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Abstract: In this paper we consider an unstable biological process used for
wastewater treatment. This anaerobic digestion ecosystem can have 2 locally
stable steady states and one unstable steady state. We first study the model
and characterise the attraction basin associated to the normal operating mode.
In a second step we estimate the size of this attraction basin by using a simplified
criterion that turns out to be a good approximation. Finally we apply the approach
on a real anaerobic digestion plant, and we show that the proposed criterion allows
to rapidly detect the conditions of a destabilisation.
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1. INTRODUCTION AND MOTIVATION

Control of biological systems is a very delicate
problem since one has to deal with highly nonlin-
ear systems described by poor quality models. In
some cases this control issue can be really crucial
when the system is unstable. This is especially the
case for the anaerobic digestion process: a biolog-
ical system in a bioreactor used to treat wastew-
ater. This complex ecosystem involves more than
140 bacterial species (Delbès et al., 2001). It pro-
gressively degrades the organic matter into CO2

and methane CH4. However this process is known
to be very delicate to manage since it is unstable
(Fripiat et al., 1984): an accumulation of inter-
mediate compounds can lead to the crash of the
digester.
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To solve this problem, many authors have pro-
posed controllers (Perrier and Dochain, 1993;
Steyer et al., 1999; Mailleret et al., 2004) that
were able to warranty the local or even the global
stability of the system using the dilution rate
of the bioreactor as input. For various reasons
(necessity of a storage tank, lack of online sensors,
lack of robustness,...) these control laws are very
seldom applied in practice. As a consequence, the
controllers are often disconnected at the industrial
scale and the plant manager manually operates
the process trying both to avoid process destabil-
isation and wastewater storage.

The approach that we propose has the objective
to provide the operator with a risk index asso-
ciated to his management strategy. The idea is
therefore to determine from the global analysis of
the nonlinear system whether the process has been
triggered to a dangerous working mode. This risk
index can also be used in parallel controller.
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The paper is composed as follows:in the second
section a dynamical model of an anaerobic diges-
tion process is recalled. The third part puts the
emphasis on the analysis of the model dynamics.
A simple criterion to assess the stability of the
process is set in the fourth section, and finally
this criterion is applied to a real experiment to
determine its destabilisation risk.

2. MODEL PRESENTATION

We consider a simplified macroscopic model of
the anaerobic process based on 2 main reactions
(Bernard et al., 2001), where the organic substrate
(S1) is degraded into volatile fatty acids (VFA
denoted S2) by acidogenic bacteria (X1), and then
the VFA are degraded into methane CH4 and CO2

by methanogenic bacteria (X2):

• Acidogenesis:

k1S1
µ1(S1)X1−→ X1 + k2S2

• Methanogesis:

k3S2
µ2(S2)X2−→ X2 + k4CH4

Where µ1(S1) and µ2(S2) represent the bacterial
growth rates associated to these 2 bioreactions.

The mass balance model in the CSTR (Contin-
uous Stirred Tank Reactor) can then straightfor-
wardly be derived:

Ẋ1 = µ1(S1)X1 − αDX1 (1)

Ṡ1 = −k1µ1(S1)X1 + D(S1in − S1) (2)

Ẋ2 = µ2(S2)X2 − αDX2 (3)

Ṡ2 = −k3µ2(S2)X2 + k2µ1(S1)X1 + D(S2in − S2) (4)

D is the dilution rate, S1in and S2in are respec-
tively the concentrations of influent organic sub-
strate and of influent VFA. The ’kis’ are pseudo-
stoichiometric coefficients associated to the biore-
actions. Parameter α ∈ (0 1] represents the frac-
tion of the biomass which is not attached in the
digester. We denote by ξ = (X1, S1, X2, S2)

T

the state vector.

In the sequel, we will consider the rather generic
mappings µ1 and µ2, satisfying the following prop-
erties:

Assumption 1. µ1 is an increasing function of
S1, with µ1(0) = 0.

Assumption 2. µ2 is a function of S2 which
increases until a concentration SM

2 and then
decreases, with µ2(S

M
2 ) = µM and µ2(0) = 0.

