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Abstract: Batch process monitoring to detect the existence and magnitude of
changes that cause a deviation from the normal operation has gained considerable
attention in the last decade. There are some batch processes that occur as a
single step, whereas many others include multiple phases due to operational or
phenomenological regimes or multiple stages where different processing units are
employed. Having a single model for all different phases/stages with different
covariance structures may not give a sufficient explanation of the system behavior
and fault detection and diagnosis can be more challenging with increasing model
size. Multiblock methods have been recently proposed to improve the capabilities
of the existing statistical monitoring models. In this study, a multiblock algorithm
based on concensus principal component analysis is applied to the benchmark fed-
batch penicillin fermentation simulator data. The results of a static multiblock
model and a sliding window multiblock model are compared. The need for data
synchronization, and the effect of block size are discussed. Multiblock multiway
principal component analysis methods are found to be effective in fault detection
and localization.
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1. INTRODUCTION

As the importance of batch processes in chemical
and biotech process industries has increased in
recent years, different modeling, monitoring, diag-
nosis and control techniques have been proposed
by researchers. Since batch data has an addi-
tional dimension of batch number, the existing
statistical control models, namely principal com-
ponent analysis (PCA) and partial least squares
(PLS) have been improved to account for the
additional batch dimension. Nomikos and Mac-
Gregor (1994) and Kourti et al. (1995) presented
process analysis, monitoring and diagnosis proce-
dures based on multiway PCA and multiway PLS
methods (Nomikos and MacGregor, 1995b), which

are widely adopted by the chemical industry. To
account for the multistage/ multiphase batch pro-
cesses multiblock methods based on PCA and PLS
have been developed. Valuable information about
the multiblock methods is available in the litera-
ture. A good summary and comparison of the pop-
ular multiblock methods is provided (Smilde et
al., 2003). In addition, these algorithms have been
applied to monitoring, fault detection and diag-
nosis of continuous processes and new definitions
for control limits for multiblock algorithms have
been developed (Qin et al., 2001). MacGregor et
al. (1994) applied multiblock PLS methods on a
multisection tubular reactor for the production of
low density polyethylene and Kourti et al. (1995)
divided the process variables into multiple blocks
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and simultaneously related to the quality vari-
ables. A batch monitoring algorithm based on hi-
erarchical PCA was proposed and evaluated on an
industrial batch polymerization process (Rännar
et al., 1998). In their work, variables from each
time slot are blocked in the corresponding time
block, resulting in as many blocks as the batch
time points. Another application of multiblock
PCA algorithm is presented, where, an adaptive
multiblock PCA for the monitoring of a sequenc-
ing batch reactor was proposed (Lee and Van-
rolleghem, 2003). In this work, multiblock PCA
based on consensus PCA is applied to a multi-
phase penicillin fermentation process. Monitoring,
fault detection and diagnosis using a multiblock
algorithm is studied.

2. MULTIWAY MONITORING

2.1 Principal Component Analysis (PCA) and
Concensus PCA

PCA is a multivariable statistical technique that
can extract the essential information from a data
set reported as a single block of data such as
process measurements. PCA decomposes the data
matrix into a score matrix times a loading matrix
plus a residual matrix. This decomposition is use-
ful to explain the information contained in the
data using fewer dimensions. In the PCA compu-
tations, mostly the SVD algorithms for simultane-
ous or the NIPALS algorithm for sequential com-
putation of the dominant principal components is
used (Wold et al., 1987).

The consensus PCA algorithm for multiple blocks,
based on a series of NIPALS steps is given in
(Westerhuis et al., 1998). The method was intro-
duced to compare several blocks of variables mea-
sured on the same objects. The data are divided
into B blocks. A column of one of the block is
selected as a starting super score and this vector
is regressed on all block data to find the block
loadings, from which the block scores for all blocks
are calculated. All block scores are augmented in
a super block. The super score is then regressed
on the super block to give the super weight. The
super weight is normalized and used to calculate
a new super score vector. If this new super scores
converges to a predefined criteria, the iteration
stops. Then, each block is deflated using the super
scores and the procedure repeats for the next
principal component dimension. Otherwise, the
iteration continues until the super score vector
converges. For monitoring purposes, the statistics
can be calculated for both the super level and for
lower block level.
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Fig. 1. Batch data representation and unfolding
process.

