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Abstract: This paper deals with the problem of estimating CSD (Crystal Size
Distributions) during polymorphic crystallization processes. The proposed ap-
proach is based on the high gain observer using the discretization of the PBE’s
(Population Balance Equations). First, in the growth phase, the monitoring of the
nuclei production permits the estimation of the CSD using an adequate observer.
In the dissolution of the metastable phase, the lack of on line sensors doesn’t allow
to synthesize a classical observer. However, the stability of the PDE allows to
design an open loop observer. In fact, this stability is necessary to guarantee the
convergence of the proposed observer. The performance of the given observer is
discussed in the presence of noise measurements.
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1. INTRODUCTION

In biotechnology and pharmaceutical industries,
polymorphism may occur for many products,
which means that a given compound may ex-
hibit several crystal structures. Such industrial
products are obtained generally in a solid state
through a batch crystallization process. Poly-
morphic structures exhibit different physical and
chemical properties such as crystal morphology,
solubility, and color, which affect the performance
of the ingredients. Concerning drugs, and from a
safety point of view, the polymorphic structure
has to be controlled to keep the proper prod-
uct performance. To do so, on line measurements
have to be realized. The monitoring of crystal-
lization processes has been object of number of
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publications. In (Ono et al., 2004), Raman spec-
troscopy was used in order to measure polymor-
phic composition, a simulation of the process was
also developed. In (Starbuck et al., 2002) and
(Caillet et al., 2006), the aim was also the moni-
toring of different transitions using in-situ Raman
spectroscopy. In the current work, is designed an
asymptotic observer to estimate the CSD yield by
polymorphism in crystallization process. The per-
formances of this technique are discussed through
simulation results. The stability of the PDE (par-
tial differential equation) describing the PBE of
the CSD is basically used, it justifies the possibil-
ity of the estimation of distribution without spe-
cific measurements (dissolution phase), this part
will be developed below.

The paper is organized as follows, the polymor-
phism in batch crystallization is briefly described
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(section 2). The principle of discretization of the
PBEs (Population Balance Equations) is then ex-
posed in section 3. Section 4 is devoted to the
observer synthesis. In section 5, the estimation
technique is validated through simulation.

2. MODEL DEVELOPMENT

Polymorphism in crystallization process can be
defined as a set of N crystalline forms produced
in the same stirred reactor. The dynamical model
of such process is described by a set of population
balances, a material balance relating the solute
concentration and the different solid concentra-
tion of the crystalline forms, and an energy bal-
ance for all the components of the reactor. In the
case of two crystalline forms, the following popu-
lation balance approach is applied for both CSDs
(crystal size distributions), it yields the following
partial differential equations (PDEs):

∂n1(x1, t)
∂t

+ G1 (t)
∂n1 (x1 , t)

∂x1
= 0 (1)

∂n2(x2, t)
∂t

+ G2 (t)
∂n2 (x2 , t)

∂x2
= 0 (2)

n1 (x1 , t) and n2 (x2 , t) are the number population
density function for the two crystal forms respec-
tively (stable and metastable forms). each func-
tion represents the number of crystals of size x1

or x2 per unit volume of suspension and per unit
of size. In equations (1) and (2), only nucleation
and growth are be considered, agglomeration and
breakage are not taken into account. The growth
kinetics G1 (t) and G2 (t) are assumed to be size
independent.
The solute concentration balance describing the
mass transfer from the liquid to the solid phase
is:

dVt(t)C (t)
dt

+
dVTCS1 (t)

dt
+

dVTCS2 (t)
dt

= 0 (3)

C (t) represents the solute concentration, VT is
the suspension volume, variations of this volume,
due to solute mass transfer can be neglected.
CS1 (t) and CS2 (t) being the solid concentration
of the two phases, they can be deduced from the
crystal size distributions (CSDs) :

CS1 (t) =
KV1ρs

Ms

∫ ∞

0

x3
1 n1 (x1 , t)dx1 (4)

