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Abstract: In this paper we develop a nonlinear control strategy based on a
Nonlinear Output Error (NOE) model structure that uses Canonical High Level
Piecewise Linear (HL CPWL) functions to approximate the nonlinear system. This
model structure allows the implementation of identification and control algorithms
that allows to increase or decrease very easily the complexity of the model during
the identification process. This property is very attractive because it allows to find
the appropriate NOE model without overfitting. Using this CPWL NOE model
structure, we define a simple local linear control scheme.
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1. INTRODUCTION

There exist a set of very well known techniques
to design and analyze feedback control strategies
for linear systems. If the system under consider-
ation is nonlinear and important performance re-
quirements are imposed, nonlinear control design
tools must be used. Canonical Piecewise Linear
(CPWL) approximation in the context of Nonlin-
ear Output Error (NOE) model structure allows a
systematic multilinear or Linear Parameter Vary-
ing (LPV) consideration of a nonlinear dynamical
systems. The High Level CPWL (HL CPWL)
formulation used in this paper (Julián et al., 1999)
is based on a simplicial partition of the input
domain such that the system has a linear affine

1 Partially supported by the ANPCyT
2 Partially supported by CONICET
3 Partially supported by CIC

formulation in each simplex which is continuous
on the boundaries.

Under slowly varying assumptions, different lin-
ear controller scheduling techniques have been
proposed in the literature ((Rugh and Shamma,
2000), (Shamma and Athans, 1991), (Shamma
and Athans, 1992), (Galán et al., 2004)).

Within the context of fuzzy logic and neural
networks, the controller scheduling idea has re-
ceived the attention of researchers ((Palm and
Stutz, 2003), (Chen and Huang, 2004)) as well.

In the framework of these ideas, in this paper we
present a new local linear control strategy of a
nonlinear system based on a CPWL NOE model
description. In ((Castro et al., 2005b), (Castro
et al., 2005a)) a CPWL Nonlinear Output Error
(NOE) model structure and an identification algo-
rithm were presented. This structure is similar to
the one proposed by Narendra and Parthasarathy
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(Narendra and Parthasarathy, 1990) in the con-
text of Neural Networks. The CPWL NOE struc-
ture uses HL CPWL functions to develop an iden-
tification algorithm that offers a simple mecha-
nism for increasing the model approximation ca-
pabilities, retaining the approximation achieved
when moving from a coarse grid to a finer one. In
this way, it is possible to start the identification
with a linear approximation and then increase the
model’s degrees of freedom progressively in order
to reduce the mismatch up to an acceptable value.
On the other hand, a reduced model may be evalu-
ated to alleviate overfitting. It is also important to
remark that the NOE algorithm assures minimum
noise effect in the identified model.

The HL CPWL formulation of the NOE model
allows to follow in real time the simplex where
the system is actually situated. Each simplex
is directly related with the corresponding linear
model. Then, under invertibility assumptions, i.e.
minimum phase assumption of all linear models,
a simple controller composed of the local inverse
linear model in cascade with a filter to tune the
performance, is considered. The minimum phase
assumption can be relaxed since special consid-
eration may be applied to guarantee stability of
the closed loop system. The particular controller
formulation is used only to present a general idea
of controller scheduling using CPWL NOE model
formulation.

The paper is organized as follows. In Section 2
the identification algorithm (Castro et al., 2005a)
is reviewed. In Section 3 the proposed control
scheme is discussed; in Section 4 we develop an
example using the proposed methodology. Finally,
in Section 5 we draw some conclusions.

2. IDENTIFICATION METHODOLOGY

Let (u,y) the input/output available data of
length L corresponding to a given Lipschitz con-
tinuous, SISO system. If ỹ is the estimated value
corresponding to the input u, and

uk,M+1 = [uk, . . . , uk−M ] (1)

ỹk−1,N = [ỹk−1, . . . , ỹk−N ] , (2)

we propose the following black-box identification
structure

ỹk = fpwl (uk, . . . , uk−M , ỹk−1, . . . , ỹk−N )

= cΛ
(
[uk,M+1, ỹk−1,N ]

)
. (3)

where the the HL CPWL function fpwl (x) =
cΛ (x) is defined as in (Julián et al., 1999), (Julián,
2000) and the model orders M and N are given.
This identification structure, pictured in Fig. 1,

can be considered a black box model where the
regression vector noted by ϕk is taken as ϕk =[
uk,M+1, ỹk−1,N

]
see (Sjöberg et al., 1995), for

example). It is worth to mention that a linear
model is a particular case of fpwl. Finally, let us
note

zk =
[
uk,M+1, ỹk−1,N

]
. (4)
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Fig. 1. CPWL NOE model

The domain of the function fpwl is a compact set
S ⊂ R

m,m = M + N + 1, defined as follows

S = {z ∈ R
m : zi ≤ zi ≤ zi; zi = zi + δ.ndiv,

i = 1, 2, . . . , m} , (5)

being δ the fixed grid size, zi = min zi and
zi = max zi over the entire input/output set with
z defined in (4).

