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Abstract: Control of a three — tank - system laboratory model as a two inputs — two outputs
system is presented. The objective laboratory model is a multivariable nonlinear system. It is
based on experience with authentic industrial control applications. Two control algorithms
utilizing polynomial theory and pole — placement are proposed. Particular controllers are based
on various configuration of the closed loop. The algorithms in adaptive version are then used
for control of the model. The results of the real-time experiments are also included. Quality of
control achieved by both methods is compared and discussed. Copyright © 2006 IFAC
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1. INTRODUCTION

Many technological processes require a simultaneous
control of several variables related to one system.
Each input may influence all system outputs. The
three — tank - system in Fig. 1 is a typical
multivariable nonlinear system with significant cross
— coupling. The design of a controller able to cope
with such a system must be quite sophisticated.
There are many different methods of controlling
MIMO (multi input — multi output) systems. Several
of these use decentralized PID controllers (Luyben,
1986), others apply single input-single-output (SISO)
methods extended to cover multiple inputs (Chien et
al., 1987).

Here polynomial theory approach (Kucera 1980,
Kucera, 1991, Skogestad and Postlethwaite, 1996) is
used for the design of multivariable controllers. Two
controllers are presented. The first one is based on
traditional 1DOF (one degree of freedom)
configuration of the closed loop, the second one
applies 2DOF configuration proposed in (Ortega and
Kelly, 1984) for SISO control loop. Application of
the designed methods for adaptive control of the
three — tank - system is then presented. The
algorithms were applied as self — tuning controllers.
It was assumed, that the dynamic behaviour of the
system could be described in the neighbourhood of a
steady state by a discrete linear model. The recursive
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least squares method with the directional forgetting
was used for the identification part of the self —
tuning controllers.

This paper is organised as follows: Section 2
contains description of the three — tank - system;
Section 3 presents a mathematical model of the
system which was used for the controllers design;
Sections 4 and 5 describes designs of the 1DOF and
2DOF controllers; Section 6 describes the system
identification method; Section 7 contains the
experimental results; finally, Section 8 concludes the

paper.

2. THREE — TANK - SYSTEM

The experiments were carried out with an
experimental laboratory model three — tank — system.
Such a system can be viewed as a prototype of many
industrial applications in process industry, such as
chemical and petrochemical plants, oil and gas
systems. The typical control issue involved in the
system is how to keep the desired liquid level in each
tank. The principle scheme of the model is shown in
Fig 1. The basic apparatus consists of three
plexiglass tanks numbered from left to right as T1,
T3 and T2. These are connected serially with each
other by cylindrical pipes. Liquid, which is collected
in a reservoir, is pumped into the first and the third
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tanks to maintain their levels. The level in the tank
T3 is a response which is uncontrollable. It affects
the level in the two end tanks. Each tank is equipped
with a static pressure sensor, which gives a voltage
output proportional to the level of liquid in the tank.
Hmax denotes the highest possible liquid level. In
case the liquid level of T1 and T2 exceeds this value
the corresponding pump will be switched off
automatically. Q; and Q, are the flow rates of the
pumps 1 and 2. Two variable speed pumps driven by
DC motor are used in this apparatus. These pumps
are designed to give an accurate well defined flow
per rotation. Thus, the flow rate provided by each
pump is proportional to the voltage applied to its DC
motor.

There are six manual valves v1, v2...v6 that can be
used to vary the configuration of the process or to
introduce disturbances or faults.

The pump flow rates Q; and Q, denote the input
signals, the liquid levels of T1 and T2 are the output
signals.

pump 1 |fn7 Q2(| pump 2

¥

Fig. 1. Principal scheme of three — tank - system

3. MATHEMATICAL MODEL OF THE
APPARATUS

An analytical model of the three — tank - system
based on physics and the equipment construction is
presented in (AMIRA, 1996). All the parameters in
this model have a particular physical denotation. The
apparatus is a nonlinear system, as it was mentioned
above. A possible method for control of nonlinear
systems is using of self — tuning controllers. A
suitable model for adaptive control of the real object
is an input — output model (“black box model”). This
is a standard approach in self tuning controller area.
Instead of often tedious construction of a model from
first principles and then calculating its parameters
from plant dimensions and physical constants,
general type of model is chosen (here it is in fact
transfer function (1)) and its  parameters are
identified from data. It is a model of the system
behaviour and its parameters do not have a particular
physical denotation. Of course, not all properties of
the plant can be extracted from the data in this way
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but as a rule dominant properties are modelled,
which is sufficient for a controller design.
Advantages of this kind of model are its simplicity
and accuracy in an operational range in which the
input — output dependence is measured. In the
framework of adaptive controllers it was chosen this
kind of model. It was necessary to determine its
structure in advance. The aim here was to find
experimentally as simple structure of the model as
possible, as it is mentioned bellow. The parameters
are identified during the process of the recursive
identification in virtue of the measured input and
output signals.