CS2 (t) =
KV2ρs

Ms

∫ ∞

0

x3
2 n2 (x2 , t)dx2 (5)

where KV1 and KV2 are the shape factors for
the two forms (for sphere KV = π

6 ), Ms is the
molecular weight of solid of density ρs, and Vt(t)

is the solution volume (i.e. the continuous phase),
which is calculated as :

Vt(t) = VT (1 − Ms

ρs
CST (t)) (6)

with :
CST (t) = CS1(t) + CS2(t) (7)

The crystallizer temperature is described by the
energy balance :
3∑

ı=1

Cpini
∂Tcr

∂t
= −�HcVT

dCST

dt
−UA(Tcr − Tj )

(8)

where Cpi and ni represent respectively the mo-
lar heat capacities and the number of moles of
the different components in the crystallizer. Tcr

and Tj are respectively the crystallizer and jacket
temperatures. �Hc is the crystallization enthalpy.
U and Ac are respectively the overall heat transfer
coefficient and contact surface through the jacket
wall. The solubility, which refers to the solute con-
centration under saturated conditions, is assumed
to obey Van’t Hoff equation and is given by :

Csat1(T ) = A1 exp (
−∆Hc

RT
) (9)

Csat2(T ) = A2 exp (
−∆Hc

RT
) (10)

Csat1(T ) and Csat2(T ) represent respectively the
solubility for stable and metastable form (A1 <
A2), the absolute supersaturation (C − Csat) is
the driving force of the crystallization process.
When this value is positive, the overall growth
rate, including possible diffusive limitations, is
assumed to be represented by the following model.

G1(t) = Kc1
Ms

2ρs
η1(C(t) − Csat1(t))g (11)

G2(t) = Kc2
Ms

2ρs
η2(C(t) − Csat2(t))g (12)

where Kc1 and Kc2 represent the kinetic growth
rate coefficients, η1 and η2 represent the effective-
ness factors. For example, for the first population,
η1 is the solution of the following equation :

Kc1

Kd1
(C(t) − Csat1(t))g−1η1 + η

1
g

1 − 1 = 0 (13)

Kd1 represents the mass transfer coefficient through
diffusion which will be assumed to be the same for
all crystal sizes. In the literature, values of expo-
nent g were generally assumed to lie between 1 and
2, Analytical solution of equation (13) is available
if g is equal to 1 or 2, a numerical solution can be
considered in the other cases.

In the case of a negative supersaturation, the
growth kinetic is replaced by a dissolution kinetic,
it takes the following form :

D1(t) = −Kdis1
Ms

2ρs
(C(t) − Csat1(t))g (14)
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D2(t) = −Kdis2
Ms

2ρs
(C(t) − Csat2(t))g (15)

In this case, g is assumed to be equal to 2.
Kdis1 and Kdis1 are the dissolution coefficients
for stable and metastable population. Concerning
the two populations, the nucleation rate B is the
result of two competitive nucleation mechanisms.
Primary nucleation takes place in the absence of
any crystal in the solution :

B11 = A11 exp (
B11

ln2( C(t)
Csat1(t)

)
) (16)

B21 = A21 exp (
B21

ln2( C(t)
Csat2(t)

)
) (17)

and secondary nucleation, which may occur at
lower supersaturation level, is favored by the pres-
ence of solid in suspension (i.e. added in the
crystallizer through seeding or generated through
primary nucleation) :

B12 = A12M
i
T1(C(t) − Csat1(t))j (18)

B22 = A22M
i
T2(C(t) − Csat2(t))j (19)

A11, A21, B11 and B21 are the primary nucleation
parameters, A12 and A22 are the secondary nucle-
ation parameters, MT1 and MT2 are respectively
the crystal mass of the stable and metastable
crystal form in the solution. In the case of pos-
itive supersaturation, the boundary condition for
equations (1) and (2) are usually set as follows :

n1(x∗
1, t) =

B1(x∗
1)

G1(x∗
1)

� B1

G1
(20)

n2(x∗
2, t) =

B2(x∗
2)

G2(x∗
2)

� B2

G2
(21)

Where only small crystal nuclei of critical size x∗
1

and x∗
2 are assumed to grow.