According to ((Julián et al., 1999), (Julián,
1999)), the set defined by (5) is partitioned into
polyhedral regions using a simplicial boundary
configuration and fpwl is linear on each simplex
and continuous on the adjacent boundaries of the
simplices.

Taking into account Eq. (5) each dimension is
divided into a number of subintervals of equal
length δ. Then, when the grid size δ decreases,
the number of divisions ndiv on each direction
increases. As a consequence, using HL CPWL
functions for the nonlinear approximation, ndiv
allows to go from a linear model (ndiv = 1) with
a coarse partition of the domain to a nonlinear
one with a finer partition of S. The advantages
of using this kind of models is pointed out in
(Sjöberg and Ngia, 1998, Ch.1).

According to the proposed methodology we write
the identification algorithm using the following
notation.
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Notation

ndiv = 2d, d ≥ 0: number of divisions of the
region S. Equal number of divisions in each
dimension is assumed.

V d: the set of vertices of the simplicial partition
of the set S with ndiv = 2d number of divisions.

Λd: The HL CPWL basis defined on S with
vertices belonging to V d.

cd,∗: the row vector of parameters associated
with the basis Λd. The number of parameters is
(ndiv+1)M+1+N ((Julián et al., 1999), (Julián,
1999)).

(A)j : the j-th row of a matrix A.
Niter ∈ R: maximum number of iterations of the
optimization algorithm.

Maxerror: maximum allowable approximation
error.

lr: learning rate, lri > 0∀i (lri = 0.001).
mom: momentum, mom > 0 (mom = 0.9).
lrinc: learning rate increment, lrinc > 1 (typi-
cally, lrinc = 1.05).

lrdec: learning rate decrement, 0 < lrdec < 1
(typically, lrdec = 0.3).

η: constant update, 0 ≤ η ≤ 1.

Identification Algorithm

Step 1. d = 0: Linear Approximation.
Compute the set of parameters cd,∗ of the linear
model solving the following LS problem

cd,∗ = min
(‖y − ỹ‖2

)
= arg

{
min
cd

{
1
2

L∑
i=1

[yi−

cdΛd
(
[ui,M+1, ỹi−1,N ]

)]2}}
.

Step 2. d ← d + 1: . Set r = 0. Evaluate the
initial condition cd,∗ for the new d according
to the algorithm given in (Castro et al., 2005a).
Set

r = 0, cd,r = cd,∗, η = 0,
∆cd,r = [0, . . . , 0] lr0

i = 0.001∀i.
Step 3. r ← r + 1: Error and gradient evalua-

tion.

Er =
1
2

L∑
i=1

[
yi − cd,r−1Λd

(
[ui,M+1, ỹi−1,N ]

)]2
(6)

∇Er
j =

∂Er

∂cd,r−1
j

=−
L∑

i=1

[
yi − cd,r−1Λd

(
[ui,M+1, ỹi−1,N ]

)]
.

.
(
Λd

(
[ui,M+1, ỹi−1,N ]

))
j
.

Step 4. Parameter update. If Er ≤ Maxerror
then stop; otherwise

∆cd,r
j = η

(
−∇Er

j lrr
j + ∆cd,r−1

j mom
)

, (7)

cd,r = cd,r−1 + ∆cd,r, (8)

where the constant η is precisely defined in
Appendix B and the components of the learning
rate vector lrr are modified as described below.

lrr
j =

{
lrr−1

j × lrinc if sign
(
∇Er

j

)
= sign

(
∇Er−1

j

)
lrr−1

j × lrdec if sign
(
∇Er

j

)
�= sign

(
∇Er−1

j

)
.

If r < Niter go to Step 3.
else

cd,∗ = cd,r, go to Step 2.

Remark 1. In order to improve the algorithm per-
formance, any of the well known stop conditions
based on the error evolution, may be applied in
Step 4.

Remark 2. The described algorithm could be
modified to reduce the order of the model. Then,
the solution at any level could be found back-
wards. If only the solution before the last one
must be recovered, other possibility would be
to retain that vector of parameters and recon-
struct the solution using the expression k̃ =
cd,rΛd

(
[uk,M+1, ỹk−1,N ]

)
for all k, 1 ≤ k ≤ L.

