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Abstract: This article focusses on the control loop performance diagnosis of a multivariate
system with emphasis on the presence of interactions and poor performance of control loops.
The paper provides a data-driven technique to determine if a decentralized PI(D)+ controller
will suffice or if an advanced controller (e.g., MPC) is necessary to handle the control
interactions and improve the loop performance. Two different techniques are proposed: the
first one, based on the Power Spectrum of the error, analyzes interactions in the frequency
domain, while the second one, based on the evaluation of a modified IAE (Integral of
Absolute Error), analyzes interactions in the time domain. A performance index for the
controller is also proposed for the case of set-point tracking. Simulation and experimental
case studies are presented to highlight the applicability of the proposed techniques.
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1. INTRODUCTION

Over the last two decades, monitoring control loop
performance has been addressed in several ways and
several performance indices have been proposed (see
Hoo et al. (2003) for a good survey). Different causes
for low loop performance such as improper controller
tuning, sensor faults, valve non-linearities have been
identified (Bialkowski, 1993; Kozub, 1997). An im-
portant cause that demands attention in addition to
these causes is the presence of interactions among
loops. A key impact of the interaction on the loop
performance is the propagation of the effects of other
causes that deteriorate the loop performance, thereby
corrupting other loops.

The schematic of a multivariate (MIMO) system under
discussion in this sequel is shown in figure 1: the
process P, not necessarily square; the controller C
initially considered as a decentralized PI(D)+ type.
A disturbance through Pd and white noise passing
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through a first order filter F are included for com-
pleteness. In a routine operation, the set point array r,
the control action array u and the controlled variables
array y are measured quantities.

Diagonal elements of the matrix P represent the pro-
cess transfer functions, while the off-diagonal ele-
ments (Pij , i �= j) represent the interaction transfer
functions. When an excitation affects a loop i, some
effect is also present on another loop j depending on
the interaction transfer function Pij .

The Relative Gain Array (RGA) is often used to de-
scribe the level of interaction among loops, for in-
stance in (Persechini et al., 2004). However, it has
two key limitations: (i) a model of the process must be
known and consequentially the RGA measure depends
on the model uncertainty (Chen and Seborg, 2002) and
(ii) RGA gives only a measure of stability once loops
are closed and no indication on the real interaction
among them.

Therefore, a novel approach is proposed, which does
not use an explicit process model, but instead di-
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Fig. 1. The reference setup of a MIMO system

rectly uses routine operating data. Once the loops that
are suspected to interact are selected, the proposed
method can be used to assess the level of interaction.

Among all types of excitations, the set-point excitation
is most preferred since it allows us to obtain y as a
function only of P and C. The effect of the disturbance
transfer function Pd, which may cloud the interaction
measure, is thus avoided.

The outline of the paper is as follows. Two interaction
measures are described in section 2, followed by an
analysis of the controller performance in section 3.
Application of the techniques to simulated, industrial
and experimental setups are presented in Sections
4 and 5 respectively. The paper ends with a few
concluding remarks in Section 6.

2. INTERACTION MEASURES

Depending on the nature of process excitation, inter-
action can be analyzed in either time- or a frequency-
domain as may be deemed appropriate. For instance,
in rotary machines, it is necessary to evaluate the in-
teraction in a defined range of frequencies by exciting
loops with oscillatory set-points. A frequency domain
analysis, named in the sequel Power Spectrum Anal-
ysis, is more suited to such situations. On the other
hand, oscillatory set-point changes (steps, ramps, etc.)
are not a commonplace in chemical industries and
therefore, a time domain technique, named in the se-
quel as IAE technique, may be chosen.

For both cases a comparison between controlled vari-
ables belonging to different loops has to be performed.
For this reason a normalization factor is chosen so as
to make the task independent of the measuring scale.
Denoting as CRUP,i and CRLW,i the upper and lower
limit of the control range for the loop i respectively,
the normalization factor NFi can be evaluated as de-
scribed in equation 1:

NFi = min{CRUP,i − ri; ri − CRLW,i} (1)

where ri is the mean value of the set-point of loop i.
All controlled variables are divided by their respective
normalization factors for subsequent analysis.

2.1 Power Spectrum Analysis

Detection of interacting loop is performed by the use
of Power Spectral Correlation Index (PSCI) (Tangirala
et al., 2005). Its application allows one to exclude
loops characterized by different frequencies due to
other oscillating sources. The PSCI between loop i and
j is calculated as:

PSCIi,j =

∑
ω

PSyi(ω) · PSyj (ω)
√∑

ω
PSyi(ω)2 · ∑

ω
PSyj (ω)2

(2)

where PSyi
(ω) is the raw power spectrum of the con-

trolled variable of the loop i evaluated at the frequency
ω. This index (Tangirala et al., 2005), lies in the range
[0 1]: with similar shapes of power spectra its value is
near one, indicating the presence of interaction.