At first, clear solution is prepared, the two forms
being undersaturated. The solution is cooled until
nuclei of the metastable form are produced. The
production of metastable nuclei yields a decrease
of the solute concentration. The decrease of the
temperature generates more supersaturation, and
thus, a growth of the two forms. The process
behavior for the metastable form changes when
metastable concentration crosses the metastable
solubility curve. Dissolution of this form begins,
and the polymorphic fraction of the metastable
form decreases. At the same time, the growth of
stable form continues until the consumption of the
solute concentration.

This description is done in order to analyze the
observability of both forms. Concerning the stable
form, the nuclei production guarantees the observ-
ability during all of the process. It is the case for
the metastable form until the behavior changes

t

a(  )t 0

0 1

a(  )t <0>

x

Fig. 1. a(t) conditions for the PDE stability

(dissolution phase). The stability of the equa-
tion system during the dissolution phase permits
the estimation of the remaining part. The PDE
describing the metastable CSD is an hyperbolic
equation, it has the following form :

∂F (x, t)
∂t

+ a(t)
∂F (x , t)

∂x
= 0 (22)

Figure (1) gives the condition for the stability of
the equation (22), the variable x is normalized
(0 ≤ x ≤ 1). The stability is guaranteed if the
condition concerning a(x ) is respected. In our
case, when the metastable form is in dissolution
phase, G2(t) is replaced by D2(t), this dissolution
kinetic gives negative values, thus, the system is
stable, which allows the boundedness of the error
between the model and the estimated values.

3. DISCRETIZATION OF THE PBE
”POPULATION BALANCE EQUATION”

Finite difference method is applied in the current
study for the discretization of the PBEs. This
choice is motivated by the structure obtained by
this method which corresponds exactly to the
observer one. Indeed, the state matrix involved
exhibits tri-diagonal form. Moreover, the method
concurs with the physical behavior of the system.
The principle of the discretization for (1) and (2)
is exactly the same. The system resulting for one
of the two PDEs from the discretization turns out
to be :

{
ṅx = α(t)Anx

y = Cnx
(23)

With:

α(t) =
G(t)
∆x

(24)

In the case of dissolution :

α(t) =
D(t)
∆x

(25)

IFAC - 669 - ADCHEM 2006



nx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

nx1

nx2

nx3

...
nxN−1

nxN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 . . . 0
1
2

0 −1
2

. . .
...

0
. . . . . . . . . 0

...
. . . 1

2
0 −1

2
0 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,C =

(
1 0 . . . . . . 0

)
,

Where nx ∈ R
N , A ∈ R

N × R
N and C ∈ R

N

4. HIGH GAIN OBSERVER SYNTHESIS

As far as the crystal forms are supersaturated, sys-
tem (23) associated to the output Rn(t)

G(t) is observ-
able. The production of nuclei allows to synthesize
a high gain observer. In the undersaturation case,
measurements are not available. However, an open
loop observer may be applied to both forms to es-
timate the CSDs. The convergence of the proposed
observer is dependent on the stability of the PBEs.
In the following, the observer is applied for both
PBEs. In the case of single output systems, the
high gain observer is dedicated to the uniformly
observable systems class of the following form :

⎧⎪⎨
⎪⎩

ż = f(z) +
N∑

i=1

uigi(z)

y = h(z)

(26)

where z(t) ∈ R
N , y ∈ R, u ∈ R

p System (26)
is said to be uniformly observable if for any two
initial states z �= z̄ and every admissible inputs de-
fined on any [0, T ], there exists t ∈ [0, T ] such that
y(z, u, t) �= ȳ(z̄, u, t), where y(z,u,t) is the output
associated to the initial state z and the input u. In
our case, system(26) takes the particular form of
system (23) which is clearly observable due to its
triangular form. The canonical form may be used
to construct an exponential observer for system
(23) under the following assumption :
0 < γ ≤ α(t) ≤ ξ ∀t ≥ 0
for some constants γ and ξ.
With continuous measurements, a candidate ex-
ponential observer for this system is given by
(Farza et al., 1997) and (Gauthier et al., 1992):

