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Abstract: This paper applies the orthogonal collocation on finite elements (OCFE) 

method and the fixed pivot (FP) technique for the prediction of the molecular weight 

distribution (MWD) for linear free-radical polymerization systems. It is shown that for 

linear polymers, the two methods result in similar molecular weight distributions for a 

bimodal MWD. An optimal operating policy that ensures the satisfaction of desired 

polymer quality specifications and process economics regulations is derived employing a 

performance index which penalizes the deviations of the MWD from specific desired 

values. Finally, the optimal trajectories were applied to a free-radical MMA batch pilot-

scale polymerization reactor.  Copyright © 2006 IFAC 
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1. INTRODUCTION 

Commonly employed polymer product quality 

indicators (e.g., mechanical strength, tear strength, 

rheological properties and so forth) are directly or 

indirectly linked with molecular structural properties of 

the polymer chains (e.g., molecular weight distribution 

(MWD), long-chain branching (LCD), copolymer 

composition distribution (CCD), chain sequence length 

distribution (CSD), and so forth). Hence, the ability of a 

model to predict accurately the molecular properties of 

polymers in a polymerization reactor is of profound 

interest to the polymer industry. 

In the past a number of mathematical approaches have 

been proposed to describe the molecular weight 

developments in free-radical polymerization reactions. 

Crowley and Choi, (1997a) and Yoon, (1998), 

developed a kinetic lumping method in which the quasi 

steady state approximation (QSSA) for the “live” 

polymer chains holds true and the polymer chains 

population is divided into a specified number of “chain 

lump” domains where the resulting balance equations 

are solved numerically. Polynomial expansion methods 

of the MWD require the calculation of high-order 

moments and may lead to slow convergence (Tobita 

and Ito, 1993). Discrete weighted Galerkin formulation 

(Deuflhard and Wulkow, 1989; Wulkow, 1992), even 

though are computationally demanding, provide a 

useful tool for the prediction of the MWD in complex 

polymerization systems. However, the approximation 

of the infinite summation terms (e.g., resulting from 

termination by combination reactions), requires special 

treatment. The use of global orthogonal collocation 

methods for the prediction of the MWD in free-radical 

polymerization systems see (Nele et. al., 1999) was 

partially successful, because a single interpolation 

polynomial was employed for the entire domain. As a 

result, prior knowledge about the type of the 

approximated distribution is required. Kiparissides et. 

al., (2002), used the OCFE method assuming that the 

pseudo-steady-state approximation for “live” polymer 

chains of length “n” holds true, in order to calculate the 

MWD.  

In operating a batch free-radical polymerization 

process, a typical task involves manipulation of reactant 

concentrations, reactor temperature and other variables 

in order to achieve a desired objective which can 

usually be expressed in terms of conversion, molecular 

weight distribution, polymerization time and so forth.  

In the past, much attention has been given on control 

basically of the averages of the MWD (Ponnuswammy 

et. al., 1987; Kim and Choi, 1991; Kozub and 

MacGregor, 1992). However, for broad or bimodal 

distributions, the calculation of the number and weight 

average molecular weights does not uniquely 

characterize the MWD of the polymer (Ray, 1972).  

Crowley and Choi, (1997b), applied a common method 

of controlling the MWD in batch free-radical 

polymerization reactors, by predetermining the optimal 

control variable trajectories, and then attempting to 

execute these trajectories during the batch. Clarke-

Pringle and MacGregor, (1998) developed a batch-to-

batch optimization methodology for producing a 

desired MWD using an approximate model. 

In the present study the OCFE and FP methods are used 

to calculate the MWD for linear polymers. The rate 

equations for the “live” and “dead” polymer chains of 

length “n”, derived from the mass balances, are solved 
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at specific discrete points, while no QSSA for the “live” 

polymer chains is assumed. Additionally the summation 

terms resulting from termination by combination 

reactions, are taken into account in both methods. A 

detailed polymerization model is used in conjunction 

with the FP and the OCFE methods to determine the 

MWD. Simulation results of the MWD calculations 

confirmed the validity and accuracy of both methods. 