2.2 Multiway Principal Component Analysis

Batch processes usually generate three-way data
X (I × J × K), where I is the number of batches,
J is the number of variables and K is the number
of sampling times in a batch. MPCA is equivalent
to performing ordinary PCA on an unfolded and
properly scaled two-way array. Unfolding of the
batch data can be done in six possible ways.
For instance, each of its vertical slices (I × J)
is put side by side to the right starting with
the slice corresponding to the first time interval
forming an (I × JK) dimensional matrix (Figure
1). This particular unfolding enables the analy-
sis of variability amongst batches (Nomikos and
MacGregor, 1994). Mean centering of the unfolded
matrix, in other words subtraction of the mean
trajectories from each variable, removes most of
the nonlinearity contained in the data. And after
proper scaling, PCA is applied. The ith elements
of the score vectors correspond to the ith batch
with respect to the other batches in the database
over the entire history of the batch. The loadings
matrices summarize the time variation of the mea-
sured variables about their average trajectories.

The statistics used for monitoring multivariate
batch processes are the statistical distance T 2,
also known as the D-statistic in literature when
it is based on batch process data scores, and
the squared prediction error, SPE (Nomikos and
MacGregor, 1995a). If a new batch is good and
consistent with the normal batches, its scores
should fall within the normal range and the SPE
of Q-statistic should be small.

2.3 Multiblock Consensus PCA

In the multiblock MPCA the data matrix is di-
vided into blocks in the time dimension according
to the start and end times of the different phases.
In other words, each block data is I × J × Kb, b =
1, ..., B (B : total number of blocks) (Figure
2). These three-way block data are unfolded and
scaled for consensus PCA calculation.
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Fig. 2. Multiphase batch data unfolding.

3. PENICILLIN FERMENTATION
SIMULATOR: PENSIM

The penicillin fermentation simulator was devel-
oped by Birol et al. (2002) and has been used as a
testbed for process monitoring. More information
is given in Çınar et al. (2002). The nonlinear
dynamics and multiphase characteristics of the
process also make it a good candidate for multi-
block model applications.

The effects of environmental variables such as
pH and temperature, and input variables such as
aeration rate, agitation power, feed flow rate of
substrate on biomass formation have been con-
sidered for completeness. Biomass growth, CO2,
penicillin production, substrate consumption and
heat generation are included in the model equa-
tions.

In a typical penicillin fermentation process the
formation of the target product, the antibiotic, is
usually not associated with cell growth. It is com-
mon practice to grow the cells in a batch culture
followed by a fed-batch operation with continuous
glucose addition to promote the synthesis of the
antibiotic.

The data from the simulator have three phases.
The first phase is the batch culture. Simulator can
switch to the fed-batch mode either manually at
a preset time or after a threshold value for the
glucose is reached. The fed-batch mode consists
of two phases the exponential growth phase and
the stationary phase where the penicillin concen-
tration reaches and stays at the maximum value.
These three phases are shown in Figure 3.

4. MULTIBLOCK PROCESS MONITORING
AND DATA ANALYSIS

Two different approaches based on multiblock
consensus PCA algorithm are applied to the mon-
itoring of the fermentation simulation data. The
multiblock consensus PCA, as described above,
is called the static model. Here, the reference
batches from normal operation are used in the
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Fig. 3. Different phases of penicillin production.

model building and a new batch is projected on
to this model. It is called static model because
only one multiblock model is formed and used
in fault detection and diagnosis. In the sliding
window model, a window of batches is slid on the
reference data. A model is formed using only the
batches in the window. The new batch is projected
onto this model and if the system does not give
an out-of-control signal, the new batch is included
in the model and the first batch in the window is
excluded from the model. In the following cases,
both methods are employed. Each model is built
using the first four dominant principal compo-
nents and each block is given equal weight in the
calculations.

4.1 Case 1: Multiblock monitoring with equal
batch lengths

Fifty normal operating batches with small random
variations are generated. The phase change times
are the same for all batches. Total batch duration
is 400hr and sampling time is 0.5hr, making 801
samples, including the initial conditions. The data
are broken into three phases based on the preset
time points and the blocks are formed. A − 2%
step change in aeration rate (variable 1) is intro-
duced at 70hr and the disturbance stays in the
system until the 90th hour. Since the batch/fed-
batch switch takes place at 44hr, this change
should affect mostly the second block, and thus
second block model should signal. For the static
model, all of the normal operation batches are
employed in the model development. In the sliding
window model, a window size of forty batches is
slid through the data.

