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numerically solved using three different techniques namely, the Galerkin on finite 

elements method (GFEM), the generalized method of moments (GMOM) and stochastic 
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1. INTRODUCTION 

The dynamic evolution of the particle size 

distribution (PSD) in particulate processes is 

commonly obtained via the solution of the 

population balance equation (PBE) (Ramkrishna, 

2000). In previous publications (Alexopoulos et al., 

2004; Alexopoulos and Kiparissides, 2005; Roussos 

et al., 2005), a comprehensive study on the numerical 

solution of the dynamic PBE for batch and 

continuous particulate processes was presented. In 

general, Galerkin and orthogonal collocation on 

finite element methods exhibit good numerical 

performance when applied to processes undergoing 

simultaneous particle aggregation, growth and 

nucleation. However, increased computational times 

and special programming skills are often required for 

their implementation. Sectional PBE methods are 

faster and easier to implement but are not sufficiently 

accurate, especially with strongly size-dependent 

particle aggregation rate kernels (Kumar and 

Ramkrishna, 1996a,b; Roussos, 2004). 

An attractive alternative approach to sectional and 

finite element (FE) methods is to calculate the 

leading moments of the distribution instead of the 

distribution itself. The essential condition for the 

application of the method of moments (MOM) is that 

the resulting moment differential equations are in a 

closed form. Contrary to sectional and FE methods, 

the computational requirements of the MOM are 

substantially lower due to the limited number of 

moment differential equations needed to be solved. 

However, this results in a less detailed description of 

the distribution. The reconstruction of a distribution 

by a finite number of moments (e.g., zero, first, 

second…), is known in the literature as the inversion 

or Stieltjes problem. 

The dynamic evolution of the PSD in a particulate 

process can also be obtained via stochastic Monte 

Carlo (MC) simulations. Spielman and Levenspiel 

(1965) were the first to employ a MC approach to 

study the effect of particle coalescence on the 

reaction progress in two-phase particulate reactive 

systems in backmix reactors. Later, Shah et al. 

(1977) developed a general MC algorithm for time 

varying particulate processes. In 1981, Ramkrishna 

established the precise mathematical connection 

between population balances and the MC approach. 

In MC simulations, the dynamic evolution of the 

PSD is inferred by the properties of a finite number 

of particles sampled at appropriate time steps. In 

order to preserve the statistical accuracy and, at the 

same time, to keep the computational requirements 

of a typical MC simulation within reasonable time 

limits, the number of sampled particles at each time 

step must be maintained within a specified range 

(e.g., between 103 and 106 particles).  

In the present study, the general PBE is solved for 

batch particulate processes using the generalized 

method of moments (GMOM) and a stochastic MC 

approach. The performance of the two methods is 

directly compared with that of the Galerkin on finite 

elements method (GFEM), for a number of test-

problems including processes undergoing 

simultaneous particle aggregation, growth and 

nucleation. 

2. THE POPULATION BALANCE EQUATION 

The general population balance equation for a batch 

particulate system can be written as follows (Hulburt 

and Katz, 1964; Ramkrishna, 1985): 

G(V)n(V, t)n(V, t)
B(V)

t V

D(V) S(V, t)

(1)

where n(V,t)dV denotes the number of particles per 

unit volume in the size range [V, V+dV], G(V) is the 

particle volume growth rate function and S(V,t) is the 

particle nucleation rate. The terms B(V) and D(V) 

represent the respective “birth” and “death” rates due 
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to particle aggregation and are defined by the 

following expressions:  

V / 2

0

B V V U, U n V U, t n U, t dU (2)

0

D V n V, t V, U n U, t dU (3)

(V,U) is the aggregation rate kernel between 

particles of volumes V and U. In general, Eq. (1) will 

satisfy the following initial condition:  

0n V,0 n V (4) 

where n0(V) is the initial number density function. If 

the value of the number density function at the 

minimum particle volume, n(Vmin,t), is known, the 

corresponding boundary condition for Eq. (1) takes 

the following form: 

min 1n V , t n t (5)