˙̂z(t) = α(t)Aẑ(t) − α(t)S−1
θ CT (Cẑ(t) − Y (t)),

(27)
where S is symmetric positive definite matrix
given by the following equation :

Ṡθ(t) = −θSθ(t)−AT Sθ(t)−Sθ(t)A+CT C (28)

If α(t) is negative for any time t > 0, the sign of
the correction term should be changed :{

˙̂z(t) =α(t)A(t)ẑ(t)+

α(t)S−1
θ CT (Cẑ(t) − Y (t))

(29)

An other alternative is to use the following diffeo-
morphism φ : R

N → R
N

z → φ(z) = [h,Lf (h), . . . , Ln−1
f (h)]

Such diffeomorphism transforms the system (23)
into the observable canonical form with :

A1 =

⎛
⎜⎜⎜⎜⎝

0 1 . . . 0

0 0
. . .

...
...

...
. . . 1

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠,C2 =

(
1 0 . . . 0

)
,

The resulting observer has the following form :

˙̂z(t) = α(t)Aẑ−α(t)(
∂φ

∂z
(ẑ, t))−1S−1

θ CT
2 (C2x̂(t)−Y (t))

(30)
Where Sθ is given by the following Lyapunov
equation :

θSθ(t) + AT Sθ(t) + Sθ(t)A = CT C (31)

The terms of this matrix Sθ = [Sθ(l, k)]1≤l,k≤N

have the following form :

Sθ(l, k) =
(−1)l+kDk−l

l+k−2

θl+k−1
(32)

With :
Dk

n =
n!

(n − k)!k!
(33)

5. SIMULATION RESULTS AND
DISCUSSION

5.1 Simulation conditions

The parameters used in this simulation are taken
from the crystallization of adipic acid in water
by (Marchal, 1989). Predictive models of homoge-
nous primary nucleation A1 were also taken from
(Mersmann et al., 2000). Concerning the jacket,
the cooling fluid is assumed to be brine at 0◦C.
Figure 2 summarizes the parameters values which
were used during the simulation.

5.2 Simulation discussion

Figure (3) represents the solute concentration pro-
file and the saturation concentration for both
crystal forms. It can be seen that between the
two temperatures (322K and 312K), the nuclei
production of both forms is very small. For lower
temperature, nucleation and crystal growth be-
gin and stay until a temperature of about 300K.
Below 300K, the metastable form is undersatu-
rated while the stable form is supersatured. The
metastable form therefore begins to dissolve. Nu-
cleation and growth of the stable form still go on.

Figures (4) and (5)represent some examples of
simulated classes of crystal sizes and the corre-
sponding estimated ones. The choice of these crys-
tal sizes is arbitrary. The same performances can
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parameter definition unit value
A11 homogeneous primary nucleation parameter for CSD 1 nb.m−3.s−1 1 1010

B11 homogeneous primary nucleation parameter for CSD 1 nb.m−3.s−1 0.63
A21 homogeneous primary nucleation parameter for CSD 2 nb.m−3.s−1 1 1012

B21 homogeneous primary nucleation parameter for CSD 2 nb.m−3.s−1 0.63
A12 secondary nucleation parameter for CSD 1 nb.m3(i+j−1)mol−i−j .s−1 1440
Kc1 growth constant for CSD 1 mol(1−g).m(3g−2).s−1 0.0157
A22 secondary nucleation parameter for CSD 2 nb.m3(i+j−1)mol−i−j .s−1 1440
Kc2 growth constant for CSD 2 mol(1−g).m(3g−2).s−1 0.0170
Kdis1 growth constant for CSD 1 mol(1−g).m(3g−2).s−1 2 10−8