In the mathematical analysis of this system, as-
sumption is made that the environment of the

bacteria remains constant and we will thus assume
that D, S1in and S2in are positive constants. In
the same way all the initial conditions are assumed
to be positive.

3. MODEL ANALYSIS

3.1 Analysis of the acidogenic dynamics

The subsystem (1,2) is close to a classical Monod
model but slightly modified by the term α. This
makes the study of this system less straightfor-
ward than for Monod model (with α = 1) (Smith
and Waltman, 1995). However its behaviour is
simple as stated in the following Property:

Property 1. System (1,2) with initial conditions

in R2
+ admits a single globally stable equilibrium.

If αD < µ1 (S1in) this equilibrium is in the

interior domain.

Proof: For sake of space limitation only the
sketch of the proof is presented here.

The positivity of this system is trivial. To demon-
strate the boundedness in a compact set of R2

+we
consider the quantity Z = S1 +k1X1, and use the
positivity of the variables.

The considered system (1,2) has 2 steady states:

the trivial washout steady state X
†

1 = 0, S
†

1 =
S1in which exists for any D, and another steady
state in the positive domain if and only if αD <
µ1 (S1in) (ensuring S�

1 < S1in and thus X�
1 > 0)

given by:

{
S�

1 = µ−1
1 (αD)

X�
1 = 1

k1α

(
S1in − S�

1

) (5)

The study of the trace and of the determinant
the Jacobian matrix of (1,2) at the two equilibria
informs us that only the useful working point
(X�

1 , S�
1) is an attractor, the washout steady state

being a saddle point.

To conclude the proof and determine the global
behaviour of (1,2) we change variables (X1, S1)
to (X1, Z). With this reformulation the system
becomes :

{
Ẋ1 = µ1(Z − k1X1)X1 − αDX1

Ż = D (Sin − Z) + (1 − α) k1X1

It follows directly that this system is coopera-
tive. Furthermore the system is asymptotically
bounded in a compact closure of R

2
+. Hence from

Theorem 2.2 in (Smith, 1995) for two-dimensional
systems, the limit can only be a stable equilibrium
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point. Since the washout equilibrium is unstable
the system cannot converge towards it.

The useful working point of system (1,2) being
globally asymptotically stable we have the follow-
ing property:

Property 2. After a transient time T, system

(1,2) satisfies the inequality k1 µ1(S1)X1 ≤ DS1in.

Remark: in practice this condition is often met at
initial time or the transient time T is small.

3.2 Analysis of the methanogenic dynamics

Now we will consider the second system after a
period greater than T (cf. Property 2). The total
concentration of VFA available for the second step
of the process is

S2in +
k2

D
µ1 (S1)X1 ≤ S2in +

k2

k1
S1in = S̃2in.

In order to study the methanogenesis as a stand-
alone process we consider S̃2in as a pessimistic
upper bound of the total concentration of VFA in
the reactor.

Thus the methanogenic system is reduced to a
one-stage process independent of the acidogenic
phase:

{
Ẋ2 = µ2(S2)X2 − αDX2

Ṡ2 = D(S̃2in − S2) − k3µ2(S2)X2
(6)

This system is close to a generic Haldane model
but, as for the acidogenic subsystem, it is modified
by the term α.

Property 3. System (6) with initial conditions in

Ω = R∗

+ ×R+ admits a globally exponentially sta-

ble equilibrium in the interior domain for αD <

µ2

(
S̃2in

)
. If µ2

(
S̃2in

)
< αD < µM it becomes

locally exponentially stable and the washout equi-

librium is also l.e.s. For αD > µM the washout

equilibrium becomes g.e.s. (see Tab. 1 for more

details)

Proof: For sake of brevity only the main steps are
presented here.

We study the boundedness of the variables X2

and S2 in the same way as for the acidogenic
phase, considering the quantity Z2 = S2 + k3X2.
The trivial steady state corresponding to the
bioreactor washout is given by X

†

2 = 0, S
†

2 = S̃2in

Now we are going to explore the other steady
states. They are solutions of the following system:

{
µ2(S�

2 ) = αD

X�
2 = 1

αk3
(S̃2in − S�

2 )
(7)

Note that they must verify S�
2 ≤ S̃2in to have

0 ≤ X�
2 .