Once an interacting loop is detected, the amount of the
interaction is calculated as:

IFDi,j = 1−
√

max(PSSP )√
max(PSSP ) +

√
max(PSI)

(3)

where SP and I indicate respectively the loop affected
by the set point change and the interacting loop. IFD
lies in the range [0 1], the larger the interaction, the
higher is the index.

Equations 2 and 3 can be used in combination to assess
the interaction in the frequency domain.

2.2 IAE technique

Fig. 2. Example of IAE trend for a set-point change

For the time domain analysis, the error signal e=r-y is
considered: if the error does not change its sign from
the sample k − 1 to the sample k a modified IAE
(Integral of Absolute Error) is evaluated as given in
equation 4:

IAE(k) = IAE(k − 1) + |e(k)| · h (4)

where h is the sampling interval. If a change in the
error sign occurs, IAE(k) is reset to zero (Hägglund,
1995). The trend of IAE is composed of peaks that
coincide with the zero crossing of the error signal as
shown in figure 2.
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Fig. 3. Example of Excitation Peak and Cluster of Noise peaks

The use of this index allows one to magnify the dif-
ference between excitations (bigger peaks) and noise
(smaller peaks) taking into account both the amplitude
of the error and the duration between two consecutive
zero crossings. Furthermore, the comparison of IAE
peaks for different variables can be directly used to
evaluate the amount of interaction between loops. To
analyze only peaks due to excitations, a technique for
the detection of outliers is applied (Daszykowski et
al., 2001). This technique analyzes maxima of each
peak: maxima of noise peaks generate a cluster from
which maxima of excitation peaks are excluded (figure
3).

In the presence of interactions, a set-point change will
generate a peak in IAE trends in the two examined
loops almost at the same time. Considering the time
delay of the interaction as unknown, it is impossible
to establish the exact gap which occurs between the
two peaks. To overcome this problem a time window
is chosen according to the duration of the source peak:
defining t0 the time in which the set point change
starts and t1 the time in which the time trend reaches
its maximum, the time horizon th for the time window
can then be evaluated as:

th = t0 + a · (t1 − t0) (5)

where the parameter a is adjustable and set to 4 in this
work. This setting of a provides an over-estimate of
the interaction delay θI ). A few remarks follow:

• t1 − t0, the time gap in which the controlled
variable reaches the set-point value for the first
time, is an overestimation of θP .

• Under the hypothesis of similar values of θI and
θP , the choice a = 4 allows to obtain for most
cases a time horizon bigger than θI .

However the value of a can be changed easily by
the operator to analyze the effect of the time window
horizon on the interaction measure.

An interaction index Interaction in Time Domain
(ITD) is thus proposed based on the IAE of the win-
dowed trend:

ITDi,j = 1 −
∑th

t0
IAESP∑th

t0
IAESP +

∑th

t0
IAEI

(6)

with the same formalism used in equation 3. Similar
to IFD, ITD lies in [0 1] and a strong interaction is
associated with a high value.

A heuristic interpretation of the proposed interaction
indices is given in table 1. Of particular importance is
the limit of 0.5, over which the value implies that the
set-point change in a loop i affect more other loops
than loop i itself.

Table 1. Interpretation of the index values

ITD (/IFD) Interpretation
[0 0.125] No Interaction

[0.125 0.25] Low Interaction

[0.25 0.375] Medium Interaction

[0.375 0.5] High Interaction

[0.5 1] Very High Interaction

It is remarked that a limitation of this method is that
it can not correctly estimate the interaction when set-
point activity in a loop and a disturbance in another
loop coincide. However, the presence of other set-
point changes in the data set can help overcome this
limitation to a large extent.

3. CONTROLLER PERFORMANCE INDEX

Information from the interaction measure can be used
to establish if a retuning is sufficient to improve the
performance or if an advanced controller is required.
For this purpose, a new Controller Performance Index
(CPI) is defined.

The CPI is proposed on the basis of the response to
a set-point change. Given a set-point change, under
minimum variance control, after θP + t0, the error
immediately reaches zero. Suppose a minimum error
emin is associated with this case. Otherwise a resid-
ual error is still present until the controlled variable
reaches the settling time. Denote the error in such a
case by etot. The CPI is then defined as,

CPI =
etot − emin

etot + emin
(7)

If etot is near to the minimum achievable, the con-
troller has a good performance and CPI is near zero.
If etot � emin, the controller has a poor performance
and CPI is near to one. Given the fact that the mini-
mum variance controller is an idealistic case and of lit-
tle practical use (Huang and Shah, 1999) and consid-
ering the presence of interaction, a threshold value of
CPI = 0.5 is chosen. Below this value of CPI, retun-
ing would be practically of little benefit. Furthermore,
a high value of the CPI with a high value of ITD/IFD
implies that the present controller configuration yields
good performance but unable to handle interactions.
Therefore, a structural change may be necessary.

