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Abstract: This paper discusses the designs of Generalized Predictive Control
(GPC) scheme. GPC is designed in two cases; the first is a multirate system,
where the sampling interval of a plant output is an integer multiple of the holding
interval of a control input, and the second is a fast-rate single-rate system, where
both the holding and sampling intervals are equivalent to the holding interval
of the multirate system. Furthermore, the relation between them is investigated.
This study gives the conditions that the fast-rate single-rate and the multirate
GPC become equivalent. Copyright c©2006 IFAC
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1. INTRODUCTION

In digital control a system is called a single-
rate system, where the holding interval of a con-
trol input is equal to the sampling interval of a
plant output. On the other hand, a system is
called a multirate system, where these intervals
are not equal. The multirate system is also called
as a dual-rate system. This paper discusses a
single-input single-output multirate linear time-
invariant system, where the sampling interval of a
plant output is an integer multiple of the holding
interval of a control input. In this case, a control
input is updated at a fast-rate, but a plant output
is sampled at a slow-rate.

Generally, a fast-rate single-rate system, where
input and output intervals are equivalent and are

sampled or updated at a fast-rate, is superior to
a slow-rate single-rate system, where input and
output intervals are equivalent and are sampled or
updated at a slow-rate. However, these intervals
cannot be always set arbitrarily due to constraints
or specifications of actuators or sensors. Then, a
fast-rate single-rate system cannot be obtained,
but only a slow-rate single-rate or a dual-rate
system can be realized. In that case it is expected
that a multirate system is better than the slow-
rate single-rate system. The design of the dual-
rate system is obtained by a similar way to the
design of the slow-rate single-rate system, that is,
first, the dual-rate system can be transformed into
a multi-input single-output slow-rate single-rate
system using the lifting (Chen and Francis, 1995),
then the dual-rate system is designed the same as
the slow-rate single-rate system.
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However, in the dual-rate system, since ripples
may emerge between sampled outputs (Tangirala
et al., 1999), and the ripples should be suppressed.
Generalized Predictive Control (GPC) (Clarke et

al., 1987a; Clarke et al., 1987b) in a multirate
system was proposed (Scattolini, 1992), and the
ripples can be suppressed by using this multirate
GPC because an integrator is included in the
process of the design. Sheng et al. extended the
design method of GPC considering intersample
performance (Masuda et al., 1997) into a multi-
rate system (Sheng et al., 2001a). Because this
design method takes care of intersample output,
the ripples are suppressed. In this paper, to sup-
press the ripples, GPC is designed considering
the variation in control input between sampled
instants. This paper also discusses the relation
between the fast-rate single-rate and the dual-rate
GPC and shows the conditions that the fast-rate
single-rate and the dual-rate GPC are equivalent.
This study results in an unified design method of
the fast-rate single-rate and the dual-rate GPC.

This paper is organized as follows. In section 2, a
plant model is given. A fast-rate single-rate and a
dual-rate GPC law are derived in section 3 and 4,
respectively. By comparing the GPC laws in the
fast-rate single-rate and the dual-rate system, the
relation between them is shown in section 5.

2. PLANT MODEL

Consider a plant with the following discrete-time
model

x̄[k + 1] = Āx̄[k] + b̄u[k] (1)

y[k] = c̄T x̄[k] (2)

where, u[k] and y[k] the control input and the
plant output, and n-th order vector x̄[k] is the
state variable. Ā, b̄ and c̄T are an n × n matrix
and n-th vectors, respectively.

The extended model with an integrator is given
as (Scattolini, 1992)

x[k + 1] = Ax[k] + b∆u[k] (3)

y[k] = cT x[k] (4)

where,

A =

[
Ā b̄

01,n 1

]
(5)

b =

[
b̄

1

]
(6)

cT =
[
c̄T 0

]
(7)

x[k] =

[
x̄[k]
u[k − 1]

]
(8)

∆ = 1 − z−1. (9)

z−1 is the one-step backward shift operator.