First remark that, if S̃2in ≤ SM
2 then µ2 is

an increasing function on the admissible domain[
0, S̃2in

]
. As a consequence the study of system

(6) is identical to the study of equations (1,2).
We will then focus now on the other case where
S̃2in > SM

2 .

As illustrated on Fig. 1, five cases are possible,
depending on parameters values.

Substrate S2

G
ro

w
th

ra
te

S̃2in

case 1.

case 2.

case 3.

case 4.

case 5.

µM

SM

2

Fig. 1. Possible solutions for µ2(S) = αD

cases 1. and 2. αD ∈
(
0, µ2(S̃2in)

]
: then the

equation µ2(S2) = αD has a single solution for

S2 ∈
[
0, S̃2in

)
:

(X�
2 , S�

2 ) =

(
S̃2in − µ−1

2 (αD)

αk3
, µ−1

2 (αD)

)
(unique)

case 3. αD ∈
(
µ2(S̃2in), µM

)
: here the equation

µ2(S2) = αD has two solutions for S2 ∈
[
0, S̃2in

)
.

Let us denote S1�
2 and S2�

2 such that µ2(S
1�
2 ) =

µ2(S
2�
2 ) = αD:

0 < S1�
2 < SM

2 < S2�
2 < S̃2in

with i = 1 for the useful working point
(
X1�

2 , S1�
2

)
and i = 2 for the unstable equilibrium

(
X2�

2 , S2�
2

)
.

then the two possible equilibria are:

{
S1�

2 < SM
2

X1�
2 = 1

αk3
(S̃2in − S1�

2 )
and

{
S2�

2 > SM
2

X2�
2 = 1

αk3
(S̃2in − S2�

2 )

case 4. αD = µM : there is a unique solution to
equation µ2(S2) = αD:

(X�
2 , S�

2 ) =

(
S̃2in − SM

2

αk3
, SM

2

)

case 5. αD > µM : here there is no solution to
the equation µ2(S2) = αD. In this case there is
no other equilibrium than the washout point.
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3.3 Study of equilibria stability

The stability of system (6) is easy to assess by
computing the trace and the determinant of the
Jacobian matrix for all the considered cases:

• For the interior steady states X�
2 > 0:

trace(J ) = −D − k3X�
2

∂µ2

∂S2
(S�

2 )

det(J ) = k3αDX�
2

∂µ2

∂S2
(S�

2 )

• For the washout steady states X�
2 = 0:

trace(J ) = µ2(S̃2in) − (1 + α)D

det(J ) = −D(µ2(S̃2in) − αD)

It straightforwardly leads to the classification pro-
posed in Table 1 2 .

Table 1. Possible equilibria together
with parameter values

Case # Conditions int. wash.

1) αD < µ2(S̃2in) g.e.s. un.

2) αD = µ2(S̃2in) l.e.s. un†.

3) αD ∈]µ2(S̃2in), µM [
S1�

2 l.e.s.
S2�

2 un.
l.e.s.

4) αD = µM un†. l.e.s.

5) αD > µM / g.e.s.

Remark: the 2 cases denoted by ’un†.’ correspond-
ing to non hyperbolic equilibria are:

• Case 2:
(
0, S̃2in

)
for αD = µ2(S̃2in). Let us

remark that the region {S2 ≤ S̃2in, X2 ≥ 0}
is positively invariant. Moreover X2 is in-
creasing in the sub-domain {X2 > 0, S1�

2 ≤
S2 ≤ S̃2in}. The only way to reach the
washout X�

2 = 0 from the region {S2 ≤ S̃2in}
is thus to start with a zero initial condition.
This proves that

(
0, S̃2in

)
is unstable.

• Case 4: (X�
2 , S�

2 ) for αD = µM . It is clear
that in this case Ṡ2 ≤ 0, and therefore
the point is unstable (there is however a
region above X2 = X�

2 converging toward
this steady-state).

