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Abstract: Iterative learning control (ILC) system is modelled and treated as a 2D system 
in this paper. Based on single-batch and multi-batch cost functions, 2D model predictive 
iterative learning control (2D-MPILC) schemes are developed in the framework of model 
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1. INTRODUCTION  

Iterative learning control (ILC) was originally 
developed for the manipulation of an industrial robot 
to repetitively perform a given task (Arimoto et al.,
1984). Since then, it has been widely studied and 
extended to applications on processes with repetitive 
or cyclic nature (Xu et al., 1998). 
The conventional ILC scheme (Arimoto et al., 1984), 
which uses only the information of previous cycles 
for control input refinement, is only a batch-to-batch 
control that may not be able to guarantee the control 
performance along time index. For this reason, real-
time feedback control is often combined with the 
conventional ILC to ensure the control performance 
not only along the time but also along the cycle. In 
the early works using such a combination (Xu et al.,
1998), however, the separate designs of real-time 
feedback control and cycle-wise ILC were performed; 
this may not be able to guarantee optimal 
performance for both directions. Norm-optimal ILC 
that implicitly combines a state feedback control 
with a feed-forward ILC was proposed by Amann et
al. (1995, 1996) based on the performance index 
defined over one cycle.  Their extended method 
includes prediction over future cycles (Owens et al.,
2000), the resulted feedback control law also in state 
form, however, is non-causal, and the computation 
load may be heavy for long batch duration. Base on a 
quadratic performance defined over one cycle, Lee et 
al. (2000) proposed a model-based ILC scheme.  

An ILC system essentially is a two-dimensional (2D) 
system, where dynamic behaviour along the time is 
determined by the process and the feedback control, 
while ILC introduces dynamics along the cycle. 
Model and design ILC system as a 2D system can 
result in a united design of time-wise feedback 
control and cycle-wise ILC, guaranteeing the control 
performance in 2D sense. The above reviewed 
methods did not treat the optimizations of ILC design 
directly in 2D sense. While the existing 2D based 
methods (Geng et al., 1990; Kurek et al., 1993; Shi et 
al., 2005) consider only the convergence and/or 
robustness of the system, leading to, sometime, a 
conservative control law. 
In this paper, the iterative learning control design is 
treated from the 2D system viewpoint. Single-batch 
and multi-batch objective functions are defined and 
optimized in the framework of model predictive 
control (MPC) for the 2D system, resulting in a 
single-batch and a multi-batch 2D model predictive 
iterative learning control (2D-MPILC) schemes. 
Structure analysis is conducted to give insight of the 
resulted 2D control system. It shows that the resulted 
2D-MPILC schemes consist of two types of controls: 
one is an MPC that uses the real-time input-output 
information to ensure the control performance within 
cycle, and the other is batch-wise ILC that improves 
the control performance from cycle to cycle. The 
united design of these two types of controls ensures 
the optimal control in terms of the defined 2D cost 
functions. The computation of the methods depends 
on the design parameters that can be balanced by the 
practitioner, and the resulted control laws are casual 
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for practical implementation. 2D input change 
penalty terms can also be easily introduced to the 
design to ensure a smooth control. Simulation results 
show that the proposed methods are very effective. 

2. PROBLEM FORMULATIONS 

For simplicity, it is assumed in this paper that the 
underlying process is a SISO system. All the results 
can be extended to MIMO cases. 

2.1 Batch processes and ILC law 

A batch process, repetitively performing a given task 
over finite time duration, called a batch or cycle, is 
described by the following linear model 

1 1:        ( ) ( ) ( ) ( ) ( )BP k k kA q y t B q u t w t           (1) 
                                      0,1,..., ;    1,2,...t T k
where t  is time and k  represents the batch/cycle 
index, ( )ku t , ( )ky t  and ( )kw t  are, respectively, the 
input, output and disturbance of the process at time t
in the k th cycle, 1q  indicates the unit backward-
shift operator, and 1( )A q  and 1( )B q  are both 
operator polynomials 

1 1 2
1 2( ) 1 n

nA q a q a q a q                         (2) 
1 1 2

1 2( ) m
mB q b q b q b q                         (3) 

For the above batch process, introduce an ILC law 
with the form 

1 0( ) ( ) ( ),        ( ) 0,     1,2,...,k k ku t u t r t u t t T          (4) 
where ( )kr t  is referred as the updating law to be 
determined, and 0 ( )u t  is the initial profile of iteration. 