When the plant output is sampled every step
and the control input is updated every step, the
control system is called a fast-rate single-rate
system, and when both of the intervals are l steps,
the system is called a slow-rate single-rate system.
On the other hand, the system is called a dual-rate
system when the control input is updated every
step, but the plant output is sampled at interval
of l steps.

The following are assumed in this paper.

[A.1] The model of a plant is known.
[A.2] A reference input is given as a step type.
[A.3] The control input is updated every step.
[A.4] In the fast-rate single-rate system, the

plant output is sampled every step.
[A.5] In the dual-rate system, the plant output

is sampled every l steps.

The fast-rate single-rate system is simply de-
scribed as the single-rate system hereafter.

3. SINGLE-RATE GPC

In this section a GPC law is derived in the single-
rate system.

3.1 Performance function

The performance function of the single-rate GPC
is given by the following

Js = E

⎡
⎣ Ns,2∑

j=Ns,1

µs,j{y[k + j] − w[k + j]}2

+

Ns,u∑
j=1

λs,j∆u[k + j − 1]2

⎤
⎦ (10)

where, Ns,1, Ns,2 and Ns,u are minimum predic-
tion horizon, maximum prediction horizon and
control horizon, respectively. µs,j is a weighting
factor of the error between the reference input
w[k + j] and the plant output, and λs,j is a
weighting factor of the variation in the control
input, respectively. A GPC law minimizing Js is
derived in the single-rate system.

3.2 Reference Input

The reference input in the single-rate GPC is
given as follows (Clarke et al., 1987a).

w[k] = y[k] (11)

w[k + j] = (1 − αs)r + αsw[k + j − 1] (12)

(0 ≤ αs < 1)

where, r is the set-point, and αs is a design
parameter. The future reference input is rewritten
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by (13) when the set-point is given as step type
(Sato and Inoue, 2006).

w[k + j] = αj
sy[k] + (1 − αj

s)r (13)

3.3 Predictive Output

One step and two steps forward predictive output
are given as

y[k + 1] = cT Ax[k] + cT b∆u[k] (14)

y[k + 2] = cT A2x[k] + cT Ab∆u[k]

+ cT b∆u[k + 1]. (15)

Repeating these calculations, j steps forward pre-
dictive output is calculated by

y[k + j] = cT Ajx[k]

+ cT

j−1∑
i=0

Aib∆u[k + j − 1 − i]. (16)

3.4 Derivation of Control Law

The future control input series minimizing (10) is
given as follows.

∆us[k] = (GT
s MsGs + Λs)

−1

× GT
s Ms(ws[k] − Hsx[k]) (17)

where,

∆us[k] =

⎡
⎢⎢⎢⎣

∆u[k]
∆u[k + 1]
...
∆u[k + Ns,u − 1]

⎤
⎥⎥⎥⎦ (18)

ws[k] =

⎡
⎢⎢⎢⎣

w[k + Ns,1]
w[k + Ns,1 + 1]
...
w[k + Ns,2]

⎤
⎥⎥⎥⎦ (19)

Hs =

⎡
⎢⎢⎢⎣

cT ANs,1

cT ANs,1+1

...
cT ANs,2

⎤
⎥⎥⎥⎦ (20)

Λs = diag{λs,1, λs,2, · · · , λs,Ns,u
} (21)

Ms = diag{µs,Ns,1, µs,Ns,1+1, · · · , µs,Ns,2}
(22)

(i, j) element of Gs ={
cT ANs,1+i−1−jb (Ns,1 + i − 1 − j ≥ 0)
0 (Ns,1 + i − 1 − j < 0)

.

(23)

The standard single-rate GPC utilizes only the
first element of the obtained control inputs ∆us[k]
because of the use of Receding Horizon.

On the other hand, in order to show the rela-
tion with the dual-rate GPC derived in the next
section, the first l elements (∆u[k]) of ∆us[k]

are utilized in this paper; therefore the following
control law is obtained.