The advantages and drawbacks of this algorithm
have been pointed out in ((Castro et al., 2005b),
(Castro et al., 2005a)).

3. CONTROLLER DESIGN

In order to design the controller, we use the fact
that in each sector of the domain, the CPWL NOE
structure behaves as a linear model. Then, we will
use a linear controller for each one of these sectors.

To design these linear controllers, we adopt the
direct synthesis approach (Ogunnaike and Ray,
1994). The controller specification produces a
feedback system with a closed-loop pole in ac

without offset, when the set point is changed in
the form of steps. If the discrete transfer function
of the linear model is called H(z), and H−1(z)
is stable and causal, then the controller can be
described as

K(z) =
ac

z − 1
1

H(z)
. (9)

Then, the controller algorithm involves two steps,
first it is necessary to extract the linear model
valid for the current operating point; then, with
this model, a controller is designed.

Let us consider that the process is actually in
a given operating point described by the vector[
uk,M+1, ỹk−1,N

]
. Then it is simple to determine

the simplex R(i) that contains this point, for
example using the PWL Toolbox of MATLAB
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(Julián, 2000). Note that if the dimension of the
domain is m = N +M +1 each simplex is defined
by their m + 1 vertices. Then the gradient J (i)

in this simplex can be easily evaluated using the
values of fpwl at its vertices (see Appendix A).
The parameters of the linear model at the region
are the entries of this gradient vector. Then it is
possible to implement the control algorithm (see
Fig. 2) as follows.

Model

PlantController

+

_
ref

R
actual

u k k+1
u

k+1
y

Fig. 2. Control scheme.

Control Model Algorithm

Data. At time k, the past values of the mea-
sured and controlled variables to form x =[
uk,M+1, ỹk−1,N

]
. The desired closed loop time

constant (ac).
Step 1. Determine the sector Rold in which is

operating the process, the linear model corre-
sponding to this sector (using the algorithm of
Appendix B) and the linear controller Kactual

of Eq. (9).
Step 2. Determine the actual sector Ractual.
Step 3. If Ractual is not equal to Rold, compute

the actual linear model, the new controller
Kactual and make Rold = Ractual.

Step 4. Apply the corresponding manipulated vari-
able uk to the process, and measure yk.

Step 5. Compute the new manipulated variable
uk+1 (computed using Kactual and yk). Make
k ← k + 1.

Step 6. Update x =
[
uk−M ,yk−N

]
using uk+1

and yk and return to Step 2.

Remark 3. It is obvious that the performance of
this control algorithm depends on the quality of
the model. In this case, we consider that each sim-
plex in the partition of the domain have enough
data to allow a good quality model. In this way, it
is possible to improve the robustness of the control
algorithm by relaxing the control specification i.e.
the time constant when the number of data in a
given region is small.

4. EXAMPLE

In this example we model the neutralization re-
action between a strong acid and a strong base
in the presence of a buffer agent as described by
(Galán, 2001) (for a complete description of this

process and a first principles models see (Biagiola
et al., 2004)).

The goal is to control the output pH, by ma-
nipulating the alkaline solution flow rate qB . The
operating point for the neutralization is qB = 0.5
and pH = 7.7182.

In order to identify the system, qB is excited by a
random signal with uniform distribution between
0 and 1, the limits of the physical variable. Time
simulation is performed for a 250 seconds for a
sample time of 0.25 sec. The regression vector
of the CPWL NOE model is taken as ϕk =
[uk, ỹk−1, ỹk−2] and the number of divisions for
each variable are two, four and eight, giving a
total number of parameters equal to 27, 125 and
729, respectively. The parameters of the algorithm
for adjusting the vector of parameters are taken
as lr0 = 0.0002, mom = 0.9, inc = 1.05 and
dec = 0.3.

In Fig. 3 the error is displayed as a function of the
iterations; the number of divisions of the simplices
increases every 1000 iterations.
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Fig. 3. RMS error for pH neutralization.

The controller is used to follow a set point change.
The controller parameter is set at ac = 0.5. The
simulation for this control is shown in Fig. 4. In
this figure, the system response for the controller
with ndiv = 2, 4 and 8, ndiv = 4 are shown.
Again, from these plots it is clear that the con-
troller performance improves when the number of
divisions increase.