A general transfer matrix of a two inputs — two
outputs system with cross coupling is expressed as

6(2)= {GH(Z) GIZ(Z)} M

G, () G.(z)
¥(2)=6(2)u(z) @)

Where U(z) and ¥(z) are vectors of the manipulated

variables (flow rates of liquid into tanks T1 and T2)
and the controlled variables (liquid levels of T1 and
T2).

Y@)=ly @y, &

It is possible to assume that the dynamic behaviour
of the system can be described in the neighbourhood
of a steady state by a discrete linear model in the
following form of the matrix fraction

62)=a"(z")Bl")=8")a"z") @

Where polynomial matrices A € R, [z‘ll,B e Ry, lz‘IJ
are the left coprime factorization of matrix G(Z) and

matrices A, € R,, [271131 eR,, lz*IJ are the right
coprime factorization of G(z).

At first, the algorithms described bellow were
designed for a model with polynomials of the first
order. This model proved to be unsuitable for the
process and the control algorithms failed.
Consequently, the polynomial orders were increased
and the algorithms were designed for a model with
second order polynomials. This model proved to be
effective. The model has sixteen parameters:

l+az'+az” az'+az”
A(Zl)=|: 1 2 3 4 :| (5)

az'+az’ l+az'+az’
| bBz'+bz? bz'+bz”
BZ)=| e | ©
bz'+bz” bz +hbz

Polynomial matrices of the right matrix fraction of
the system are defined in the following form

1+az'+a z” z'+a,z?
A](Zfl): a‘},l awiz a, ) 12 . (7)
a,z” +a,z l+a.,z2” +a,z
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B(z')- bz"+b,z? bz +b,z”
] bl3271 + b14272 b15271 + bl6272

®)

The coefficients of the matrices are given by solving
the matrix equation

Bl )4 gl)=0 o

4. DESIGN OF 1DOF CONTROLLER

The 1DOF control configuration is depicted in Fig.
2.

w e | 0 u ’ v

PQ » F = AB —

Fig. 2. Block diagram of 1DOF configuration

Similarly as it was for the controlled system, the
transfer matrix of the controller takes the form of the
following matrix fraction

G.(2)=P" (" )olz")=0, )P (") (10)

Generally, the vector W(Z’l) of input reference
signals is specified as

w(z)=F, " (2" h(z") (11

In case of control of the three — tank - system, the
reference signals were considered as a class of step

functions. In this case h(Z_l) is a vector of constants

and FW(Z_I) is expressed as

FW(ZI):{I_ZI 0 1} a2

0 1-z

The compensator F (Z") is a component formally

separated from the controller. It has to be included in
the controller to fulfil the requirement on the
asymptotic tracking. If the reference signals are step

functions, then F (z") is an integrator.

The control law in the block diagram in Fig. 2
(operator z"' will be omitted from some operations
for the purpose of simplification) is defined as

U=F'QP'E (13)

where E is a vector of control errors. Using matrix
operations it is possible to modify this vector as

E=W -Y =P(AFP +BQ,)' AW (14)

Asymptotic tracking of the reference signals is then
fulfilled if FP, is divisible by F,,.

It is possible to derive the following equation for the
system output
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Y=A"'BF'P'QE =A"BF'P'QW -Y) (15)
and this can be modified
Y =P(AFP+BQ) ' BOP'W  (16)

It is apparent, that the elements of the vector of the
output signal have in their denominators the
determinant of the matrix AFP+BQ,. This

determinant is the characteristic polynomial of a
MIMO system. The roots of this polynomial matrix
are the ruling factors for the behaviour of a closed
loop system. The roots must be inside the unit circle
(of the Gauss complex plain), in order for the system
to be stable. Conditions of BIBO (bounded input
bounded output) stability can be defined by the
following diophantine equation

AF P+BQ, =M (17)

Where M €R,, [Z ’1] is a stable diagonal polynomial
matrix.

l+mz"' +mz? + 0
M(z"): +mz7 +m,z* (18)
0 l+mz'+mz? +

-3 —4
+mz7 +m,z

The degree of the controller polynomial matrices
depends on the internal properness of the closed
loop. The structure of matrices P, and Q; was chosen
so that the number of unknown controller parameters
equals the number of algebraic equations resulting
from the solution of the diophantine equation. The
method of the uncertain coefficients was used to
solve the diophantine equation.