2.2  2D representation and cost functions 

Substituting (4) into (1) leads to the following input-
output model 

1 1 1
2 1: ( ) ( ) ( ) ( ) ( ) ( ) ( )D k k k kA q y t B q r t A q y t w t (5)

where ( )kr t  and ( )ky t  are, respectively, the input and 
output of the model, and 1( ) ( ) ( )k k kw t w t w t  is 
viewed as the disturbance. 
Due to the combination of the batch-wise dynamic 
introduced by ILC law (4), model (5) is a 2D input-
output model describing the dynamics of the ILC 
system. To design updating law ( )kr t , two cost 
functions are introduced, depending on the number 
of cycles involved. 

Single-batch cost function 
1 2( , , , )J t k n n

1 22 2
|

1 1

ˆ( ) ( | ) ( ) ( 1)
n n

k k k
i j

i e t i t j r t j           (6) 

Multi-batch cost function 
3 1 2

1 2 3 1|
1 1

ˆ( , , , , ) ( ) ( ) ( | )
n n

k l k
l i

J t k n n n l i e t i t

                                     
2 2

1
1

( ) ( 1)
n

k l
j

j r t j   (7) 

where | |ˆ ˆ( | ) ( ) ( | )k l k r k l ke t i t y t i y t i t  and 

|ˆ ( | )k l ky t i t  represents the estimated output at time 
( )t i  of the ( )thk l  cycle based on the 
measurements before time t  of thk  cycle, 

( ),  0,1,...,ry t t T  is the desired trajectory to be 
tracked, ( ) 0i , ( ) 0j  and ( ) 0l  are the 
weighting factors indicating the importance of each 
cost term, integers 1 2 1 2, ( 0)n n n n  are, respectively, 
referred as the time-wise prediction horizon and 
control horizon, and 3n  is called the batch-wise 
optimization horizon.
Obviously, the single-batch cost function (6), where 
the prediction tracking errors and the updating 
control effort within specified horizons along one 
cycle are penalized, is a special case of multi-batch 
cost function (7) which takes the predicted control 
performances over several cycles within specified 
horizons into account. The objective of this paper is 
to find, at time t  of the thk  cycle, updating control 
laws in the MPC framework to minimize the cost 
functions (6) and (7). 

3. 2D-MPILC SCHEMES 

3.1 2D prediction model 

In MPC framework, the derivation of control scheme 
requires a prediction model to provide output 
estimation over the future horizon. According to 2D 
model (5), at any time t  the input and output 
information of the process can be divided into known 
and unknown two parts governed by: 

1 1 1

1 1 1
1 1

1 2 1 2 1 21 1
1 1

| | |
      

| | |

t n t m t n
k t k t k t

t t t
k t n k t n k t n

y r y
A A B B A A

y r y

                                                     
1

1|tk t nw           (8) 
where 

1

2 1 1 2| ( )  ( 1)  ( ) ,   { , , }Tt
k t k k kf t f t f tf f y r w     (9) 

1 2 1

11 2

1 2 2 13

1

1 0 0 0
1 0 00

 |   0 00 0

* * 10 0 0 *

n n n

n n

n

a a a a
aa a a
a aa a

a

A A   (10) 

11 2 2

2 11 3

1 2 3 24

2 1

0 0 0
0 00

 |   0 00 0

* *0 0 0 *

m m m

m m

m

bb b b b
b bb b b
b bb b

b b

B B   (11) 

Since 2A  is a nonsingular matrix and 
1

1|tk t nw

depends on the disturbances of the future, generally 
assumed to be Gaussian, the best prediction of the 
outputs over the prediction horizon is therefore 