Finally, a model-based dynamic optimization approach 

was applied to optimally produce a specific desired 

MWD, calculated by the OCFE method. The 

calculation of the optimal trajectory of the reactor 

temperature set points was handled using sequential 

quadratic programming (SQP). The resulted model-

based optimal set point sequence was subsequently 

imposed on the experimental pilot-scale reactor system 

which operates at our laboratory. The mathematical 

model closely describes the reactor unit, which consists 

of a well-mixed jacketed vessel. Stirring is provided by 

a flat-blade turbine, aided by four removable blade 

baffles. The reaction temperature is controlled by a 

cascade controller which manipulates the flows of two 

streams (e.g., a hot and a cold) entering the reactor 

jacket. The polymerization was highly exothermic and 

exhibited a strong acceleration in the polymerization 

rate due to the gel effect (e.g., the termination rate 

constant decreased with conversion). 

2. FREE-RADICAL POLYMERIZATION MODEL 

The kinetic scheme for the free-radical suspension 

polymerization of methyl methacrylate (MMA) is 

shown in Table 1. In this scheme the termination 

reactions include the combination and the 

disproportionation mechanisms.  

Table 1: Kinetic mechanism for free-radical MMA 

polymerization. 
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To account for the effect of the diffusion-controlled 

phenomenon on the termination and propagation rate 

constants, the model of Chiu et. al. (1983), was 

employed. Given the above detailed kinetic mechanism, 

the following balances for the “live” and “dead” 

polymer chains of chain length “n” (n [1,660000] )  

are obtained: 
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3. METHOD OF MOMENTS 

The method of moments is based on the statistical 

representation of the average molecular properties of 

the polymer (e.g., number average, Mn, and weight 

average, Mw, molecular weights) in terms of the 

leading moments of the number chain length 

distributions (NCLDs) of “live” and “dead” polymer 

chains, defined by the following equations: 
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The relevant rate functions for the moments of the 

NCLDs of the “live” and “dead” polymer chains can be 

obtained by multiplying each term of eqs (1)-(2) by nk

and summing up the resulting expressions over the total 

degree of polymerization, N . The resulting rate 

equations for the leading moments are see (Pladis et al., 

1998): 
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where R and M denote concentrations of the 

radicals and monomer, respectively. Usually, one needs 

to know the leading moments (i.e., 0, 1, 2 and µ0, µ1,

µ2) of the NCLDs of “live” and “dead” polymer chains 

to calculate the values of Mn and Mw.

4. FIXED PIVOT TECHNIQUE 

The inherent limitations of the numerical solutions 

resulting from the discretization of the chain length, can 

be avoided in the more general formulations (i.e., fixed 

and moving pivot techniques) of Kumar and 

Ramkrishna (1996) and (1997). The last methods 

guarantee the correct calculation of any two moments 

of the distribution and are applicable to any type of 

discretization of the chain length. 

The fixed pivot technique is a very efficient method for 

the calculation of the weight chain length distribution 

(WCLD). It assumes that the overall polymer chain 

population can be assigned to selected discrete lengths. 

Specific reaction steps (i.e., termination and 

propagation) leading to the formation of polymer chains 

other than the representative ones, are incorporated in 

the set of discrete equations in such a way that selected 

properties of the WCLD (i.e., total number, mass, etc.) 

corresponding to any two moments of the WCLD, are 

exactly preserved. 
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For the preservation of the zero and first moments of 

the WCLD, the assigned polymer chain fractions to the 

discrete lengths nI and nI+1 will be given by the 

following equation: 
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5. ORTHOGONAL COLLOCATION ON FINITE 