5. CONCLUSIONS

In this paper, a NOE identification algorithm
based on HL CPWL functions approximation
method is reviewed, and an algorithm to control
this model structure is presented. The identifica-
tion methodology allows to approximate a NOE
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Fig. 4. Simulation for pH neutralization control.

model from a linear one, and the control scheme
uses the linear information in each region of oper-
ation to design a simple controller. The main fea-
ture of this process is that it enables to go from a
linear model to a nonlinear one straightforwardly.
Finally, the potentials of our approach have been
illustrated with two examples.
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Appendix A. LINEAR MODEL FROM CPWL
FUNCTIONS

Let us consider a HL CPWL function fpwl : S ⊂
R

m → R
1 and a vector x at a given region

R(k), i.e. x ∈ R(k) ⊂ S. This region R(k) ∈
R

m is uniquely defined by its m + 1 vertices
V (j), j = 1, . . . , m + 1. Once that these vertices
are computed 4 , it is possible to obtain the linear
model J (j) ∈ R

m that represents the process at
this region. An algorithm to perform the linear
model can be written as follows.

Linear Model Algorithm

Step 1. Compute the value of fpwl at vertices,

4 This is trivial using the function vertices.m from (Julián,
2000)
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for i = 1 to m + 1
(z)i = cΛ

(
V (i)

)
,

end
Step 2. From the vector and matrix,

for i = 1 to m
(Γ)i = (z)i − (z)m+1,
Θ(:, i) = V (i) − V (m+1),

end
where Θ(:, i) represents the ith column of the

Θ matrix.
Step 3. Compute the gain vector J ,

J = Θ−1Γ

Appendix B. BIBO STABILITY

Let us suppose that u ∈ U ⊂ R
M+1, y ∈ O ⊂ R

N ,
U and O given compact sets, Q ⊂ U × O, Q
compact and I =

[
y, y

] ⊂ R, with y = miny, y =
maxy.

Definition 4. We say that the model defined by
(3) is BIBO stable if fpwl (Q) ⊂ I.

This definition means that the model output re-
mains within the output values when the input is
any signal u ∈ U .

The expression (3) defines a mapping fpwl : Q →
I. As Q is a compact set and fpwl is continuous
on Q, then it attains its maximum and minimum
values on Q. Moreover, since fpwl is linear on
each simplex, the extreme values are attained
on VQ, the set of vertices of Q. Then the NOE
identification structure given by (3) will be BIBO
stable if the minimization problem

min
cd

Er s. t. max
z

k ∈ Q
1 ≤ k ≤ L

fpwl

(
zk

)
= max

v∈V d

∣∣cdΛ (v)
∣∣ ⊂ I,

where Er is given by equation Eq. (6) and V d is
defined in Section 2, is solvable. This minimization
problem is equivalent to

min
cd

Er s. t.

⎧⎨
⎩

max
v∈V d

(∣∣cdΛ (v)
∣∣) ≤ y

min
v∈V d

(∣∣cdΛ (v)
∣∣) ≥ y.

(B.1)

Remark 5. Considering a 10.000-length input vec-
tor, it takes around 16µs of CPU to solve the min-
imization problem with restrictions given by (B.1)
in the MATLAB environment, with a Pentium IV,
512Mb RAM computer.

Once we have found cd that satisfies (B.1), we
must guarantee that, for any r with d fixed,
is ỹk = cd,rΛ

(
zk

) ∈ I, 1 ≤ k ≤ L, where
cd,r is obtained from Step 4 of the identification
algorithm described in Section 2.

We can state the following sufficient condition.

Proposition 1. Let us suppose that, for d and r−1
fixed, the model is BIBO stable. Then the model
will be BIBO stable for d and r if the following
condition is satisfied

y − min
v∈Vd

(
cd,r−1Λ (v)

) ≤ ∆cd,rΛ (v)

≤ y − max
v∈Vd

(
cd,r−1Λ (v)

)
, (B.2)

where ∆cd,r is given by equation Eq. (8) and
v ∈ V d.

Proof. See (Castro et al., 2005a).

Corollary 2. With the hypothesis of Proposition
1, let us note a = y − minv∈V d

(
cd,r−1Λ (v)

)
,

b = y − maxv∈V d

(
cd,r−1Λ (v)

)
. Then

η ≥ a

minv∈V d

[(
−∇Er

j lrr
j + ∆cd,r−1

j mom
)

Λ (v)
] ,(B.3)

η ≤ b

maxv∈V d

[(
−∇Er

j lrr
j + ∆cd,r−1

j mom
)

Λ (v)
] ,(B.4)

simultaneously.

Proof. See (Castro et al., 2005a).

Remark 6. From both bounds for η given by
Eq. B.3 and B.4, the only one with practical
interest is the least positive one and is the bound
used in Step 4 of the identification algorithm.
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