1 1 1

1 1 1 1 1
| 2 2 1 1 2 1 1ˆ | | | | |t t t t m

k k t n k t n k t n k tty A B r y A B r

                         1 1 1 1
2 1 2 1 1| |t n t n

k t k tA A y A A y   (12) 
Let 

1

1 1
2 2 1,     ( ) | ( )t

k k t n kt tG A B H y F         (13) 
1 1 1 1 1 1

2 1 1 2 1 2 1 1( ) | | |t m t n t n
k k t k t k ttF A B r A A y A A y

(14)
Prediction model (12) can be rewritten as 

1 1

1
| 1ˆ | | | ( )t t

k k t n k t n kt ty Gr H

                
1 1

1
1 1| | ( )t t

k t n k t n k tGr y F         (15) 
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Note that ( )k tH  and ( )k tF  depend on the available 
input and output information of current cycle and last 
cycle. If 

1 1|tk t nr 0 , one has 

1 1 1

1 1 1
| | 1ˆ ˆ( ) | | ,    ( ) | | |t t t

k k k t n k k k t n k t nt t t tH y F y y  (16) 
which show that ( )k tH  is the estimation of the 
system response over the prediction horizon when 
the control input is not updated, while ( )k tF
represents the estimated variation of outputs along 
the cycle direction. 
Prediction model (15) is a 2D model which can be 
directly extended to estimate the outputs in the 
following batches, that is, 

1 1

1
| 1 |

ˆˆ | | | ( )t t
k l k t n k l t n k l kt ty Gr H

                  
1 1

1
1 1| |

ˆˆ| | | ( )t t
k l t n k l k t n k l kt tGr y F  (17) 

where 

1

1
| 1| |

ˆ ˆˆ( ) | | ( )t
k l k k l k t n k l kt t tH y F          (18) 

1 1 1 1
| 2 1 1 2 1 |

ˆ ˆ( ) | | |t m t n
k l k k t k l k tt tF A B r A A y

                                   1 1
2 1 1|ˆ | |t n

k l k t tA A y         (19) 
If it is assumed that the batch-wise steady control 
performance have been achieved before time t  in the 
( )thk l  ( 0l ) cycle, in other word, that 

0
1|k l tr 0 , leading to |

ˆ ( )k l k tF 0 , then, from the 
prediction model (17), the following simplified 
prediction model can be obtained  

1 1 1

1 1
| 1 1|ˆ ˆ| | | | | ,  0t t t

k l k t n k l t n k l k t nt t ly Gr y       (20) 
Models (15) and (20) are suitable for the output 
estimation when the prediction horizon and control 
horizon are equal, otherwise, the following 
modifications should be given to matrix G  to 
accommodate the specified configuration of input 
signal 2

1 1(| )t n
k t nr :

If ( ) 0kr t i  for 2 1,..., 1i n n , then the last 

1 2n n  columns of matrix G  are deleted; 
If 2( ) ( 1)k kr t i r t n  for 2 1,..., 1i n n , then 
the last 1 2n n  columns of matrix G  are added 
to the 1thn  column. 

Now, the 2D prediction models (15) and (20) are 
generalized as follows 

1 2 1

1 1
| 1 1ˆ | | | | ( )t t t

k k t n k t n k t n kt ty Gr y F         (21) 

1 1 1

1 1
| 1 1|ˆ ˆ| | | | | ,  0t t t

k l k t n k l t n k l k t nt t ly Gr y       (22) 
In the next subsection, the 2D-MPILC schemes will 
be derived based on these prediction models. 

3.2 2D-MPILC schemes 

Single-batch 2D-MPILC scheme 
The cost function (6) can be written in a matrix form 

1 2( , , , )J t k n n

1 1 2 2

1 1
| | 1 1ˆ ˆ| | | | | |T t t T t t

k k t n k k t n k t n k t nt te Qe r Rr         (23) 

where 
1 1 1

1 1 1
| |ˆ ˆ| | | | |t t t

k k t n r t n k k t nt te y y , and 

1{ (1), (2),..., ( ) }diag nQ                       (24) 

2{ (1), (2),..., ( )}diag nR                       (25) 
Clearly, 0R , 0Q .