R(z‘){“ Pz B } (19)

p,z'  1+pz!

-1 -2 -1 -2
0()= {ql #02+02" 4,02 vaz } 20)
q7+q82 +q'~)z q10+qllz +qIZZ
The solution of the diophantine equation results in a
set of sixteen algebraic equations with unknown
controller parameters. Using matrix notation the
algebraic equations can be expressed in the following
form

-a, -a, 0 0 b, 0 0 b|op m,
a,-a a-a 0 b, b 0 b, bjp m, +a,
a -1 a, b, b 0 b, b 0]gq m, —a, +a,
1 0 b 0 0 bp 0 0fgq, m —a +1
-a, -a, 0 0 b 0 0 bjaq, B 0
a,—a, a,—a, 0 b, b, 0 b b|aq, a,
a, a,-1 b, b, 0 b b 0]gq a, —a,
0 1 b, 0 0 b, 0 0]aq,]| —-a
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-a, -a, 0 0 b 0 0 bfp 0
a,-a a-a 0 b b 0 b bp, a,
a -1 a, b b 0 b b 0]aq, a,—a, (21)
1 0 b0 0 b 0 0]q, -a
—-a, -a, 0 0 b 0 0 baq, - m,
a,—-a, a-a 0 b b 0 b bjq, m, +m,
) a-1 b b 0 b b 0faq, m,—a,+a,
| O 1 by 0 0 b 0 0]q,| | m-a-+1|

The controller parameters are obtained by solving
these equations.

5. DESIGN OF 2DOF CONTROLLER

The configuration of the closed loop, shown in Fig.
3, was presented in (Ortega and Kelly, 1984) for
SISO control loop.

Pl |:|-| A'B |g——

Fig. 3. Block diagram of 2DOF configuration

It is possible to derive the following equation for the
system output

Y=A'BU=A"BF'P'U, (22)
Where
U, =pW-Y)-QFY (23)

The corresponding equation for the controller’s
output, as shown in the block diagram in Fig. 3,
follows as

U=F'P'U, (24)
The substitution of U, and Y results in
U=F'P'[p(W-A"BU)-QFA'BU| (25)

The equation (25) can be modified using the right
matrix fraction of the controlled system into the form

U=A[PFA +(B+FQB[pW  (26)

The closed loop system is stable when the following
diophantine equation is satisfied

PFA, +(p+ FQ)B, =M 27

Where M is defined by expression (18) and the
structure of the matrices P, Q and S were chosen
according to the same rules that are presented in the
previous section. The matrices P, Q and g are the
matrices of the controller.

P(Zfl): |:1+ plzil pzzil :| (28)

pz' l+pz’
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Q(ZI):{qﬁqZZi q3+q421} 29)
0, +9.2" g, +0,2
N_| B P
= 30
#e’) L@ ﬁj o

A set of algebraic equations, that is used to obtain the
unknown controller parameters, is defined by solving
the diophantine equation (27). The algebraic
equations in the matrix form are specified by the
following expressions:

1 0 b, 0 b, 0 b, b, p m, —a, +1
a, -1 a;  by=b, by by-by by by by|p, | |m+a-a,
ag-a a,-a; -b, bbb, b,-b, 0 0}qg m; +3y,
—3y —ay 0 —by, 0 -by, 0 0 fa|_ m,
0 1 by 0 b, 0 by bgja| | -a,
ay as-1 b, -b, b, b, —b, by b, byl a, a, -a,
a, -8, a,-a&; -b, b,-b, -bg by-bs 0 04 a
-q —a, 0 -b, 0 —by, 0 0]z 0
1 0 b, o by 0 b bTp -a,
a-1  a; be-b bbby by by by|p, a; =~y
ap-8 a,-a; ’bm blo —b, ’bm bIA ’blz 0 0 }as a,
-4 —ay 0 ’bm 0 ’bm 0 0 s - 0
0 1 by, 0 bys 0 by byja | | m-a+l
ay a; -1 b,-b, by, by =D by b, by | gy Mg +85 -8
a, =8 A5 ’blz b\z’bn ’bm b\s’bw 0 0 183 m; +a
L —ap, —a 0 ’blz 0 ’bm 0 0 »ﬂ.t mg
31

The controller parameters are derived by solving
these equations. The control law apparent from the
block diagram is defined as

FPU = BE - FQY (32)

6. SYSTEM IDENTIFICATION

For control of the three — tank — system, the control
algorithms were applied as self tuning controllers.
They were incorporated into an adaptive control
system with recursive identification. The recursive
least square method proved to be effective for self-
tuning controllers (Kulhavy, 1987; Bittanti et al.,
1990) and was used as the basis for our algorithm.
For our two-variable example it was considered the
disintegration of the identification into two
independent parts.

