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Abstract: In this article a robust MPC controller is presented for the refining
stage of an electric arc furnace. A reduced version of a generic EAF model will
be used - it simplifies the controller. The controller’s objective is to steer the
temperature to the desired value before the carbon content reaches its target
value. The controller design is verified through a simulation study. The controller
behaves well even under extreme model mismatch when full state feedback is
used, but is high dependent on the accuracy of the predictor under limited
feedback conditions. With timely measurement, the error can be contained and
even reduced if the predictor’s parameters are adjusted when measurements are

taken. Copym'ght© 2005 IFAC
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1. INTRODUCTION

At the heart of recycling scrap metal into steel is
the electric arc furnace (EAF). The electric arc
furnace primarily uses an electric arc to generate
the heat required to melt the scrap metal and
refine it to steel. The process is still dominantly
operator controlled, often resulting in suboptimal
and inconsistent steel quality. The use of electric
arc furnaces is growing world wide, and the pro-
cess can benefit from increased automation in im-
proving overall steel quality as well as improving
the economics of the process. Automation could
also improve the safety of this dangerous process,
as well as reduce its negative effects on the envi-
ronment (Bekker et al., 2000).

In order to design and implement control, a suit-
able mathematical model is needed. There are
different approaches to model the electric arc fur-
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nace process. The one approach is to model the
process as containing equilibrium zones with mass
transport transport between the zones (Cameron
et al., 1998; Matson and Ramirez, 1999; Modigell
et al., 2001). Some models tend to be proprietary
(Morales et al., 1997). An alternate approach was
taken by Bekker et al. (1999) who derived a model
from fundamental thermodynamic and kinetic re-
lationships that resulted in a generic nonlinear
model consisting of 17 ordinary differential equa-
tions (ODE). This generic model was then fitted
to actual plant data by Rathaba (2004).

The following stage was to investigate the feasi-
bility of control on this model. First efforts fo-
cused on the off-gas subsystem (Bekker et al.,
2000) by controlling the relative furnace pressure,
CO emissions as well as the off-gas temperature.
Oosthuizen et al. (2004) extended the scope by
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incorporating economic objectives into the control
strategy.

The EAF process consists of three phases, the first
two are meltdown phases and the last phase is
called the refining phase, where the final grade of
the steel is determined. During the refining stage,
certain simplifying assumptions can be made with
regards to the model in order to reduce it to
only 5 ODEs (Rathaba, 2004). The reduced model
is better suited for control, because it reduces
the computational burden. Coetzee et al. (2005)
applied nominal MPC to the reduced model, but
the modelling effort by Rathaba (2004) revealed
model uncertainties that could not be explicitly
incorporated into the controller design.

The application of robust MPC to this problem
was therefore investigated, as discussed in this
paper. Two robust MPC methods were investi-
gated for this paper. Firstly, a linear matrix in-
equalities (LMTI) based robust MPC technique has
been developed by Kothare et al. (1996). The
technique was improved by Cuzzola et al. (2002)
and Ding et al. (2004). This technique is limited
to symmetric constraints on the inputs and use
ellipsoid invariant sets, that makes it conservative.
The on-line optimization is based on semi-definite
programming (SDP) and is very slow compared to
quadratic programming (QP). Secondly, a tech-
nique by Pluymers et al. (2005b,a) constructs a
robust invariant set, that can accommodate asym-
metric constraints and has a much bigger feasible
are than their ellipsoid counterparts. This method
uses a simple MPC algorithm similar to nominal
MPC that is based on QP rather than SDP.

2. REDUCED EAF MODEL

The MPC controller uses an optimization algo-
rithm to calculate the future control sequence.
This requires a number of iterations to be done
on the internal model. If the model is complex, as
in the case of the generic EAF model (Bekker et
al., 1999), this will result in a large computation
time. The reduced model reduces the computa-
tional burden in the refining stage where certain
assumptions can be made to simplify the model.