It follows from prediction model (21) and 
optimization algorithm that the cost function (23) is 
minimized by the following optimal control 

2 1

* 1 1
1| ( ) | ( )t T T t

k t n r t n k tr R G QG G Q y H        (26) 

The positivity of matrix R  guarantees the 
nonsingularity of matrix TR G QG . Now, let K  be 
the first row of matrix 1( )T TR G QG G Q , the single-
batch 2D-MPILC scheme is obtained from definition 
(13), that is 

1

1
1:  ( ) ( ) | ( )t

SB MPILC k k r t n ku t u t tK y H

                   
1

1
1 1( ) | ( )t

k k t n ku t tK e F        (27) 

where 
1 1 1

1 1 1
1 1| | |t t t

k t n r t n k t ne y y  is the tracking 
error vector over the prediction horizon. It is noted 
from the first equality that the control signal will not 
be refined if the model-based estimation of the 
system response over the prediction horizon is the 
same as desired trajectory. 

Multi-batch 2D-MPILC scheme 
Rewrite multi-batch cost function (7) in the 
following matrix form 

3

1 1

1 1
1 2 3 1| 1|

1

ˆ ˆ( , , , , ) ( ) | | | |
n

T t t
k l k t n k l k t n

l
J t k n n n l t te Qe                                  

                                
2 21 1 1 1| |T t t

k l t n k l t nr Rr     (28) 

where 
1 1 1

1 1 1
1| 1|ˆ ˆ| | | | |t t t

k l k t n r t n k l k t nt te y y

representing the prediction of the tracking error over 
the prediction horizon, matrices Q  and R  are 
defined by (24) and (25), respectively.  
To derive the multi-batch 2D-MPILC scheme, the 
batch-wise dynamic programming will be conducted. 
Firstly, consider the cost function of the last cycle in 
the batch-wise optimization horizon 

3 1 3 1

1 1
3 1 2 3 1| 1|ˆ ˆ( , 1, , ) ( ) | | | |T t t

k n k t n k n k t nJ t k n n n n t te Qe

                    
3 2 3 23 1 1 1 1( ) | |T t t

k n t n k n t nn r Rr  (29) 
It follows from prediction model (22) that the above 
cost function is minimized by the following optimal 
control 

3 2

*
1 1|tk n t nr

3 1

1 1
3 3 3 2|ˆ( ) ( ) ( ) | |T T t

k n k t nn n n tR G QG G Qe   (30) 
with the minimal cost defined by 

3 1

* 1
3 1 2 3 2|ˆ( , 1, , ) ( ) | |

T
t

k n k t nJ t k n n n n te

3 1

1 1
2|ˆ | |T T t

k n k t n tQ QG R G QG G Q e      (31) 

Let 
3

1

1 3( ) T T
n nP Q QG R G QG G Q , and from 

the principle of optimality, the minimal cost over the 
last two cycles within the batch-wise optimization 
horizon is 

*
3 1 2( , 2, , ,2)J t k n n n

3

1 1
2 13 2 3

1 13 2

1 1
1| 1|

| 1
|

ˆ ˆmin ( ) | | | |
t

k n t n
t

k n t n

n
T t t
k l k t n k l k t n

l n
l t t

r
r

e Qe

                                         
2 21 1 1 1| |T t t

k l t n k l t nr Rr

3 1 3 1
2 13 2

1 1
3 2| 2|

|
ˆ ˆmin ( 1) | | | |

t
k n t n

T t t
k n k t n k n k t nn t t

r
e Qe

3 2 3 2

*
2 1 2 1 3 1 2| | ( , 1, , )T t t

k n t n k n t n J t k n n nr Rr
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3 1 3 3 1
2 13 2

1 1
2| 3 1 2|

|
ˆ ˆmin | | ( 1) | |

t
k n t n

T t t
k n k t n n k n k t nt n t

r
e Q P e                       

                
3 2 3 23 2 1 2 1( 1) | |T t t

k n t n k n t nn r Rr     (32) 