To evaluate the CPI, the time delay of the process θP

must be estimated. The recorded response y to the
set-point change in closed loop can be approximated
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by a open loop response to a step-test ỹ. Choosing a
second order model P̃ and varying its parameters, it
is possible to find the best approximation in the least
square sense. The obtained model will not have any
physical meaning: it is used only to generate a good
estimate of the time-delay (for the same reason the
order of the model is not critical). Assuming a fixed
value for the time delay q = θP /h with h sampling
time and defining n the length of the data set, it is
possible to generate the best approximation of y in the
least square sense:

y(z−1) =
b1z

−1−q + b2z
−2−q

a1z−1 + a2z−2 + 1
· r(z−1) (8)

yk = b1rk−1−q + b2rk−2−q − a1yk−1 − a2yk−2 (9)

⎡
⎢⎢⎢⎣

yq+3

yq+4

...
yn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸

=

y

⎡
⎢⎢⎢⎣

−yq+2 −yq+1 r2 r1

−yq+3 −yq+2 r3 r2

...
...

...
...

−yn−1 −yn−2 rn−1−q rn−2−q

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
M

⎡
⎢⎢⎣

a1

a2

b1

b2

⎤
⎥⎥⎦

︸ ︷︷ ︸
p
(10)

p = (MT M)−1MT · y (11)

Among all models P̃ = f(q, p), the one that generates
the lowest error in the least square sense is associated
with the best estimation of θP .

4. CASE STUDIES

This section presents two of the several MIMO sys-
tems that were successfully analyzed with the pro-
posed techniques. The first system is the Marlin Col-
umn, known to contain a high level of interaction. The
process transfer functions are reported below:

y=

⎡
⎢⎣

0.0747e−3s

12s + 1
−0.0667e−2s

15s + 1
0.1173e−3.3s

11.7s + 1
−0.1253e−2s

10.2s + 1

⎤
⎥⎦ · u (12)

It can be observed that the gains, time constant and
time delay for diagonal and off-diagonal elements
are similar, indicating a strongly interacting system.
A more detailed description of the process together
with the definition of a decentralized PI controlled
are reported in Marlin (2000). Pre-specified set-point
changes were performed to analyze the presence of
interaction as depicted in figure 4a); the corresponding
IAE trends are reported in 4b). The presence of
interaction is indicated by the high values of ITD1,2 =
0.47 and ITD2,1 = 0.43, which confirms with the
earlier discussion. The CPI is over 0.9 for both the
controllers indicating that a retuning will improve the
performance but, considering the high values of ITD
in this case, a different structure is suggested for the
controller (e.g. MPC).

Fig. 4. Marlin Column: a) set-point (r) and controlled variable (y)
values; b) IAE trends

Fig. 5. Marlin Column: controlled variables for the loop affected
by the oscillatory set-point (black) and the interacting loop
(gray)

A frequency-domain analysis was also performed us-
ing oscillatory set-points. In figure 5 the controlled
variable for the loop affected by the set-point change
(black) and the controlled variable for the interacting
loop (gray) are shown. The value of PSCI is over 0.98
for both the set of data indicating that the interaction
is present: for this case the interaction from loop 1 to
loop 2 is higher (IFD = 0.57) than the one from loop 2
to loop 1 (IFD = 0.26). It is important to recall that this
analysis is suited to set-point changes that are well-
localized in frequency while the time domain analysis,
on the contrary, is well-suited to set-points that contain
a range of frequencies.

The second system under study is the Shell problem;
the process transfer functions are reported below:

y=

⎡
⎢⎢⎢⎢⎢⎣

4.5e−27s

50s + 1
1.77e−28s

60s + 1
5.88e−27s

50s + 1
5.39e−18s

50s + 1
5.62e−14s

60s + 1
6.9e−15s

50s + 1
4.38e−20s

33s + 1
4.42e−22s

44s + 1
7.2

19s + 1

⎤
⎥⎥⎥⎥⎥⎦
· u (13)

For this problem two solutions have been analyzed:
firstly a decentralized PI controller has been imple-
mented and secondly it has been compared with the
MPC proposed in (Patwardhan and Shah, 2004). It
is noted that, as explained in (Patwardhan and Shah,
2004), y3 can be considered as a “slack” variable.
The response for the two cases to the same set-point
changes are shown in figure 6 and figure 7 respec-
tively. The two different situations are well explained
by the values of ITD measure:
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Fig. 6. Shell Problem with decentralized PI controllers; set-points
(black) and controlled variables (gray)

Fig. 7. Shell Problem with MPC; set-points (black) and controlled
variables (gray)

