 63 69 24 63

IDV(10) 147 288 150 303 75 171 

IDV(11) 33 912 21 585 15 567 

IDV(12) 24 66 24 9 6 69

IDV(13) 111 147 120 135 108 135 

IDV(14) 3 12 3 18 3 -- 

IDV(16) 591 936 588 597 27 84

IDV(17) 75 87 72 84 87 711 

IDV(18) 252 279 252 279 261 303 

IDV(19) -- -- 246 -- 30 -- 

IDV(20) 261 261 252 267 210 252 

IDV(21) 855 1689 858 1566 717 1548 

6. CONCLUSION

A new approach to fault detection based on 

Correspondence Analysis was proposed in this paper. 

New statistics based on CA, which are similar to Q 

and T2 statistics of PCA, were also defined. The 

Tennessee Eastman process simulation was used to 

compare the proposed approach to fault detection 

using CA against conventional PCA and Dynamic 

PCA.

The process model representation in CA is better as it 

takes joint row-column association into account 

without increasing the number of columns in the data. 

The simulation study also revealed that all the faults 

in Tennessee Eastman process could be detected. 

Detection delays for fault detection are significantly 

reduced for most of the faults when compared with 

PCA and DPCA statistics. 
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