Let 
3 31 3 1( 1)n nQ n Q P . Then the optimal control 

law is given by 

3 2

*
2 1|tk n t nr

3 3 3 1

1 1
3 1 1 3|ˆ( 1) | |T T t

n n k n k t nn tR G Q G G Q e      (33) 
The above procedure can be repeated backward 
along the batch index until the ( 1)k th cycle, 
leading to the optimal control law 

2 1

1* 1
1 1 2 2 |ˆ| (2) | |t T T t

k t n k k t n tr R G Q G G Q e        (34) 
and minimal cost of last 3 1n  cycles in the batch-
wise optimization horizon computed by 

1 1

* 1 1
1 2 3 | 1 |ˆ ˆ( , 1, , , 1) | | | |T t t

k k t n k k t nJ t k n n n t te Pe         (35) 
where matrices 2Q  and 1P  are determined by the 
following backward recursive algorithm

3
,               ( )n l llP 0 Q Q P                       (36) 

1

1 1 1 1( 1) T T
l l l l llP Q Q G R G Q G G Q         (37) 

                                                    3 3, 1,...,1l n n
Now, for the k th cycle, the following optimal 
control law is yielded from prediction model (21) 

2 1

1* 1
1 1 1 1| (1) | ( )t T T t

k t n k t n k tr R G QG G Q e F  (38) 

where 1Q  is also determined by the backward 
recursive algorithm (36)(37). Let K  be the first row 
of matrix 

1

1 1(1) T TR G QG G Q , then the multi-
batch 2D-MPILC scheme is defined 

1

1
1 1: ( ) ( ) | ( )t

MB MPILC k k k t n ku t u t tK e F         (39) 

Remark 3.1. Note from (27) and (39) that both 
single-batch and multi-batch 2D-MPILC laws have 
same formulation, and, at any time t , the updating 
laws depend on the input and output information of 
current cycle before time t , the output information 
of last cycle before time t  and the tracking errors of 
last cycle over the prediction horizon. 
Remark 3.2. Similar to MPC scheme, the 
computational burdens for both single-batch and 
multi-batch 2D-MPILC schemes are dependent on 
the values of 1n , 2n  and 3n , which can be balanced 
by practitioner in terms of computational load and 
control performance. 
Remark 3.3. Single-batch 2D-MPILC scheme which 
takes only the control performance of current cycle 
into account is more suitable for the case when large 
control errors exist in the last cycle, such as the first 
cycle of the batch process. Multi-batch 2D-MPILC 
scheme which takes the control performances of 
several cycles into account can provides faster 
convergence along the batch index. 
Remark 3.4. The proposed design methods can be 
extended to general cases of MIMO time-varying 
linear processes with input time delay. Proper 
selection of time-varying weighting matrices Q  and 
R  can also be used to accommodate time-varying 
dynamic characteristics of the processes. 

4. STRUCTURE ANALYSIS 

In a 2D system view, the resulted closed-loop system 
is composed of a 2D process 2D  and a controller 

SB MPILC  or MB MPILC , as shown in Figure 1(a), 
where the dot-arrow lines indicate the information 
flows of the last cycle from the storages, while the 
solid-arrow lines indicate the real-time information 
flows. Plant 2D  is a 2D system consisting of a batch 
process BP  and an iteration loop, while SB MPILC  or 

MB MPILC  is a 2D model predictive control scheme. 
In an ILC system view, ILC law (27) or (39) can be 
reformulated as 

1( ) ( )k ku t u t

1

1
1

1 1 1 1
2 1 2 1 1

1 1
1 1 1

|

   | |

| |

t
k t n

t n t n
k t k t

t m t m
k t k t

e

K I A A A B y y

u u

(40)

Let 1 1
1 2 3 2 1 2 1K K K K I A A A B , then the 

above ILC law can be decomposed as 
, ,( ) ( ) ( )k ilc k mpc ku t u t u t                                      (41) 

where , ( )ilc ku t  and , ( )mpc ku t  are described by 

1

1
, , 1 1 1:            ( ) ( ) |tILC ilc k ilc k k t nu t u t K e         (42) 

1 1
, 2 3 1:          ( ) | |t n t m

MPC mpc k k t k tu t K y K u        (43) 
It is clear that ILC  is an ILC law for the 
improvement of control performance from batch to 
batch, while MPC  is an MPC law ensuring control 
performance over time of each cycle. The 2D based 
design framework gives a united design of these two 
types of control laws. The equivalent structure of the 
closed-loop system is shown as Figure 1(b), where 
the triangular blocks represent the proportional 
controllers. 