ITD=

⎡
⎣ 1 .47 .01

.46 1 .01

.98 .97 1

⎤
⎦ ;

︸ ︷︷ ︸
dec.PI

ITD=

⎡
⎣ 1 .05 .6

.16 1 .92
.0 .0 1

⎤
⎦

︸ ︷︷ ︸
MPC

(14)

It is clear that the decentralized PI controllers do not
yield a satisfactory performance; the first two loops
are strongly interacting (ITD = 0.46 and 0.47); and
loop 3 is affecting them (ITD = 0.97 and 0.98) without
being affected (ITD < 0.1). The CPI values for the
three PI controllers are respectively 0.39, 0.59 and
0.53 indicating that a new tuning cannot be expected
to improve the performance. Therefore, an advanced
control scheme such as MPC is required. With such
a scheme, the first two loops are no more interacting
because the third loop is absorbing all excitations;
the only residual interaction from loop 2 to loop 1
(ITD2,1 = 0.16) has low importance. In both cases,
the ITD measure is able to rightly explain the interact-
ing behaviour.

5. EXPERIMENTAL SETUP

The IAE technique was applied to an experimental
setup consisting of the four-tank system depicted in
figure 8. Two combinations were considered - the first
comprising tank #1 and tank #2 (this is a minimum
phase system) and the second one comprising tank #3
and tank #4 (this is a non-minimum phase system)
(for more details see Johansson (2000)). In the first

Fig. 8. Simple schematic for the four tank problem

Fig. 9. Minimum Phase System: a) Set point (black) and controller
variables (gray); b) IAE trends and interaction measures

case, pump #1 is feeding the left tank and pump #2 is
feeding the right tank, while in the second case it is
the converse. For each case, the target is the control of
the levels in the two tanks by manipulating the inlet
flowrates to the tanks. The set-point was changed for
each of the levels and the interaction measure was
evaluated for the two cases.

Set-point changes and controller variables are shown
in figure 9a while IAE trends and interaction measures
are shown in figure 9b for the minimum phase system.
Analyzing the trend of the controlled variables, it is
very difficult to establish properly the level of inter-
action: an excitation with small amplitude is shown in
tank #2 for a set-point change in tank #1, but it appears
as a weak interaction. Compare this with the IAE of
the trends which exhibits a significant peak similar to
peaks showed in tank #1. On the other hand, a set point
change in tank #2 does not generate excitations in
tank #1. Both of these phenomena are captured by the
corresponding interaction measures, ITD1,2 = 0.32
reveals the presence of a moderate interaction from
tank #1 to tank #2; while ITD2,1 = 0.01 implies that
tank #2 is not affecting tank #1.

For the second combination, the set-point changes and
controller variables are shown in figure 10a) while
the IAE trends and interaction measure are shown
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Fig. 10. Non-Minimum Phase System: a) Set point (black) and
controller variables (gray); b) IAE trends and interaction
measures

in figure 10b) for the non-minimum phase system.
Again the analysis of IAE peaks reveals the presence
of interaction which is stronger from tank #4 to tank
#3: the higher ITD is now on the right tank while in the
previous case it was on the left tank. These results are
in agreement with the switch in the position of the feed
for the two cases, once again indicating that the IAE
technique is successful in highlighting the interaction
among the loops. The level of interaction for this pair
is larger than the earlier one due to the time delay.

The CPI values for the two cases are [0.58 0.71],
indicating that the used controllers have a sufficiently
good performance; the benefit obtained with a new
tuning would be marginal. In retrospection, the IAE
technique is able to capture the interaction, which
otherwise appeared insignificant by visual inspection.

6. CONCLUSIONS

Two different techniques have been proposed to de-
tect and quantify control loop interactions in MIMO
processes. The IFD and PSCI measures used in the
frequency domain are well-suited to analyze process
excitations that are well-localized in the frequency
domain; and the ITD, which analyzes data in the time-
domain, is suited to process excitations that are spread
over a range of frequencies. An important feature of
these indices is that they can be computed from mea-
sured data, without any need for an explicit knowledge
of the process model.

To avoid the effect of the disturbance transfer func-
tions, which may cloud the interaction measures, set-
point changes have been analyzed. In the presence of
disturbance effects in the given data set, the reliability
depends on the time coincidence of the process exci-
tations caused by these two different sources.

The interaction measure in the time domain is com-
pleted by an analysis of the performance of the con-
troller and an index CPI has been defined: it serves as
an indicator to determine whether retuning of the con-
troller is beneficial or if it is better to use an advanced
MIMO (e.g. an MPC) controller.

The application of the proposed techniques have been
demonstrated on two industrial simulation case studies
and on an experimental setup comprising the four
(interacting) tanks. In all cases, the proposed methods
successfully revealed and quantified the interaction.
which in one case appeared insignificant from a direct
observation of the time-domain trends.
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