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Abstract: In this paper, a fault detection and diagnosis for batch/semi-batch processes by

utilizing the PCA scores subspace is proposed. To develop the diagnosis model, first the

multi-way unfolding is utilised to transform 3-dimensional batches data onto 2-

dimensional data. The process of extracting linear and nonlinear correlations from

process data is performed by sequentially applying a linear PCA and an orthogonal

nonlinear PCA. As a result the nonlinear structures become more apparent. In addition,

the sequential approach reduces the complexity of nonlinear PCA development and

compact the information to a very low dimension. The trajectory-boundary-limit crossing

point discriminant analysis is proposed to diagnose the fault at the instance of being

detected and to improve the diagnostic performance. The validity of the proposed

strategy is demonstrated by application to the emulsion copolymerization of

styrene/MMA semi-batch process. Copyright © 2005 IFAC

Keywords: Fault detection and diagnosis, nonlinear systems, batch processes.

1. INTRODUCTION

Principal component analysis (PCA) has been

recognized as important approach in multivariate

statistical process monitoring. Its extension called a

multi-way PCA (MPCA) has been successfully

applied to monitor the batch/semi-batch processes

(Nomikos and MacGregor 1994).  MPCA allows

detecting any deviation in current batch run by

comparing to the reference model that has been

developed from successful past batch runs. Although

the approach is considerably simple, but it is powerful

enough as many of its application in industrial batch

monitoring had been reported (Kosanovich, Dahl et 

al. 1996; Lennox, Montague et al. 2001).

Batch/semi-batch processes are highly nonlinear in

characteristic. The nonlinearity reduces the efficiency

of the data compression which results more principal

components are required to explain a certain

percentage of the variance. This becomes a major

disadvantage for a low-dimension process

monitoring. For example, a single bi-variate plot of 

the first few principal components may not adequate

to detect the fault. Despite multi-way unfolding is

capable to remove major portion of nonlinearity

among batch variables by subtracting the average

trajectory from each variable (Nomikos and 

MacGregor 1994), some nonlinearity remains a 

problem (Dong and McAvoy 1996). In view this

situation, incorporation of nonlinear PCA (NLPCA) 

into multi-way approach have been proposed (Dong

and McAvoy 1996; Lee, Yoo et al. 2004). In the

approaches, the nonlinear PCA is directly applied on

unfolded data. This strategy requires extensive

optimisation computation as the data is unfolded in

multi-way approach, it results a very huge input

dimension. Especially in neural network based model,

if the ratio between the numbers of batches to

variables (input dimension) is very low, to construct

an optimal neural network model will be very

difficult and cumbersome.

Despite significant advantages of PCA in detecting

the faults, most of the application of scores plane for 

fault identification and diagnosis have been confined

to continuous processes (Kresta, MacGregor et al. 

1991; Raich and Cinar 1997; Dunia and Qin 1998).

For a batch process, in early work, the identification

and diagnosis are limited to the utilization of the

contribution plots (Kourti, Nomikos et al. 1995).

Although the contribution plot can be used to identify
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which variable that contributes most to the out-of-

control conditions, the actual cause is not directly

diagnosed. Thus, the problem remains incompletely

solved, in turns requires plant personnel to interrogate

the variable further to diagnose the actual cause. In a 

typical continuous process, under a process upset, the

scores are shifted to a new steady state which forming

a new cluster. The classification of each fault cluster 

strongly relies on the assumption that the data is 

adequately represented by a normal distribution.

However, as the batch/semi-batch process is 

continuously monitored, under a process upset, the

scores do not form a new cluster instead they follow a 

certain trajectory. In this case, the normality

assumption of the data distribution is clearly violated.