The generic model (Bekker et al., 1999) was re-
duced by Rathaba (2004) for the refining stage.
During the first sixty to eighty percent of a tap,
the process is often unpredictable due to delays,
breakdowns and maintenance that invalidate the
modelling assumption of process continuity. The
advantage of using the refining stage for control
is that after the initial measurement, except for
deslagging, the process is mostly uninterrupted
until the final measurement is made. This is typ-
ically a flat bath stage when all melting has oc-
curred; the modeling assumption of homogeneity
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(Bekker et al., 1999) is also valid. The bath tem-
perature and carbon content become especially
important during the refining stage just before
tapping.

Process variables that undergo significant change
during refining are bath temperature, carbon and
silicon concentrations (masses), masses of SiOs
and FeO in slag and all free-board gases. All
masses of the bath and composite slag are at
steady state - they can be treated as constants.

The reduced model (Rathaba, 2004) is given by

o = —bac (Xo-x2) 1)
Ty = —dei(XSi,—X;‘f) (2)
2, = 2MFreod1 zrkgrMpeds
7 Mo, (m1(stag) +or+s ) Mo

+0.13d2 (3)
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where the molar concentrations are given by
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The reduced equations for the heat balance are:
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(13)
pt = p2+ps+p11 (14)
where k4o and k4g; are the constants for removal
of carbon and silicon from the bath; kg4 is the
graphite reactivity constant; narc and nr.o are
the efficiencies of arc energy input and bath oxida-
tion; my(pey and Mmyp(gaq) are the total masses of
the slag formers and bath - both are assumed con-
stant; Mo, Mpe, Mreo, Mgi, Msio, and Mg,g
are the molar masses of the different elements. The
states and inputs are described in table 1.

3. LINEARIZED MODEL

For the robust MPC controller (Pluymers et al.,
2005b,a), linear models are required to describe
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the uncertain polytope. The reduced model of
section 2 was fitted to actual plant data (Rathaba,
2004), with resulting confidence intervals on the
parameter values. The parameters were varied to
determine the extreme deviations from the nomi-
nal plant. The reduced model was linearized with
different parameter values, resulting in different
linear models that form the polytopic uncertainty
description used to synthesise the robust MPC
controller. In order to reduce complexity of the
controller, only the most significant uncertainties
were included in the uncertainty description. The
nominal model is shown below with the maximum
variation of the input matrix. The states of the
linear models were reduced to 2 (Temperature
and FeO), because these are the states that are of
primary interest. The inputs were reduced to three
(oxygen injection rate, electric power and graphite
injection rate). Slag and DRI are not added during
the refining stage and therefor removed from the
model. To compensate for the reduced dynamics
in the linearised model, the controller uses the full
nonlinear model of section 2 as a predictor. The
operating point around which the linearization is
done is the average values from measured tap data
as summarized in table 1. The total iron mass
mry(re) 18 80000 kg and the slag mass mp(yqg)
is 6917.8 kg.

The linearized model is described as a nominal
model, or a model with values in the middle of the
uncertainty interval, and matrices that describes
the extreme deviations, found using Monte Carlo
type simulations, from the nominal model. The
notation used is as in MATLAB, where 3.03e-6
represents 3.03 x 1076, The nominal linear model
is

Anominal =

[ 9.99e—1 o0
—7.87e—6 1.00

. 1199 0 —-1.17
nominal ~— 0.41 6.07e—6 —1.67e—2
(10
Chominal =
01
(000
Dnominal - 00 0:| (15)

with extreme deviations from nominal on the
inputs

L P BT

0.11 3.03e—6 1.42e—2

The polytopic uncertainty produces a total of
eight linear models used to construct the robust
invariant set for the controller as described in
section 4.1.
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4. CONTROL STRATEGY

In general, the steel grade is determined by the
carbon content. It is desirable to have the steel
at a specific tap temperature for down-stream
processing. The carbon content and temperature
should be controlled without creating too much
undesirable material such as FeO in the slag.
The controller should contain the FeO content,
controllable through the oxygen injection rate, to
less than 40% of the total slag mass. Oxygen
injection influences the decarburization rate de-
pending on the level of the bath carbon. Under
high bath carbon levels, oxygen injection leads
to high decarburization, while only a limited in-
fluence is observed in the late stages of refining.
The speed of the reaction cannot be accelerated
through control, because of the carbon content
being weakly controllable. (The carbon content
is controllable, but the constraints on the inputs
limit the influence over the decarburization rate
to practically none.) The aim of the controller
would therefore be to steer the temperature to the
desired value before the carbon reaches its target.