2.1 The Galerkin on Finite Elements Method. 

In the finite elements method, the particle size 

domain is divided into a number of discrete 

elements, “ne”, each containing “np” equally spaced

nodal points. The number density function, n(V, t), is 

then approximated over each element “e” in terms of 

its respective values at the nodal points, e

jn :

np
e e e

j j
j 1

n V, t V n t (6) 

where e
j V  are the well-known Lagrange basis 

functions. Following the weighted residual 

formulation of Finlayson (1980), eq. (1) is forced to 

hold true, in an approximate sense, at each point “i”

of element “e” by satisfying the following 

orthogonality condition: 

e
np

e
1

V

e e

i i

V

in

n(V, t) G(V)n(V, t)
R w (V)(

t V

n (V, t) n(V, t)
S(V, t) B(V) D(V))dV 0

(7)

where the indexes “e” ( = 1, 2,…, ne ) and “i” ( = 1,

2,…, np ) denote the various discrete elements and 

nodal points, respectively. In the Galerkin approach,

the weighting functions e
iw V  are identical to the 

basis functions e
j V . By substituting eq. (6) into 

eq.(7), the following system of ordinary differential 

equations is obtained for each element:

e
e e e e

e e e

dn
A E C n

dt

S B D 0

(8) 

A detailed description on the implementation of the 

GFEM is given in Roussos et al. (2005). 

2.2 The Generalized Method of Moments. 

According to the method of moments, the general 

PBE, Eq. (1), is transformed into a system of non-

linear integro-differential equations describing the 

dynamic evolution of the moments of the 

distribution. In terms of n(V, t), one can easily define 

the kth dimensionless moment of the distribution, mk.

k k

k 0 0

0

m V n V, t dV N V ; k 0,1,2... (9) 

where N0 and V0 are some characteristic values of 

the distribution. To derive the moment equations, all 

the terms of Eq. (1) are first multiplied by the 

quantity 
k 1

0 0V / V N  and the resulting equation is 

then integrated over the volume domain 0, . It 

can be easily shown that the dynamic evolution of 

the kth moment of the distribution will be given by 

the following integro-differential equation (McGraw, 

1997; Wiliams and Loyalka, 1991; Alexiadis et. al., 

2004): 

k 1

0

k k k

0 0

1
k k

0 0

0

k
m t k V G V n V, t dV

V U V U V, U1

2 n V, t n U, t dU dV

V S V, t dV N V

[

]

(10) 

The main difficulty with the numerical solution of 

Eq. (10) results from the integral terms that must be 

expressed in terms of a closed set of moments, so 

that it can be integrated in time. The closure of 

moment equations can be achieved either by 

assuming a specific form for the distribution or using 

special interpolation techniques.  

In the present study, a general formulation, based on 

an arbitrary choice of the moments, is presented. Let 

1 2M M M  be a 2Nq  2Nq  matrix with 

elements defined by the following equations: 

k i

1 qjij

k i 1

2 qjij

M 2 k i 1 V ; i 1, 2,..., 2N

M k i V ; j 1,2,..., N
(11) 

where Vi denotes the quadrature rule abscissas and 

k(i) can take any desired, even negative, values. 

The vector 
q

T

k 1 k 2 k 2N
F , F ,..., FF  contains 

the 2Nq contributions of particle growth, aggregation 

and nucleation mechanisms and its elements will be 

given by the following equation: 
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q

q q

N

k i 1

i iik i
i 1

k i k i k iN N
i j i j

i 1 j 1
i j i j

1
k

0 0k i

F k i V G V w

V V V V1

2
V , V w w

S t N V

[

]

(12) 

Accordingly, the 2Nq elements of the vector 

q

T

1 2 2NP , P ,..., PP  can be calculated from the 

solution of the following system of linear algebraic 

equations: 

M P F (13) 

where the quadrature weights and abscissas are 

directly determined from the solution of the following 

system of differential equations (Marchisio and Fox 

(2005)): 

q

j j

j N j

dw d
P ; P

dt dt

V

(14) 

where Vj =Vj wj ; j = 1, 2,…,Nq.