In this paper a fault detection and diagnosis for

batch/semi-batch process based on the orthogonal

nonlinear multi-way PCA is proposed. Rather than

applying a nonlinear PCA directly onto unfolded data,

a sequential application of a linear PCA and a 

nonlinear PCA is performed. The nonlinear PCA is

applied only on selected principal components of the

linear PCA. The main reason is since most of the

nonlinearity has been removed, it is better to capture

the remaining nonlinearity in more efficient manner.

An improved nonlinear PCA called orthogonal

nonlinear PCA is employed to improve the explained

variance in the first few nonlinear principal

components. For the fault diagnosis, a discriminant

analysis based on the transient region is employed

rather than out-of-boundary region. A single crossing

point between the scores trajectory and boundary

limit is used to classify the fault. It is expected that

the proposed strategy is not only be able to maintain

the diagnostic performance, but the foremost

advantage is it provides a very fast diagnosis in view

to a finite nature of the batch/semi-batch process.

The remaining of this paper is organized as follows.

In the next section a brief overview on PCA and

multi-way PCA is provided, followed by orthogonal

NLPCA. Then, a complete framework for an 

orthogonal nonlinear multi-way PCA fault detection

strategy is introduced. Finally, a discrimination

analysis for fault diagnosis by using fault trajectory in

the scores space is presented. An example is given to 

illustrate the performance of the proposed framework

before concluding.

2. PRINCIPAL COMPONENTS ANALYSIS

2.1 Linear PCA.

Let X be a data matrix with n number of observations

and m number of dimensions. The X matrix can be

decomposed into two matrices as follows:

m

i

T

ii

T ptTPX
1

 (1)

where T  is called scores matrix and P is called

loadings matrix. If the variables in X are collinear, the

first f principal components can sufficiently explain

the variability in data X. Thus, the data X can be

written as follow in term of residual, E,
f

i

T

ii

T

ff EptEPTX
1

 (2)

2.2 Multi-way PCA.

In typical batch processes, the process data is in the

form of three-way matrix (X(IxJxK)). For a typical 

batch run, j = 1, 2, …, J variables are measured at k = 

1, 2, …, K time intervals throughout the batch. There

exists  similar data on a number of batch run, i = 1, 2,

…, I. In MPCA strategy, this matrix must be unfolded

into a two-way matrix before PCA can be performed.

There are several possible ways to unfold the matrix.

In this case, the matrix is unfolded onto matrix

X(IxJK) as shown in figure 1. This allows us to obtain

some variability analysis among the batches. In batch

processes, some variables follow certain trajectories

rather than maintain around specific steady state

conditions. Thus, the mean trajectory of each variable

can be removed by subtracting the mean of each 

column of the unfolded matrix. This will remove

major portion of nonlinearity among batch variables.

PCA then can be performed in conventional way once

the unfold matrix has been auto-scaled.

Fig. 1:  Multi-way unfolding

One important performance of process monitoring is

to detect the un-conformance condition as soon as 

possible by having on-line monitoring. However, the

above unfolded matrix is not completed until the end 

of the batch. To handle the future missing data

problem, a few suggestions have been proposed either

by filling with zeros or using the current values, or

using PCA projection (Nomikos and MacGregor

1995).

2.3 Nonlinear PCA.

For linearly correlated process data, linear PCA as

mentioned above performs well to reduce the

dimension of process data. For nonlinearly correlated 

process data Kramer has proposed a nonlinear PCA

based on autoassociative neural network (Kramer

1991). The autoassociative neural network employs a 

feedforward structure with the bottleneck layer to 

represent the nonlinear principal components as

shown in Figure 2. The overall structure consists of

three hidden layers excluding input and output layers.

A training procedure is conducted to perform identity
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mapping by reproducing the network input at the

output layer. The trained network is split into two

networks, mapping network which consists of input,

1st hidden and bottleneck (2nd hidden) layers, and

de-mapping network which consists of 3rd hidden

and output layers. NLPCA will be represented by the

output of the mapping network. If the network

training is properly conducted and the reasonable

approximation has been achieved, the data input

features must be well represented by the bottleneck

layer.