BP
K

I

1
2 1A A

1
2 1A A

1
2 1A B

( )ku t

1 ( )ku t

( )ky t
1

1|tr t ny

1

1
1 |tk t ny

1
1 |t n

k ty

1
1|t m

k tr

1|t n
k ty

2D

/SB MPILC MB MPILC

(a)

BP

2K

3K

1

1|tr t ny
1K

1|t n
k ty

( )ku t

1
1|t m

k tu

,
(

)
m

pc
k

u
t

, ( )ilc ku t ( )ky t

1

1
1 |tk t ny

,
1
(

)
ilc

k
u

t

ILC

MPC

(b)
Fig 1. Equivalent system structures: (a) 2D system 

structure; (b) ILC system. 
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5. 2D-MPILC SCHEMES BASED ON 2D 
CONTROL PENALTY 

In cost functions (6) and (7), the tracking errors and 
the change of control variable along the batch index 
are penalized. Theoretically, for any desired 
trajectory, the optimal control driving the cost 
function (6) and (7) approaching to zero can be 
achieved gradually by refining the control signal 
iteratively. An ILC strategy, in essence, searches for 
process input by inversing the process dynamic to 
generate the desired trajectory. For a non-minimum 
phase system, however, the inversion of the process 
is unstable; this can result in that the optimal control 
may not be physically realizable. One way to solve 
this problem is to place hard restrictions on the 
control variable, leading to a quadratic programming 
problem for the controller design (Lee et al., 2000). 
Another method is to introduce a penalty to the 
change of the control variable along the time axis 
into the cost functions as well, resulting in the 
following cost functions with 2D control penalty,  

Single-batch cost function 
1 22 2

1 2 |
1 1

ˆ( , , , ) ( ) ( | ) ( ) ( 1)
n n

k k k
i j

J t k n n i e t i t j r t j

                     
2 2

1
( ) ( 1)

n

k
j

j u t j                     (44) 

Multi-batch cost function 
1 2 3( , , , , )J t k n n n

3 1 22 2
1| 1

1 1 1

ˆ( ) ( ) ( | ) ( ) ( 1)
n n n

k l k k l
l i j

l i e t i t j r t j

                                  2 2
1

1
( ) ( 1)

n

k l
j

j u t j         (45) 

where ( ) ( ) ( 1)k k ku t u t u t , indicating the change 
of the control variable along the time index, ( ) 0j
is the weighting factor. 
In this section, single-batch 2D-MPILC scheme will 
be developed based on the cost function (44). By 
using dynamic programming, the multi-batch case 
can be developed in a similar way. 
Clearly, cost function (44) can be written in matrix 
form as 

1 1 2 2

1 1
1 2 | | 1 1ˆ ˆ( , , , ) | | | | | |T t t T t t

k k t n k k t n k t n k t nJ t k n n t te Qe r Rr

                                              
2 21 1| |T t t

k t n k t nu S u

1 1

2 2

2 2

1 1
| |

1 1

1 1

ˆ ˆ| | | |
| |

| |

Tt t
k k t n k k t n T t t

k t n k t nt t
k t n k t n

t te eQ 0
r Rr

0 Su u

where 2{ (1), (2),..., ( ),}diag nS . From relation 

1( ) ( ) ( 1) ( )k k k ku t r t r t u t                       (46) 
we have 

2 2 21 1 1 1| | |t t t
k t n k t n k t nu Hr u         (47) 

where 

2 2

1 0 0
1 1 0

0 1 1

n n

H                                     (48) 

Together with 2D prediction model (21), the 
following augmented 2D prediction model is 
obtained 