Kdis2 growth constant for CSD 2 mol(1−g).m(3g−2).s−1 2.5 10−8

i exponent no dimension 1.968
j exponent no dimension 1
g exponent no dimension 2
Ms molar mass Kg.mol−1 146.14 10−3

ρs volume mass Kg.m−3 1360
KV 1 shape factor for CSD 1 no dimension π

6
KV 2 shape factor for CSD 2 no dimension π

10
Cp1 solute molar heat capacity J.K−1.mol−1 3.72
Cp2 solid molar heat capacity J.K−1.mol−1 7.44
Cp1 water molar heat capacity J.K−1.mol−1 75.33
∆Hc crystallization enthalpy J.mol−1 -48000
U overall heat transfer coefficient J.m−2.K−1.s−1 1000
Ac contact surface through jacket wall m2 0.022

Fig. 2. simulation parameters values
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Fig. 3. solubility for stable and metastable forms

be shown for the other sizes. Figure (4) represents
the time variation of the number of stable crystals
in the 10th size class (i.e. size around 80 µ m) and
its estimation. Figure (5) represents the crystal
size of the metastable form and its estimation. Be-
fore 500 s, the metastable form is supersaturated.
Then, the metastable form becomes undersatu-
rated (this time corresponds to the temperature
of 300K), the open loop observer is then used. As
mentioned above, the stability of the system yield
by the PBE discretization implies the assymptotic
convergence of the observer. The crystal size and
its estimate tend to the same final value with an
acceptable error, as shown on the figure.

Figures (6) and (7) represent the CSD of the
stable form and its estimation. Figures (8) and (9)
represent the CSD of metastable form and its es-
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Fig. 4. 1Oth size crystal of the stable form (Model
and estimate (dotted))
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Fig. 5. 1Oth size crystal of the metastable form
(Model and estimate (dotted))
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Fig. 6. crystal size distribution based on stable
form model
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Fig. 7. estimation of stable form crystal size dis-
tribution
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Fig. 8. crystal size distribution based on
metastable form model

0
0.5

1
1.5

2
2.5

3
3.5

4

x 10
−4

0

500

1000

1500

2000

2500

3000

3500

4000

−5

0

5

10

15

x 10
15

Time(s)

Size(m)

CSD2C
(nb/(m3.m))

Fig. 9. estimation of metastable form crystal size
distribution

timation. These figures summarize the comments
made after the preceding results. The estimation
of both CSD’s is acceptable.

6. CONCLUSION

In this work, a methodology to estimate CSDs
in polymorphic crystallization process has been
presented. This methodology is based on a model

for each crystal form. This model in obtained
by the solute concentration balance, the energy
balance in the crystallizer in addition to popu-
lation balance equations for both crystal forms.
A high gain observer is applied to estimate the
CSDs of stable and metastable forms in nucleation
phase. In the dissolution phase, the metastable
form can be estimated using open loop estimation.
This estimation gives good results because of the
stability of the PBEs. Additional simulations have
shown that modelling errors in primary nucleation
parameters don’t affect considerably the observer
robustness.The observer can be used for process
supervision to prevent any variation of crystals
population which may affect the product quality.
In the case of control applications, the estimated
crystal size distribution could be used to ensure
advanced quality control objectives such as repro-
ducible crystal number mean sizes and variances.
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(2000). Prediction of crystallization coeffi-
cients of the population balance. Chemical
engeneering science 57, 4267–4275.

Ono, T., H. J. M. Kramer, J. H. ter Horst and
P. J. Jansens (2004). Process modeling of
the polymorphic transformation of l-glutamic
acid. Crystal growth and design 4, 1161–1167.

Starbuck, C., A. Lindemann, L. Wai, J. Wang,
P. Fernandez, C. Lindemann, G. Zhou and
Z. Ge (2002). Process optimization of a com-
plex pharmaceutical polymorphic system via
in situ raman spectroscopy. Crystal growth
and design 2, 515–522.

IFAC - 672 - ADCHEM 2006