Fig. 2: Autoassociative NN Nonlinear PCA 

2.4 Orthogonal Nonlinear PCA.

The NLPCA mentioned above shows one of the

characteristics of linear PCA that it is capable of 

projecting the data to a lower dimension. Another

important characteristic of linear PCA is that the first 

principal component always captures the highest 

variance of the input data followed by the second and

so on. In NLPCA, the data information tends to be

evenly distributed among the principal components

(Chessari, Barton et al. 1995). In view of this

drawback, a training algorithm using Gram-Schmidt

process for NLPCA has been proposed in which the

nonlinear scores produced are orthogonal at the end

of training session(Chessari, Barton et al. 1995).

Although the Gram Schmidt scheme conceptually can

provide some meaningful remedies for the 

orthogonality, in practice it suffers a constraint of

trade-off between the main objective (overall

convergence) and the secondary objective (orthogonal

principal components). In the worst scenario, the

orthogonal property may be severely affected as the 

main objective cannot be scarified at all. Otherwise,

the network is not able to represent the data

adequately. In view of orthogonal requirement and

the drawbacks associated with the Gram-Schmidt

approach, an alternative approach to orthogonal

nonlinear principal component analysis is proposed.

This approach utilizes the Hammerstein type model

concept by incorporating a linear PCA model into the

NLPCA strategy. In the proposed model formulation,

the nonlinear and linear parts are separated into two 

blocks as shown in Figure 3.

Fig. 3: Conceptual model architecture

 NLPCA, the bottleneck layer neurons are 

this proposal, the bottleneck layer nodes are called

et T be the non-orthogonal nonlinear scores matrix

(3)

where P is the eigenv ctor matrix.

n additional advantage of this approach compared to

3. FAULT DETECTION

our proposed strategy, the monitoring is performed

Fig. 5: Nonlinear Mu i-way PCA Strategy

In

considered to be the principal components loadings,

but they do not posses the orthogonal property. In 

order to build the orthogonal property on the model, a 

linear PCA module is incorporated as shown in

Figure 4. In this case, the mapping network of

NLPCA is the nonlinear block while the linear PCA

is the linear block.

Linear

Fig. 4: Orthogonal Nonlinear PCA

In

non-orthogonal nonlinear principal components and

their outputs are called non-orthogonal scores. When

linear PCA is applied on non-orthogonal score, it will

produce orthogonal nonlinear principal components

and orthogonal scores respectively. For the bottleneck

layer in NLPCA, either a linear or nonlinear function

can be used (Kramer 1991).

L

generated at the output of bottleneck layer. Thus, the

non-orthogonal matrix T can be transformed into an

orthogonal matrix U by

TUPT

e

A

conventional NLPCA is that the specified number of 

bottleneck layer neurons can be relaxed as long as the

number is reasonably selected. In a conventional

NLPCA, it is necessary to optimize the number of

neurons in bottleneck layer to the optimal minimum

value.

In

by sequentially performing the linear PCA followed

by the nonlinear PCA. Only the first few linear

principal components are utilised to develop the

nonlinear PCA. The orthogonal nonlinear PCA is 

utilised to improve the distinct characteristics among

the nonlinear principal components. The strategy is

depicted in Figure 5.
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Using all retained principal components to develop

nce appropriate model has been developed, the fault

4. FAULT DIAGNOSIS

he orthogonal nonlinear multi-way PCA model

he envelope of normal operating region (NOR)