Difference equations describing the models in a
vector form are as follows:

yi(k)=6/ (kp, (k 1)+ n, (k)
2 (k) =6 (k)p, (k—1)+n, (k)

where ny(k), n,(k) are unmeasurable random signals.

(33)

The parameter vectors are specified as shown below:

0](k)=[aa,a,a,b,b.b.b]
QZT(k): [aS’a()’a77a8’b5’b6’b77b8] (34)

The data vector is

¢1,2T (k - 1): [_ Y, (k - 1)!_ Yi (k _2)1_ Y, (k _1)'
—y,(k=2)u, (k=1)u,(k=2)u,(k-1)u,(k-2)](35)
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The parameter estimates are updated using the
recursive least squares method with adaptive
directional forgetting.

7. EXPERIMENTAL EXAMPLES

The model was connected with a PC equipped with a
control and measurement PC card. The Matlab and
the Real Time Toolbox were used to control the
system.

For the experiments presented in this paper, the three
— tank — system was configured in such a way that
the valves v3 and v5 were closed and the remaining
valves were open.

The best sampling period Ty=5 s was found in virtue
of many experiments. Another problem was finding
of suitable poles of the characteristic polynomial. In
comparison with controllers for SISO control loops,
where it is often possible to assume influence of
particular poles to behaviour of the closed loop, pole
— placement of multivariable controllers is much
more complicated. Pole — placement applicable for
both controllers was obtained from a number of
experiments as follows:

1-0,927'+0,1927 — 0

—0,009z7° —0,0022"* (36)
1-09z"'+0,192° -
—0,009z7 —0,0022"*

M(z"):
0

In Fig. 4 and Fig. 5 are shown time responses of the
control when the initial parameter estimates were
chosen without any a-priori information:

0,"(0)=1[0.1,0.2,0.3,0.4,0.1,02,0.3,04]  (37)
0,"(0)=[0.5,0.6,0.7,0.8,0.5,0.6,0.7,0.8]

The reference signals contain frequent step changes
in the beginning of experiments to activate input and
output signals and improve the identification. The
controlled variables y; and y, are liquid levels of
tanks T1 and T2. The manipulated variables u; and
U, are flow rates of liquid into the tanks. As w; and
W, are denoted desired liquid levels in particular
tanks (reference signals).

Subsequent experiments were carried out in such a
way that initial parameter estimates were set as the
last parameter estimates obtained in the ends of the
previous experiments. The initial conditions of the
recursive identification were also modified by
reducing of diagonal elements of the square
covariance matrix from 1000 to 10. Because the
system is nonlinear and the identified parameters
were valid only for particular steady states, the
reference signals were set to the same values as it
was in the ends of the previous experiments. Time
responses of these experiments are shown in Fig. 6
and Fig. 7.

Tables 1 and 2 contain values of control quality
criterions. The criterions are sum of powers of
tracking errors and sum of increments of
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manipulated variables. The table 1 contains values
obtained from the experiments, when the initial
parameter estimates were chosen without a-priori
information. The table 2 relates to the experiments
with steady parameters.

Fig. 4. Control of the laboratory model using 1DOF
controller

Fig. 5. Control of the laboratory model using 2DOF
controller

Fig. 6. Control of the laboratory model using 1DOF
controller — experiment with steady
parameters
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8. CONCLUSIONS

It is possible to derive several conclusions from the
values of the control quality criterions obtained
during experiments with particular controllers. If the
first criterion (powers of tracking errors) is
considered, comparable results were achieved with
both controllers. According to the second criterion
(increments of manipulated variables) the 2DOF
controller performed significantly better. This fact is
also evident from the courses in Figs. 4 — 7.

The control tests executed on the laboratory model
provide very satisfactory results, despite of the fact,
that the non-linear dynamics was described by a
linear model. The objective laboratory model
simulates technological processes, which frequently
occur in industry. The laboratory tests proved that
the examined methods could be implemented and
used successfully to control such processes.

IFAC -372- ADCHEM 2006