In order to detect the occurrence of a fault in a
process, super model control charts are the first
ones to look at. If an alarm is given at the super
level, block diagnostics are the second informa-
tion source to check and find out where the fault
is originating from. Block contributions to the
statistics is also used to detect the blocks that
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Fig. 4. Case 1:Statistics for the equal length batch super model (a) D-Statistic (b) Q-Statistic.
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Fig. 5. Case 1:Static block models for equal length batch data (a)D-Statistics for Block 1,(b) Q-Statistics
for Block 1, (c)D-Statistics for Block 2,(d) Q-Statistics for Block 2, (e)D-Statistics for Block 3,(f)
Q-Statistics for Block 3.

are mainly contributing to the fault. The variable
that is responsible for the fault and the variables
that are affected most are found from the vari-
able contribution charts. Super model diagnostics
are given in Figure 4, the corresponding block
diagnostics are shown in Figure 5, the time of
occurrence of the fault for the faulty batch is given
in Figure 6 and the contribution plots are provided
in Figure 7. From these graphics, it is easy to
conclude that the fault is in the second phase and
variable 1 is the main cause of the fault.

Sliding window model generally gives better re-
sults than a static model in the sense of false
alarms. On the other hand, a poor choice of win-
dow length can result in an insensitive model,

since a slow drift of batches from normal oper-
ation can be missed in a small window. In this
study, sliding window model also detects the fault
and correctly identifies the main contributors to
the fault. Because of space concerns the sliding
window model results are not shown.

In these calculations, the blocks were given equal
weight. If the block containing the fault is given
a smaller weight compared to the other blocks,
it leads to missed alarms. Looking at the super
level diagnostics one can think the system is in-
control, however, in the lower level one of the
blocks may be experiencing a disturbance that
need to be corrected as soon as possible. Block
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Fig. 6. Case 1: SPE for the faulty batch during
the evolution of the batch.
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Fig. 7. Contribution plots for equal length batch
data: (a)Block contributions to Q-Statistic
and (b)Variable contributions to Q-Statistic.

weighting should be given extra attention to build
a reliable model.

4.2 Case 2: Multiblock monitoring with different
batch lengths

Forty normal operating batches with different
batch/fed-batch switch times and different du-
rations are simulated with small random varia-
tions. The system automatically switches to the
fed-batch mode after the glucose concentration
drops to a threshold value, 0.3g/l. Because of the
random variations introduced, each batch has a
different batch/fed-batch switch time. Also, the
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Fig. 8. Case 2:Statistics for the static block models
for unaligned batch data (a)Super model Q-
Statistics, (b) Block 2 Q-Statistic.

time required to reach the maximum penicillin
concentration varies from batch to batch. For the
penicillin fermentation it is easy to detect the
phase-change points in time, since they corre-
spond to the changes in measured variables of the
system. The second phase starts with substrate
addition and the third phase starts when penicillin
concentration reaches its maximum value.

MPCA model development requires batches hav-
ing the same length. However, in most processes,
variations in process operation yield batch data
of unequal length. In order to form the three-
way array and apply batch monitoring tools,
batch lengths should be equalized. Batch length
equalization methods should also account for the
alignment of process landmarks. Dynamic time
warping (DTW) locally translates, compresses
and expands the patterns so that similar features
are aligned (Kassidas et al., 1998; Ündey and
Çınar, 2002).

In our case study, the start and end times for each
phase during each batch are recorded at the end
of a simulation. Then, each batch is divided into
three different phases. Each batch in each phase
is synchronized using DTW and equalized batches
are put in their respective blocks.

A faulty batch is generated and projected on
the models, and statistical control charts are em-
ployed to see if the fault is detected. A − 2% step
change is introduced to the aeration rate (variable
1) between samples 140 and 180 (correspond to
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samples 50 and 90 in the second block) and a
window length of thirty batches is used in the
sliding window model. The fault is detected and
correctly diagnosed by both methods.

Super model Q-Statistics detects the fault and
block statistics in Figure 8 show that the fault
is again originated from the second phase and
variable 1 is diagnosed as the main cause of the
fault (not shown).

5. CONCLUSION

The multiblock PCA algorithm based on consen-
sus PCA is used on a multiphase batch/fed-batch
penicillin fermentation simulator data for moni-
toring, fault detection and diagnosis purposes. A
static model and a constantly updating sliding
window model are built on two different batch
data. Both methods were effective in detecting
and localizing the fault in the system, However,
none of them proved to be superior to the other.

Original MPCA is applied to both data sets con-
sidering the whole batch as a single block data,
and the results proved that MPCA is an effective
tool for multiphase/ multistage data as well. The
benefit of multiblock algorithms in localizing and
isolating the fault can be better experienced in
very large processes involving many processing
units with many process variables. With multi-
block methods, the overall process and also each
different unit or subsections of a unit can be mon-
itored. This enables the isolation of the processing
unit in which the deviation occurred and detection
of the major contributors to the event.
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