 Normal Operating Envelope

owever, in on-line batch/semi-batch process

he crossing point can be determined when the

nonlinear PCA model will not add any additional

improvement. In spite it may over-shadow the

remaining nonlinearity characteristics. There is no 

definite criterion on how few the number of principal

components to be chosen. In this study, firstly we 

apply Jollife’s approach (0.7 of average eigenvalues)

to decide how many principal components to be

retained for scores and squared prediction error (SPE) 

analysis  (Jolliffe 1986). This is simply to screen 

unnecessary principal components since total

principal components number is very large (equal to

input dimension). Based on the retained principal

components, the number of PC that explain 50~70%

of data variability will be used to develop the

nonlinear PCA model. Alternatively, a cross-

validation approach can be used to decide the number

of principal components used for nonlinear PCA

modelling. With this approach, a ratio between the

numbers of batches to variables (input dimension)

will be tremendously improved for nonlinear PCA

model development. For a SPE analysis (Q-Statistics) 

a similar approach and procedure in conventional

MPCA approach is utilised. However, the

significance of applying nonlinear PCA on the

selected PC depends on the data variability

distribution. If 50% explained variance constitutes a

very small PC number, it clearly indicates that the 

nonlinearity is very minimal and the nonlinear PCA

should not be applied.

O

can be detected by testing the future data based on the

Hotelling’s T2 statistics. Assuming that the

multivariate normal distribution adequately represents

the scores distribution, the confidence limits for T2

can be calculated using F-distribution (Tracy, Young

et al. 1992). For a SPE analysis (Q-Statistics) a

similar approach and procedure in conventional

MPCA approach is utilised. The critical value for Q-

Statistic can be calculated by approximating the

distribution as the quadratic form of a normal

distribution (Jackson and Mudholkar 1979).

T

developed in the previous section provides a good

platform for fault diagnosis in the scores subspace. It

provides low-dimensional principal components

which are sensitive enough to faults.

T

described by three principal components scores is

illustrated in Figure 6. All points encapsulated by the

sphere are considered statistically in-control with

respect to scores space. For a continuous process,

under a process upset, the scores are shifted to a new

steady state which forming a new cluster as marked

by the triangle (fault 1). Then the statistical analysis is 

performed on the new cluster to classify each

different fault. The fault diagnosis can be performed

by discriminating the test cluster mean against the

known clusters mean.

PC1

PC2

PC3

Fault 1 

Fault 2 

Fig. 6:

H

monitoring, the fault is represented by a trajectory as 

marked by the diamond (fault 2). There is no new

steady state cluster is attained in which it violates the

vital assumption of the normality of the data

distribution. As a result the cluster population mean

approach will not work properly. The discriminant

analysis must be performed on the trajectory rather 

than the cluster for batch/semi-batch processes. In this

study, the crossing point between the trajectory of 

faulty batch and the boundary limits is proposed to

perform the discriminant analysis. This representation

is considerably acceptable because the same faults

produce the same effects. Eventually, they will be

characterized by the same trajectories in the scores

subspace. Since the batch/semi-batch process is a

finite process in nature, it is very essential to diagnose

the problem as soon as the fault is detected. Thus

examining the transient region will give much

advantage rather than conducting an analysis on 

abnormal region. The process model and its boundary

limit must be defined by using the reference data of

past successful batches. The reference data must

represent normal operating conditions and should be

free from any fault or abnormality. Then each fault

will be classified by the crossing point between its 

score trajectory and the boundary limit.

T

calculated T2 at time i is equal to the T2-statistical

threshold as calculated in the fault detection scheme.

Then the future fault is diagnosed by discriminating

its crossing point to the crossing points of known

faults. The discriminant statement is minimizing the

Euclidean distance between the two points of scaled 

scores as follows:

2
min j

j
ba  (4)

here a is the crossing test point and b is the

ince the boundary limits are utilised to represent the

validates the lower limit observations. Although a 

w

reference crossing points of known fault j.

S

trajectory, the proposed discriminant approach

inherits the good statistical properties itself. The fault

diagnosis can be performed at different level of

confidence limits. The lower limit gives a faster 

diagnosis with less confidence while the higher limit
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boundary limit less than 90% confidence is rarely

used, but it is quite useful as a guideline to perform a

routine preventive checking to ensure the process is 

adequately controlled and operated.