3.4 Concluding remarks on stability

This study highlighted a special case of interest,

for S̃2in > SM
2 and αD ∈

(
µ2(S̃2in), µM

)
. Here

there are 2 steady states in the interior domain,
one of which together with the washout are stable.
In this case, illustrated on Fig. 2a), the asymptotic
state of the system is a priori not predictable,
and depends on the initial state. The set of initial

2 (ss: steady state, l.e.s.: locally exp. stable, g.e.s.: globally

exp. stable, un.: unstable, int.: interior, wash: washout).

conditions leading to the interior steady state
ξ1�
2 = (X1�

2 , S1�
2 ) corresponds to the basin of

attraction.

a)

Separatrix

Stable working point

Unstable point

Stable
washout
point

ξ1�

2

ξ2�

2

ξ†

S2

X
2

b)

Separatrix

Washout point

Non hyper-
bolic unsta-
ble steady
state

S2

X
2

Fig. 2. Possible orbits in the phase plan: a) case
3, b) case 4

The next section will consist in characterising the
size of the attraction basin in this specific case.

4. ATTRACTION BASIN OF THE NORMAL
OPERATING MODE AND STABILITY

CRITERIA

We still focus on the methanogenic step to estab-
lish a stability criterion associated to a process
control action. In this part we assume the follow-
ing specific forms for µ1(S1) and µ2(S2) satisfying
Assumptions 1 and 2:

µ1(S1) = µ̄1
S1

S1 + KS1
(Monod)

µ2(S2) = µ̄2
S2

S2 + KS2 + S2
2

KI2

(Haldane) (8)

In the sequel ξ denotes the state vector of the
methanogenic phase (X2, S2).

4.1 Definition of the Attraction Basin and of the

stability criterion

We have shown in the previous section that ξ
remains bounded. We thus consider the acceptable
domain as follows:

K =

(
0,

S̃2in

αk3

]
×

[
0, S̃2in

]
(9)

For ξ1� =
(
X1�

2 , S1�
2

)
, the interior critical point

of system (6), we define its basin of attraction Λ
as the set of initial conditions in K converging
asymptotically towards it.

Λ (D, ξin) =

{
ξ0 ∈ K | lim

t→+∞
ξ(ξ0, t) = ξ1�

}
,

The main idea of this paper is to characterise
the stability of the system by the area of the
attraction basin Λ. The process stability can then
be assessed by the relative surface of Λ in K (10).

However, from the previous study (see Tab. 1) it
is worth noting that there still exists a non empty
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attraction basin Λ� = Λ
(

µM

α , ξin

)
associated to

case 4 (αD = µM ) where the interior equilibrium
is unstable (see Fig. 2b). This case should corre-
spond to a zero stability index. For this reason we
define the following criterion, which is simply the
relative area of the attraction basin on the domain
K \ Λ�:

IS
(
D, S̃in

)
=

S (Λ (D, ξin) \ Λ�)

S (K \ Λ�)
(10)

Where application S is the area of the considered
domain.

4.2 Numerical computation of the stability index

The separatrix can be computed numerically by
integrating System (6) in inverse time along the
stable direction of the saddle point

(
X2�

2 , S2�
2

)
starting very close to it. The computation of the
attraction basin area follows straightforwardly.

However the numerical computation of IS does
not provide any analytical expression of the stabil-
ity index that would base a management strategy.
In the following section we seek a simpler criterion
related to IS .

4.3 Overloading tolerance of the process: a simple

criterion

If the dilution rate is increased from zero, the
interior equilibrium will remain g.e.s. until D =
µ2(S̃2in)

α . Then the second (unstable) steady state
appears in the interior domain together with
a separatrix associated to the attraction basin
Λ (D, ξin) that does no longer occupy all the do-
main. The size of Λ (D, ξin) will then decrease and
finally vanish for D ≥ µM

α . It is worth noting
that the distance between the 2 interior steady
states follows a rather comparable scheme: it will
decrease from a maximum distance when D =
µ2(S̃2in)

α to zero for D ≥ µM

α .

a)

Separatrix

Overloading Tolerance: M

Stable working point

Saddle point

Washout point

ξ1�

2

ξ2�

2

S2

X
2

b)

Critical Overloading
 Tolerance: M

c

Stable working point

Saddle point
Washout point

S2

X
2

Fig. 3. Definition of a) the Overloading and b) the
Critical Overloading Tolerance in the phase
plan

From this consideration we define, for αD ∈[
µ2(S̃2in), µM

]
, the notion of Overloading Tol-

erance (OT), M which is simply the distance
between the 2 interior steady states (see Fig 3a):

M (D) = ‖ξ2�
2 − ξ1�

2 ‖ (11)

We also define the Critical Overloading Tol-
erance (COT) Mc, which is the maximum value
of the overloading tolerance obtained for D =
µ2(S̃2in)

α .