∆u[k] =
[
Il 0l,(Ns,u−l)

]
(GT

s MsGs + Λs)
−1

× GT
s Ms(ws[k] − Hsx[k]) (24)

where,

∆u[k] =

⎡
⎢⎢⎢⎣

∆u[k]
∆u[k + 1]
...
∆u[k + l − 1]

⎤
⎥⎥⎥⎦ . (25)

4. DUAL-RATE GPC

In the dual-rate system, the plant output is sam-
pled every l steps due to the assumption. Hence,
the dual-rate system is transformed into the slow-
rate single-rate system by using the lifting (Chen
and Francis, 1995), and a GPC law is derived as
l-inputs single-output single-rate system.

4.1 Lifted System

Using the lifting (Chen and Francis, 1995), single-
input single-output fast-rate single-rate system
(3) and (4) is transformed into the following l-
inputs single-output slow-rate single-rate system.

x[k + l] = Alx[k] + Bl∆u[k] (26)

y[k] = cT x[k] (27)

where,

Al = Al (28)

Bl =
[
Al−1b Al−2b · · · Ab b

]
. (29)

The dual-rate GPC is designed using this lifted
single-rate system.

4.2 Performance function

The dual-rate GPC derives future control input
series minimizing the following performance func-
tion.

Jm = E

⎡
⎣ Nm,2∑

j=Nm,1

µm,j{y[k + jl] − w[k + jl]}2

+

Nm,u∑
j=1

||∆u[k + (j − 1)l]||2Λ̄m,j

⎤
⎦ (30)

Λ̄m,j = diag{λm,(j−1)l+1, λm,(j−1)l+2, · · · , λm,jl}
(31)

where, Nm,1, Nm,2 and Nm,u are minimum pre-
diction horizon, maximum prediction horizon and
control horizon of the dual-rate GPC, respectively.
µm,j and λm,j are weighting factors of the error
and the variation in the control input, respec-
tively.
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4.3 Reference Input

In designing the dual-rate GPC, a reference input
is given by the following.

w[k] = y[k] (32)

w[k + jl] = (1 − αm)r + αmw[k + (j − 1)l] (33)

(0 ≤ αm < 1)

The reference input in the dual-rate system is
rewritten by (34) (Sato and Inoue, 2005).

w[k + jl] = αj
my[k] + (1 − αj

m)r (34)

4.4 Predictive Output

In the dual-rate system, the plant output is sam-
pled at interval of l steps, and l steps and 2l steps
forward predictive output are given as

y[k + l] = cT Alx[k] + cT Bl∆u[k] (35)

y[k + 2l] = cT A2
l x[k] + cT AlBl∆u[k]

+ cT Bl∆u[k + l]. (36)

Repeating these calculations, jl steps forward
predictive output of the lifted system is calculated
by

y[k + jl] = cT A
j
l x[k]

+ cT

j−1∑
i=0

Ai
lBl∆u[k + (j − 1 − i)l].

(37)

4.5 Derivation of Control Law

With the predictive output (37), the future con-
trol input series minimizing the performance func-
tion is obtained by the followings (Sheng et al.,
2001b).

∆um[k] = (GT
mMmGm + Λm)−1

× GT
mMm(wm[k] − Hmx[k]) (38)

where,

∆um[k] =

⎡
⎢⎢⎢⎣

∆u[k]
∆u[k + l]
...
∆u[k + (Nm,u − 1)l]

⎤
⎥⎥⎥⎦ (39)

wm[k] =

⎡
⎢⎢⎢⎣

w[k + Nm,1l]
w[k + (Nm,1 + 1)l]
...
w[k + Nm,2l]

⎤
⎥⎥⎥⎦ (40)

Hm =

⎡
⎢⎢⎢⎢⎣

cT A
Nm,1

l

cT A
Nm,1+1
l

...

cT A
Nm,2

l

⎤
⎥⎥⎥⎥⎦ (41)

Λm = block diag{Λ̄m,1, Λ̄m,2, · · · , Λ̄s,Nm,u
}
(42)

Mm = diag{µm,Nm,1, µm,Nm,1+1,

· · · , µm,Nm,2} (43)

(i, j) block of block matrix Gm ={
cT A

Nm,1−1+i−j
l Bl (Nm,1 + i − 1 − j ≥ 0)

01,l (Nm,1 + i − 1 − j < 0)
.