5. CASE STUDY

In order to de oposed process

onitoring strategy, a well developed mechanistic

ess is to produce a 

olymer product with a specific bi-modal particle size

is usually

erformed by using an adequate number of principal

e first fault batch. In

is case, the linear strategy fails to detect the fault

since it does not cross the limit. Whereas the 

rfactant feed is reduced at the 

iddle of the batch run, the nonlinear strategy

monstrate the pr

m

model of styrene/MMA emulsion copolymerisation

semi-batch process is utilised (Alhamad, Romagnoli

et al. 2005). There are 8 variables being measured and

sampling is performed for every 30 sec (150 time

intervals) of 4500 sec batch run. The process is

seeded for 1500 sec before the continuous feeds are

introduced. Autocorrelations are added to all system

feeds and temperature. 30 good batches are simulated

to create a reference batches to build the orthogonal

nonlinear MPCA model. Variations are introduced in 

each good batch by random variations in initial

charges within acceptable limits.

The main objective of this proc

p

distribution (PSD). Any significant changes in

monomers, surfactant and initiator conditions will

distort the required bi-modal PSD. Two abnormal

batches are created. For the first batch, the surfactant

initial charge is set at 20% below the base recipe. As

the process is under surfactant starvation, there are 

not enough micelles being produced for new

nucleation. Thus most of the monomers favour in the

particle growth rate in which it shifts the distribution

to a higher particle size range. This eventually distorts

the required bi-modal distribution. For the second

batch, a 50% step drop in surfactant feed flow rate is

simulated at the middle of the batch run.

In general, the overall monitoring

p

components regardless the strategies used. However,

the significant advantage of the proposed strategy is 

in low-dimensional monitoring. If each principal

component is individually sensitive enough to detect

the fault, this advantage could be exploited to extract

more information regarding the fault. One of

important exploitations is in a fault diagnosis. Thus,

the performance of proposed nonlinear strategy is

evaluated by performing an on-line monitoring on a 

single principal component. For future data

substitutions, the simplest approach (zero deviation)

is utilised. The nonlinear MPCA strategy

performance is compared with the conventional

MPCA strategy for a comparison purpose. Solid line

and dotted line in Figure 7 and 8 represent nonlinear

and linear strategy respectively. All scores are scaled 

to zero means and unit variance. A simple 99% limit

is calculated based on assumption the scaled scores 

follow the normal distribution.

Figure 7 shows a T2 plot for th

th

proposed orthogonal nonlinear MPCA strategy

depicts its superiority by crossing the 99% limit at the

middle of batch run.

The T2 plot for the second fault batch is illustrated in

Figure 8. As the su

m

responses faster than linear strategy and predicts that

the product is off-specification by crossing the 99%

limit before the batch run ends. Whereas the linear

strategy response is much slower, resulting the off-

specification in product cannot be highlighted.
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Fig. 6: T2 plot for the first fault
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Fig. 7: T2 plot for the second fault

To test the performance of the proposed framework of 

fault diag ses, the

dditional 25 abnormal batches are simulated. There

verall performance is satisfactory with

n overall diagnosis success rate (DSR) is 82%. The

nosis for batch/semi-batch proces

a

are five fault classes (FA, FB, FC, FD and FE) and in

each class contains five batches which have been 

numbered from 1 to 5. FA, FB and FC belong to

initial condition problems while FD and FE belong to 

faults that occur in the middle of semi-batch run. 

Each batch is assigned with different common

variation and fault magnitude which is randomly

assigned. For fault FD and FE, the timing of fault

occurrence is also randomly assigned. This setting is

very important due to the fact that the faults in the

same class occur at different magnitude and time. In

general, each fault is considered unique although they

belong to same category. The first batch of each fault

class is considered as the fault reference set while the

remaining four batches are considered as the test sets.