ELEMENTS 

A key characteristic of the OCFE method is the 

treatment of the discrete polymer chain length domain 

as a continuous one. Hence, the concentrations of “live” 

and “dead” polymer chains are handled as continuous 

variables. Accordingly, the chain length domain is 

divided into a number of finite elements, NE, with 

element boundaries at the points: 0=1, 1, 2,…, NE-1,

NE = Sf, where Sf is the final degree of polymerization 

[Sf = 660000]. For each element a number of n interior 

collocation points, [s1, s2,…, sn] are specified. The 

concentrations of the “live” and “dead” polymer chains 

are then approximated by continuous low-order 

polynomial functions within each finite element. In the 

present study, Lagrange interpolation polynomials were 

used to approximate the concentrations of the “live” 

and “dead” polymer chains: 
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The tilde denotes approximation variables. The 

functions, sWR

j,i and sW P

j,i are Lagrange 

interpolation polynomials of order n+1 and n, 

respectively, given by the expressions: 

NEjni

s
ss

ss
sW jj

n

k jkji

jkR

ji

ik

,,1,,0

1

0 ,,

,

,

(9) 

NEjni

s
ss

ss
sW

n

k

jj

jkji

jkP

ji

ik

,,1,,1

1

1

,,

,

,

(10) 

The Lagrange polynomials sWR

j,i  and sWP

j,i  are 

equal to zero at the collocation points sI,j, for k i and 

equal to unity for k=i. To take into account the 

concentration of “live” polymer chains at chain length 

x=1, the left boundary point of the first element was 

included as an interpolation point. 

A set of residual equations was then derived, by 

substituting eqs (7)-(8) into the material balance 

equations. The main requirement of the OCFE 

formulation forces the residual balances to vanish at the 

selected collocation points, si,j.

The selection of the finite element boundaries controls 

the density of the collocation points in the overall chain 

length domain. Thus a high density of collocation 

points is usually required in chain length regions, where 

steep changes in the concentrations of “live” and 

“dead” polymer chains are foreseen. Therefore, the 

domain partition into finite elements can be performed 

either based on previous knowledge about the shape 

and characteristics of the weight chain length 

distribution (e.g., steep fronts and flat profiles in the 

WCLD) or based on the satisfaction of a certain error 

criterion (e.g., equidistribution of error throughout the 

domain). Extensive simulations showed that low-order 

interpolation polynomials predict the overall WCLD 

more accurately, compared to high-order polynomials 

for the same total number of collocation points. This 

was attributed to the oscillatory behavior of the high-

order Langrange polynomials. 

6. DYNAMIC OPTIMIZATION OF THE MWD 

For the dynamic optimization of the molecular weight 

distribution of the free-radical MMA polymerization, 

the reactor temperature was chosen as manipulated 

variable, because it is a key process condition that has 

the greatest direct impact on the MWD. The optimal 

reactor temperature sequence can be used as 

temperature set points in order to control the MWD. A 

cascade control system was employed to drive the 

actual reactor temperature as close as possible to the 

optimal set point trajectory. The objective is to 

minimize the time required to produce a polymer with 

desired molecular properties. Thus, the objective 

function to be minimized, can be defined in terms of the 

final MWD and polymerization time: 
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where, MWDdi are the desired values of the MWD, Nd

is the number of the desired values of the MWD, tf is 

the final polymerization time and wi are appropriate 

weights. l and u represent the lower and upper single 

bound constraints. The desired values of the MWD lie 

within a feasible domain of MWDs accounting for the 

capabilities of both the reactor control and heating 

systems. T stands for the vector of the sequence of the 

reactor temperature during the polymerization. Each 

element of the vector T represents a constant 

manipulated control variable during a specific time 

interval. The number of the elements j of the vector T is 

equal to the ratio of the final polymerization time over 

the number of time intervals selected by the user. All 

the time intervals have equal length. The objective 

function is minimized using NPSOL. The method of 

NPSOL is a sequential quadratic programming (SQP) 

method. 