4.1 Robust model predictive controller

The controller proposed by Pluymers et al. (2005b)
uses an optimized control sequence over the pre-
diction horizon N after which a global stabilizing
state feedback gain K is used. The system Z(k +
1) = ®(k)Z(k) uses an augmented description
with vertices of the uncertainty polytope given by:

A;—B,K B, 0
®;= 0 0 I(N=1)mu.(N=1).nu) (17)
0 0 0
for i = 1,2,...,L, where L is the number of

models, subject to constraints A;Z(k) < bz, k =
0,...,00 with Az and bz defined as:

A@—[ A, 0 0} bi_[bm] (18)
—AuK Ay 0 ba

where the state constraints are A,z < b, and the
input constraints are A,u < b,.

To calculate the robust invariant set from A; and
bz the algorithm from Pluymers et al. (2005q) is
used to construct Squg = {Z|AsZ < bs}.

The implemented input vector is the combination
of the state feedback gain and the first block of
the optimized sequence of free control moves.

u(k)y=—Kaz(k)+c° (k|k) (19)

The optimized sequence of free control moves
% (k) are determined from a quadratic program
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Table 1. States, inputs and operating point.

State Operating point Input Operating point
z3 Dissolved Carbon 480 kg d1 Oxygen injection rate 1 kg/s

z4 Dissolved Silicon 24 kg d2 DRI addition rate 0 kg/s

z7 FeO in bath 4250.6 kg d3 Slag addition rate 0 kg/s

zg Si0z2 in bath 1405 kg ds4 Arc power 40000 kW

x12 Bath temperature 1600 °C ds Graphite injection rate 0.5 kg/s

subject to the polyhedral set constraints of the
form AgZ < bg that form Sgyg.

min J(z(k),en (k 20
min J(a(k).en () (20)

subject to
[2(6)T en(®)T ]T €Suug (21)

where the objective function is

Jamen®) = [o0)T en®)T ] r )
X [e(k)” ex(B)™ ]
with
P = PTcR(atNnu)x(ne+N.nu) (23)
satisfying

P-oT Po, >TTQT,+TT R, i=1,...,L (24)

where Fl = [I(nz’nm) 0], Fu = [7K I(nu,nu) O]
and ®;, i =1, ..., L. The R matrix is the weighting
on the inputs and @ the weighting on the states.
The P matrix can be obtained by doing convex
optimization

min trace(P) (25)
P=PT>0

subject to (24).

4.2 Controller design

There are a few parameters that have to be cho-
sen in order to construct the controller. These
are the prediction horizon, weights on the state
deviation, and the weights on the control actions.
The constraints on the input and states are de-
termined by the process and actuator limitations
as summarized in table 2. The dimension of the
constraint set grows exponentially with the pre-
diction horizon. A prediction horizon of 4 gives
adequate forward prediction, without resulting in
an excessively large constraint set. The aim is
to control the temperature of the bath without
any penalty on the FeO content, except when it
reaches the constraint. The weighting is expressed
in the @ value of table 3. The FeO content in
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Table 2. Constraints on manipulated
and controlled variables.

Variable Minimum Maximum
Oxygen injection rate 0 kg/s 1 kg/s

Power 0 kW 40 000 kW
Graphite injection rate 0 kg/s 1 kg/s

FeO amount 0% of Slag  40% of Slag

Table 3. Controller parameters

Parameter Value
4
H
01
[0.1 0 0]
R 0 01 0
0 0 0.1

the slag should be kept below 40% of the total
slag mass. This requirement is enforced by a state
constraint on FeO as stipulated in table 2. In order
for the process to reach the desired set-point as
fast as possible and reduce the steady-state offset,
cheap control is used, as expressed in the R value
of table 3. The structure of the (Q and R matrices
are diagonal, because only the individual states
and inputs are penalized.