Three principal components are utilised to build the

discriminant model. Three different boundary levels

(70%, 90% and 99%) are utilised to calculate the

cross-point.

Table 1 shows the result of the diagnostic decision. In

general the o

a

diagnostic performances for 90% and 99% boundary

limit are equal at 85% DSR. However as a lower

boundary limit is being utilised (70%) the diagnostic

performance is slightly degraded to 75% DSR.

Despite this degradation, the performance is still

considerably good. Therefore, the lower boundary

limit can be utilised as a guideline to conduct a 
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routine preventive check list. Fault C has the best

performance with 100% DSR, while fault D and E

have the lowest performances. Since the magnitude

and the timing of fault D and E are randomly

assigned, this increases the complexity of the

diagnosis.

Table 1: Diagnostic performance of trajectory-

boundary-limit cross point approach

Overall

FA FE 0.75

FB 0.75 0.92

FC 1 1 1 1

FD FE FA FB FB FB 0.25 0.75 0.75 0.58

FE FA FE 0.75 0.75 1 0.67

DSR 0.6 0.8 0.6 1 1 1 0.8 1 1 0.6 0.6 0.8 0.75 0.85 0.85 0.82

Fault class

Test Set

1 2 3 4

% 90% 99% 70% 90% 99% 70% 90% 99% 70% 90% 99% 70% 90% 99%

FE FE 0.75 0.75 0.75

FC 1 1

DSR

70

As the incorporation of O-NLPCA improves the fault

detection sensitivity as has been illustrated in the

above, the trajectory-bo ndary-limit cross point

FE 0.25

FC 1

FD FA FB 0.5

FE 1

DSR 0.8 0.8 0.8 0.6 0.75

Test SetFault

u

strategy improves the diagnostic effectiveness. To

illustrate this advantage, a comparison study to the

conventional PCA fault diagnosis approach is carried

out. With the multi-way unfolding and orthogonal

nonlinear PCA approaches are preserved, the

diagnostic analysis is performed by discriminating

between the populations means. Only the scores that

exceeding the boundary limits are used to calculate

the population mean. Each fault population mean is

derived from the same model rather than being

derived on its individual model. The single-model

PCA can significantly outperform the multi-model

PCA for diagnosing faults because it utilizes

information from all fault classes and projects the

data onto the same dimensions for each class (Chiang,

Braatz et al. 2001). In this comparison, 90% boundary

limit is utilised and the diagnostic is performed only

after a complete run. Table 2 shows the diagnostic

decision for the conventional PCA approach.

Table 2: Diagnostic performance of population means

approach

1 2 3 4

FA 1

E

class
DSR

FB FE F

Comparing Table 2 content to Table 1 content (for

90% limit), the overall performance of proposed

ajectory-boundary limit cross points is better with 

this paper the framework of fault detection and

diagnosis for bat esses has been 

resented. The strategy utilises a sequential

lhamad, B., J. A. Romagnoli, et al. (2005). "Advanced modelling

and optimal mulsion

copolymerization: Application to styrene/MMA

tr

85% overall DSR compared to conventional PCA

with 75% overall DSR. For the proposed method, the

diagnostic performance is considerably consistent

through out the fault classes. For the conventional

method, it has a bias superior performance towards

particular faults where three fault classes (FA, FC and 

FE) have 100% DSR. However, the most significant

advantage of the proposed discriminant approach is

the faults are diagnosed as soon as they are being 

detected. Therefore, the operator will have an ample

time to take a proper corrective action. 

6. CONCLUSION

In

ch/semi-batch proc

p

application of PCA and orthogonal nonlinear PCA

which captures the nonlinearity characteristic in an 

efficient manner. In addition, the sequential approach

reduces the complexity of nonlinear PCA

development and compact the information to a very

low dimension. The trajectory-boundary limit

crossing point discriminant analysis has been 

proposed to improve the diagnostic performance and

foremost the fault is diagnosed as it is being detected.
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