7. RESULTS 

The predictive capabilities of the OCFE method and the 

FP technique on the MWD of linear polymers were 
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tested by direct comparison of the two methods for 

different values of monomer conversion see (Fig. 1). In 

the reported runs, the initiator (AIBN), monomer and 

water initial masses were 4 gr, 1.070 kg and 4.8 kg 

respectively. The reactor temperature was kept constant 

at 335 K during the whole polymerization horizon 

(isothermal operation). The continuous lines represent 

the simulation results derived from the application of 

the OCFE method while the discrete points represent 

the results from the FP technique. It is apparent that an 

excellent agreement between the two methods exists 

along the whole range of monomer conversion. Notice 

that both methods are capable to predict bimodal 

distributions. 
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Fig. 1. Comparison of OCFE method and FP technique 

on the MWD at different monomer conversions 

The reliability of the results derived from the 

application of the OCFE method and the FP technique 

was further tested by a direct comparison of the zero, 

first and second moments of the “live” and “dead” 

polymer chains derived from the predicted MWDs with 

the analogous ones derived from the application of the 

method of moments (Figures 2 and 3). Apparently, 

there is an excellent agreement among the predictions 

from all these methods.  
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Fig. 2.Comparison of “live” polymer moments between 

the FP technique, the OCFE method and the 

method of moments 
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Fig 3.Comparison of “dead” polymer moments between 

the FP technique, the OCFE method and the 

method of moments 

A model-based study of the optimization problem of a 

minimum-time production of polymer with a desired 

MWD is presented next, employing the OCFE method 

as a representative and reliable method for the MWD 

calculations. A bimodal MWD (i.e., PD 5) was 

selected as desired profile to be optimaly produced. An 

optimization policy, where the time domain was 

discretised into five intervals was selected. The 

optimization problem was solved for various initial 

guesses of the temperature set point profile. All these 

profiles exhibited a single step change in the area of the 

gel-effect phenomenon. The optimal results obtained by 

the different optimization runs were slightly different in 

terms of the time minimization and the shape of the 

final MWD, indicating low sensitivity on the initially 

guessed temperature set point profile.  

The validity of the model was further tested by direct 

implementation of the model produced optimal 

temperature trajectory to a cascade control system of 

the pilot-scale batch polymerization reactor. The 

cascade control system consists of a primary 

proportional-integral-derivative (PID) and two 

secondary PI controllers.  
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Fig. 4. Comparison between model predictions and 

experimental results on the reactor temperature 

(I0=2 gr/kg of MMA). 
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Figure 4 depicts a comparison between model 

predictions and experimental results on the reactor 

temperature produced from the implementation of the 

optimal temperature trajectory as set points to the 

reactor’s cascade control system. The optimal MWD in 

comparison with the desired MWD is shown in Figure 

5. As can be seen from Figures 4 and 5, the optimizer, 

after the heat-up period, forces a low temperature in the 

reactor to restrain the polymerization, facilitating 

simultaneously the production of long polymer chains. 

At the onset of the gel effect and onwards a kick of the 

reactor temperature is necessary leading to the 

production of short polymer chains that result in the 

formation of a second peak in the MWD. 
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Fig. 5. Desired and optimal bimodal MWD using the 

OCFE method (I0=2 g/kg of MMA). 

Finally, in Figures 6, 7 and 8, model predictions on 

monomer conversion, average molecular weights and 

hot and cold water flowrates are compared with 

experimental data produced from the optimal 

temperature profiles depicted in Figure 4. It is apparent 

that a satisfactory agreement exists between model 

predictions and experimental results, proving the 

reliability of the proposed model to produce desired 

MWDs. 
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Fig. 6. Comparison of model predicted and 

experimental monomer conversion produced from 

the optimal temperature profile (I0=2 g/kg of 

MMA). 
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experimental average molecular weights produced 

from the optimal temperature profile (I0=2 g/kg of 

MMA). 
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