Reconstruction of the distribution. The 

reconstruction of the distribution from a finite set of 

moments is in general a very difficult problem. A 

common approach to this problem is to assume a 

series approximation of the distribution with 

coefficients expressed in terms of the calculated 

moments. Different function series have been 

proposed by various researchers in the past, however, 

it must be noted that the best results are obtained 

when some a-priori insight on the form of the 

distribution is available either from theory or 

experimentation. 

In the present work, it was assumed that the 

unknown number density function could be 

approximated by a series of exponential functions: 

cN

i i

i 1

n V, t a exp b V (15) 

The value of Nc was selected to be equal to 1or 2. 

Accordingly, the unknown coefficients ai and bi were 

determined via the minimization of the following 

objective function: 

mN 2
mod el num. mod el

k i k i k i
i 1

J m m m (16) 

using an appropriate non-linear parameter estimator 

(e.g., NPSOL). The terms num.

k i
m  and mod el

k i
m  in the 

above equation denote the numerical (i.e., calculated 

by the GMOM) and the model values of the k(i) 

moment, respectively. From Eq. (15), one can easily 

show that the values of mod el

k i
m  moments will be 

given by the following analytical equation: 

c

k i

N
mod el

i k i 1
i 1 i

k i 1
m a

b
(17) 

where (x) is the gamma function. To estimate the 

unknown parameters (i.e., a1, a2, b1 and b2) in Eq. 

(15), a set of four target moments were selected (i.e., 

Nm = 4 and k(i)=0, 0.5, 1 and 2 ). For particle growth 

systems, Eq. (15) was multiplied by a Heaviside step 

function, 
min

V V tH , to account for the 

time-varying minimum particle volume, where 

Vmin(t) is the minimum particle volume at time, t. 

Furthermore, for processes undergoing particle 

nucleation, the number density function was assumed 

to exhibit a bimodal form. The first mode of the 

distribution represented the new nucleated particles 

while the second mode accounted for the dynamic 

evolution of the distribution due to particle growth 

and aggregation. As a result, an additional 

exponential function, aV exp( bV) , was added into 

Eq. (15) to account for the first mode of the 

distribution. Thus, the total number of estimated 

parameters was increased by two. 

2.3 Monte-Carlo Simulations. 

The stochastic Monte Carlo (MC) method is based 

on the principle that the dynamic evolution of an 

extremely large population of particles (e.g., 108) can 

be followed by tracking down the corresponding 

changes or events (i.e., growth, aggregation, 

nucleation) occurring in a smaller number of sample 

particles, (e.g., 104). Initially, the particle volume 

domain is divided into a number of discrete volume 

intervals using a logarithmic discretization rule. 

Subsequently, each particle in the sample population 

is assigned to an appropriately selected volume, Vi,

so that the particle array at time zero, Ns(0), closely 

represents the initial distribution, according to the 

inverse transform method (Rubinstein, 1981). Once 

all the particles in the sample population have been 

assigned to randomly selected volumes, the MC 

algorithm is initiated and the effects of particle 

aggregation, growth and nucleation mechanisms on 

the dynamic evolution of the particle population are 

stochastically simulated in a consecutive series of 

variable-duration time steps.  

In problems involving particle aggregation, the time 

step can be determined in terms of the number of 

aggregation events, Nagg, that take place (Gooch et 

al., 1996). According to the above procedure, the 

time required for the occurrence of the duration of 

Nagg events, t, will be given by the following 

equation: 

0 0

0

1m m

0

m 0

t B V D V dV dm (18)

0 0 0

p p

s s p s

m t m t m t t

N t N t t

N t N t t N t / N t

(19) 
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where m0(t) and m0(t) denote the total number and 

the change in the total number of particles due to 

aggregation. Similarly, Ns(t) and NS(t)=|NS(t)-

NS(t+ t)| denote the number and the change in the 

number of particles in the sample population due to 

the occurrence of Nagg aggregation events in the time 

interval, t. In the absence of particle aggregation, 

the time step does not need to be explicitly calculated 

via Eq. (18) and, therefore, it can be arbitrarily 

selected in the MC algorithm.  