5. SIMULATION AND RESULTS

In this section, a simulation study is done to
determine the effectiveness of the control on the
system. For these simulations a predictor, the
reduced nonlinear model of section 2, is used to
interpolate the missing state-data and a second
nonlinear model is used to represent the actual
plant. Model mismatches are introduced between
the predictor and real plant, by manipulating the
parameters of the “real” plant. The model mis-
match has the greatest influence on the tempera-
ture, because of the uncertainty in the effectivity
coefficients (ECs), narc of equation (5) and ngco
of equation (11). The ECs will be used to describe
the parameter set being used.

In the first scenario, full state feedback is assumed,
and the parameters of the “real” plant are set
to the two extreme points of the uncertainty
intervals. The controller is able to handle the
extreme cases of model mismatches as seen in
figure 1. In the scenario where the ECs are lower
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than nominal, the rate of change in temperature
decreases because the FeO constraint was met;
oxygen could no longer be used as an energy
source.

In the second scenario, a more practical approach
is taken. In the real process, it is difficult to get
measurements. Each time a temperature measure-
ment is taken, the slag layer must be removed from
the metal through a process called deslagging. For
deslagging, the electrical power is reduced and a
probe is dropped into the molten metal by an
operator. The probe is burnt away as part of
the measurement process, making measurements
costly. Only one measurement is available for feed-
back from the real plant during the refining stage.
A predictor, the reduced nonlinear model of sec-
tion 2, is used to interpolate the missing process
state-data between measurements. For this sce-
nario, nominal plant parameters are assumed for
the predictor, while the real plant uses the ex-
treme points as before. In this case (figure 2), the
controller was not able to steer the temperature
to the desired set-point and could not even steer
it to within 10 degrees of the set-point, which is
an acceptable temperature variation. In practice
this variation is often much larger.

In the third scenario, the predictor parameters,
that have the greatest influence on the tempera-
ture response, are manipulated with the difference
in predicted and measured temperature, to better
approximate the real plant. With the corrections
to the predictor, the controller is able to steer the
process closer to the desired set-point (figure 2).
For this simulation, the model mismatch was as-
sumed to be constant, but unknown. The predic-
tor was initiated with nominal plant parameters.

From this results we see that robust MPC does
not guarantee offset free tracking. Integral ac-
tion or robust MPC techniques that specifically
address this problem (Pannocchia, 2004; Wang
and Rawlings, 2004 a,b) will remedy the problem
and will be considered for future work. The third
scenario where corrections are made to the pre-
dictor, show optimistic results. The assumption
of unknown but constant model mismatch might
not be valid. All these scenarios investigate the
worst case where the model mismatch between the
predictor and actual plant is at the extreme. The
performance of the controller should yield better
results if the actual plant behaviour is closer to
the nominal case.

6. CONCLUSION

This paper, through a simulation study, found
robust model predictive control feasible to im-
prove the quality of the steel produced in an EAF.
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This is provided that the predictor is a suitably
accurate predictor of the real process. The robust
model predictive controller could explicitly take
the model uncertainties into account as part of the
synthesis process. The focus was on the refining
stage, because it allowed for the use of the re-
duced model of the process, which is better suited
for on-line calculations. The speed of the process
could not be increased, because the carbon is only
weakly controllable. The only improvement possi-
ble is to control the temperature to the desired set-
point before the carbon reaches its target value.
This will result in fewer delays attributed to in-
correct tap temperature. The controller performed
well with full state feedback, but in practice, the
performance is dependant on the accuracy of the
predictor.

An ad-hoc method was used to update the param-
eters of the predictor in order to determine if it
will yield better results than a predictor without
parameter update. The updating of the param-
eters of the predictor show promise, but further
study is needed where a more systematic method
is followed.
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