1 1

2

2 2

1 1
| 1

1

1 1 1

ˆ | | | ( )
|

| |

t t
k k t n k t n kt

k t nt t
k t n k t n

t te eG F
r

H 0u u

Based on optimization algorithm, the optimal control 
law is obtained as 

2

1

*
1|

T T
t

k t n

G Q 0 G G Q 0
r R

H 0 S H H 0 S

                                      1

2

1
1

1 1

| ( )

|

t
k t n k

t
k t n

te F
0u

1

1 1
1 | ( )T T T t

k t n k tR G QG H SH G Q e F

                                              
21 1|T t

k t nH S u   (49) 

Let 1K  and 2K  indicate respectively the first row of 

matrices 
1T T TR G QG H SH G Q  and 

1T T TR G QG H SH H S , then the single-batch 
2D-MPILC law can be formulated as 

1 2

1
1 1 1 2 1 1( ) ( ) | ( ) |t t

k k k t n k k t nu t u t tK e F K u  (50) 

Different from 2D-MPILC law (27), the above 
control law has an additional term depending on the 
changes of control signal in last cycle over the 
prediction horizon. As the change of the control 
variable along both time and cycle directions are 
penalized, weighting factors ( )  and ( )  should be 
designed properly to ensure the feasible and 
necessary variation of control signal along both time 
and cycle indices. 

6. EXAMPLES 

Injection molding process is a typical repetitive 
process (Gao et al., 2001; Shi et al., 2005), where 
many process variables need to be controlled to 
follow certain profiles repetitively to ensure the 
product quality. To illustrate the effectiveness of the 
proposed schemes, a simulation is performed on the 
following the injection velocity control process 

1 2 3
1

1 2 3

2.651 5.298 0.5805: ( )
1 1.454 0.5285 0.04736BP k

q q qP q
q q q

 (51) 

The designs of control schemes are based on the 
following simplified model 

1
1 1

1

13.81:        ( )
1 0.9524MBP k

qM q q
q

         (52) 

For cost functions (6) and (7) with parameters 
1 2 310,  10,  3,  =1, =100, =1n n n         (53) 

single-batch and multi-batch 2D-MPILC laws are 
designed, and their set-point tracking results are 
shown in Figure 2 and Figure 3, respectively. In both 
cases, MPC control law guarantees a good tracking 
performance even in the first cycle and the control 
performance improves by the ILC from cycle to 
cycle. As process (51) has an unstable zero, 
significant oscillations of control input signal are 
required for the perfect tracking, as seen in the 
control signals of the 30th cycle shown in Figure 2 
and Figure 3. This may be not practical. To solve this 
problem, single-batch 2D-MPILC law (50) is 
designed based on the cost function (44) with 
weighting factor 10 . The simulation results are 
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shown in Figure 4. It is clearly seen that the 
oscillation of control signal are reduced with the 
satisfactory control performance maintained. The 
sum of tacking errors over each cycle for different 
control schemes are shown in Figure 5, indicating 
that multi-batch 2D-MPILC scheme has the best 
convergence along the cycle index. 
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Fig 2. Output responses and control signal of single-

batch 2D-MPILC scheme. 
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Fig 3. Output responses and control signal of multi-
batch 2D-MPILC scheme. 
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Fig 4. Output responses and control signal of single-
batch 2D-MPILC scheme based on 2D control 
penalty.  
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Fig 5. Tracking errors of different control schemes. 

7. CONCLUSIONS 

In this paper, iterative learning control design 
problem has been modelled and solved from the 2D 
system viewpoint. Single-batch and multi-batch 2D-
MPILC schemes have been developed in the 
framework of MPC of a 2D system problem. The 
resulted 2D-MPILC laws implicitly combine an MPC 
along time with an ILC along cycle to ensure the 
optimal control in 2D sense. The computational load 
and performance of the proposed design methods can 
be balanced by proper selection of design parameters 
in the defined cost functions. 2D control penalty can 
be further introduced to the 2D-MPILC design to 
ensure non-oscillatory operation. 
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