The approximate stability criterion that we will
consider (named Relative Overloading Toler-
ance, ROT) is then defined as follows:

m(D, ξin) =

⎧⎨
⎩

0 for αD > µM
M(D)

Mc(ξin)
for αD ∈ [µ2(S̃2in), µM ]

1 for αD < µ2(S̃2in)

.

The distance M between the 2 interior steady
states can be computed straightforwardly from
equations (7) and (8):

M(D) = 2

√
1 +

1

α2k3
2

√(
KI2

2

(
µ̄2

α D
− 1

))2

− KI2KS2

From this relation, we can see that the OT
is a strictly decreasing function of the dilution
rate and that it is independent from conditions
(S1in, S2in). The COT is then:

Mc (ξin) =

√
1 +

1

α2k3
2

(
S̃2in − KI2 KS2

S̃2in

)

4.4 Comparison between stability index and relative

tolerance

Using model parameters presented in (Bernard et

al., 2001), we have computed the stability index
IS and the ROT associated with many working
conditions (D, S1in and S2in).

As it can be seen on Fig. 4 the ROT represents
a good approximation of the stability index IS
based on the real computation of the attraction
basin size.
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Fig. 4. Relation between SBA� and the ROT m

for various couples (S1in, S̃2in): (3,30), (0,25),
(15,20), (30,30)

The relative tolerance appears then as a simple
but relevant criterion to assess the stability of an
anaerobic digester.
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From this criterion we define now the ”risk in-
dex” which is simply r = 1 − m, and which will
on-line indicate to the operator the destabilisation
risk he is taking.

In the next section we use this operational crite-
rion to assess the management strategy of a real
anaerobic digester.

5. APPLICATION TO THE ON-LINE
DETERMINATION OF THE
DESTABILISATION RISK

In this section we apply the proposed index to
a real experiment performed at the LBE-INRA
in Narbonne, France. The process is an up-flow
anaerobic fixed bed reactor with a useful volume
of 0.948 m3. The reactor is highly instrumented
and many variables were measured during the
experiments (Bernard et al., 2001). The exper-
iments were performed with raw industrial wine
distillery vinasses.

The risk index has been computed with parame-
ters of (Bernard et al., 2001). Nevertheless, in or-
der to favour a prudent strategy, and in the frame-
work of a “worst case analysis” the parameter KI2

defining the inhibition level has been multiplied by
a security constant δ (we have chosen δ = 0.7).

The risk estimation is presented on Fig. 5 for an
experiment conducted on the pilot scale fixed bed
reactor at the LBE.

It is worth noting that the regimes associated with
acid accumulation are all characterised by a very
high risk. More surprising, some a priori less dan-
gerous working mode are indeed also associated
to a non zero risk. A very important point is that
the risk index increases immediately while it takes
time for the VFA to accumulate and even more
time for the pH to decrease (not shown here).
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Fig. 5. Measured VFA and computed risk for an
experiment performed at INRA LBE.

6. CONCLUSION

From the analysis of the nonlinear system de-
scribing the anaerobic process we have proposed
a criterion that assesses the risk associated to an
operating strategy. This index is highly correlated
to the relative size of the normal working mode
attraction basin.

The criterion turns out to be relevant to diagnose
an operation strategy since it can predict very
early a future accumulation of acids. It can thus be
run as an indicator that helps an operator, or even
diagnoses the strategy of an automatic controller
which would not ensure global stability.

Next step would consist in estimating on-line
the parameters in order to take into account the
biological evolution of the system in the risk index
computation.
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