To simulate the occurrence of a particle aggregation 

event, two particles of volumes V and U are 

randomly selected from the sample population. 

Following the developments of Garcia et al. (1987), 

an aggregation event is assumed to be successful if 

the following condition is satisfied: 

max iV, U / (20)

where max is the maximum value of the particle 

aggregation kernel and j is a randomly generated 

number in the range [0,1]. If the above probability 

criterion is met, the two randomly selected particles 

are removed from the sample population and a new 

particle with volume equal to (V+U) appears while 

the number of particles in the sample, Ns(t), is 

reduced by one. In the opposite case, two new 

particles are randomly selected and the whole 

procedure is repeated till all the specified 

aggregation events, Nagg, have been completed. 

In the presence of a particle growth mechanism, the 

volume of each particle in the sample population is 

subsequently increased from iV  to iV  by taking into 

account the integral of the particle growth rate 

function, G(V), over the time interval, t.

t t

i i

t

V V G V dt (21) 

Finally, in the presence of particle nucleation 

mechanism, a procedure similar to that employed for 

the reconstruction of the initial distribution is 

applied. Thus, at each time step, known numbers of 

new particles, having a specified distribution, are 

added to both total and sample populations. 

In processes involving particle aggregation, as the 

MC simulation advances in time, the number of 

particles in the sample is constantly reduced. As a 

consequence, the statistical accuracy of the 

simulation is gradually lost. In order to deal with this 

problem the number of particles in the sample needs 

to be restored to its initial number, Ns(0). Thus, when 

the particle number reaches a predetermined lower 

bound (e.g., s A sN (t) f N (0) ), new particles of 

appropriate sizes are introduced into the various 

discrete volume intervals in such a way so that the 

sample distribution is preserved. This is achieved by 

the following procedure. 

Let Vj,tot be the total particle volume in the sample 

bin [Vj, Vj+1] at time t. That is, 
jN

j,tot j,i j,i

i 1

V V N

where Vj,i and Nj,i are the volume and the number of 

the “i” particles in the interval [Vj, Vj+1], 

respectively. Let Nj,tot be the total number of particles 

in the sample bin [Vj, Vj+1] at time t (i.e., 
jN

j,tot j,i

i 1

N N ) and fA  a number fraction parameter 

varying from 1 to 0. To ensure that the form of the 

distribution does not change during the particle 

refreshing procedure, the volumes assigned to the 

new particles, added to the interval [Vj, Vj+1], must 

satisfy the following condition: 

j,ref j,tot A A j,refV V 1 f / f N (22) 

where j,ref j,tot A AN INT N 1 f / f is the 

number of particles added to the volume interval 

(where the symbol INT denotes the integer part of 

the result). The above refreshing procedure does not 

alter the information gathered from the precedent 

particle events and allows the simulation to carry on, 

theoretically, for an infinite period of time while the 

statistical error is maintained within acceptable 

limits. 

In processes involving particle nucleation, the 

number of particles in the sample population is 

constantly increased. This increase in the number of 

particles raises the computational demands of the 

MC simulation and, therefore, the number of 

particles in the sample needs to be kept below a 

predetermined upper limit (i.e., fN % of the initial 

number Ns(0)). Thus, when the number of particles 

in the sample reaches the specified upper limit, 

particles are randomly removed from the sample, so 

that the total number of particles, Ns(t), is restored 

down to its initial value, Ns(0), while the current 

form of the sample distribution is preserved. 

3. RESULTS 

Detailed numerical simulations were carried out for 

several particulate processes undergoing particle 

aggregation, growth and nucleation. Several particle 

aggregation rate functions (i.e., constant, sum and 

Brownian aggregation kernels) and particle growth 

rate functions (i.e., size independent and size 

dependent) were considered. The particle nucleation 

rate function was assumed to follow an exponential, 

size-dependent model (i.e., S(V, t) = (N0,s/V0,s) exp(-

V/V0,s), where N0s and V0s are some characteristic 

values of the distribution). Finally, in most cases 

studied, the initial number density function, n(V, 0), 

was assumed to have an exponential dependence with 

respect to particle volume, 

0 0 0n V,0 N / V exp V / V (23) 

In one case, it was assumed that n(V, 0) followed a 

Gaussian-distribution of the form: 

1
2 2

0n V,0 2 exp (V V ) / 2 (24) 

As in previous publications (i.e., Roussos et al. 

2005), the following dimensionless aggregation, a,

and growth, g, time constants were defined: 
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0a 0 0 g v 0 0
V N t ; G (V )t / V (25) 

where 0, N0 and V0, are some characteristic values 

of the aggregation rate constant, particle number and 

particle volume, respectively. 

It should be noted that in a previous publication 

(Roussos et al. 2005), it was shown that the GFEM 

results (i.e., the calculated distributions and their 

respective moments) were in excellent agreement 

with the analytical solutions. 

3.1 Pure Aggregation Processes

In Fig. 1, the distributions calculated by MC and 

GFEM, for the case of constant particle aggregation 

(i.e., (V,U) = 0), are depicted for two different 

values of the dimensionless aggregation time (i.e., 

a=1 and a=10), and an initial Gaussian density 

function: 2n V,0 2exp (V 1) / 0.08
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Figure 1. Comparison of dynamic PSDs for constant 

particle aggregation.

It is interesting to note that both methods are capable 

of predicting very accurately the multiple picks 

appearing in the small-volume part of the 

distribution. 

In Fig. 2, the calculated distributions by the MC 

method and the GFEM, for the case of a Brownian 

particle aggregation kernel (i.e., (V,U)= 0/4

{(V/U)1/3+(U/V)1/3+2}), are plotted for three 

different values of the dimensionless aggregation 

time (i.e., a=1, a= 10and a=102).
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Figure 2. Comparison of dynamic PSDs for 

brownian particle aggregation 

3.2 Combined Aggregation and Growth Processes 

The calculated distributions by the two methods, for 

the case of a sum particle aggregation kernel and a 

linear particle growth rate function, for two different 

sets of dimensionless times (i.e., a=3, g=1 and a=3, 

g=2), are shown in Fig. 3. 
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Figure 3. Comparison of dynamic PSDs for sum 

particle aggregation and linear particle 

growth

The calculated distributions by the two methods are 

in very good agreement despite the large oscillations 

displayed by the MC method at the low and high 

volume range. 

3.3 Combined Aggregation, Growth and Nucleation 
Processes

In this case, all three mechanisms (i.e., constant 

particle aggregation and growth, exponential 

nucleation function) were assumed to take place 

simultaneously. The distributions calculated by the 

two methods are compared in Fig. 4 for two sets of 

the dimensionless parameters (i.e., a=1, g=1 and 

a=1, g=10).  
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Figure 4. Comparison of dynamic PSDs for constant 

particle aggregation, constant particle growth 

and exponential particle nucleation 

There is a very good agreement between the 

distributions calculated by the GFEM and the MC 

method. 

3.4 Reconstruction of the distribution from its 

moments 

In Fig. 5, the GMOM reconstructed distributions 

for various cases (i.e., constant particle aggregation, 
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combined constant particle aggregation and constant 

particle growth, combined constant particle 

aggregation and linear particle growth and combined 

constant particle aggregation, constant particle 

growth and exponential particle nucleation) are 

plotted. In all cases, the distributions were 

reconstructed using a set of four moments (i.e., m0,

m0.5, m1 and m2) following the procedure described 

in detail in section 2.2. 
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Figure 5. Comparison of dynamic PSDs calculated 

with the use of the GMOM 

The reconstructed distributions are compared with 

the ones calculated by the GFEM. Apparently there 

is a good agreement for the cases in which no 

particle nucleation takes place). In the last case, the 

reconstructed distribution displays a satisfactory 

agreement with the distribution calculated by the 

GFEM. However, there is a notable deviation in the 

first part of the distribution, representing the 

contribution of the newly generated particles. This 

discrepancy is due to the fact that the first part of the 

distribution cannot be represented accurately by the 

selected form of the density function (see Eq.(15)). 
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