(44)

Because the lifted single-rate system is l-inputs
system, the first l elements of ∆um[k], that is
∆u[k], are utilized. Thus, multiplying both sides
of (38) by [Il 0l,(Nm,u−1)] from the left, the next
dual-rate GPC law is obtained.

∆u[k] =
[
Il 0l,(Nm,u−1)

]
(GT

mMmGm + Λm)−1

× GT
mMm(wm[k] − Hmx[k]) (45)

5. CONDITIONS

In this section, we give the conditions that the
performance functions in the single-rate and the
dual-rate system become equivalent.

With (16), jl steps forward of the prediction
output in the single-rate system is rewritten as

y[k + jl] = cT Ajlx[k]

+ cT

jl−1∑
i=0

Aib∆u[k + jl − 1 − i]. (46)

Further the second term in the right hand of (46)
is rewritten as

cT

jl−1∑
i=0

Aib∆u[k + jl − 1 − i]

= cT

j−1∑
i=0

(i+1)l−1∑
h=il

Ahb∆u[k + jl − 1 − h]

= cT

j−1∑
i=0

Ai
lBl∆u[k + (j − 1 − i)l]. (47)

Hence, it follows from (46) and (47) that jl steps
forward predictive outputs of the fast-rate single-
rate and the dual-rate GPC are equivalent.

It follows from (13) and (34) that the weighting
factor of the reference input is determined by

αl
s = αm. (48)

Then, the reference input in the single-rate and
the dual-rate system are equivalent.

In the dual-rate system, because the plant output
is sampled at interval of l steps, the weighting
factor µs,j of the single-rate GPC is designed as
(49) so as to evaluate the control error between the
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reference input and the future predictive output
at the same step as the dual-rate system.

µs,j =

{
µm,j/l (rem(j, l) = 0)
0 (others)

(49)

where j is divisible by l with remainder rem(j, l).

The following conditions of prediction and control
horizon are required so that the performance
functions of the dual-rate and the single-rate GPC
become equivalent.

Ns,1 = lNm,1 (50)

Ns,2 = lNm,2 (51)

Ns,u = lNm,u (52)

(53) gives the condition that the weighting factor
of the control input in the single-rate and the dual-
rate system are equivalent.

λs,j = λm,j (j = 1, · · · , Ns,u) (53)

where Ns,u is designed so that (52) is satisfied.

If the design parameters of GPC satisfy the condi-
tions (48) ∼ (53), the single-rate and the dual-rate
GPC law become equivalent. As mentioned above,
the dual-rate GPC law can be taken as the fast-
rate single-rate GPC law satisfying the conditions.
Further, l control inputs of the dual-rate GPC
designed as the slow-rate single-rate system using
the lifting can be equivalent to the first l elements
of the future control input series of the fast-rate
single-rate GPC.

6. NUMERICAL EXAMPLE

Consider a plant described by the following linear
time-invariant continuous-time model.

ẋ(t) =

[−0.14 −0.0040
1.00 0

]
x(t) +

[
1
0

]
u(t) (54)

y(t) =
[
0 0.0040

]
x(t) (55)

We will show the responses with the single-rate
and the dual-rate GPC. The simulation length is
50[s], and the set-point r is 1. The control input is
updated at interval of 1[s], but the plant output is
sampled at interval of 2[s]. The dual-rate GPC is
designed first, and then the single-rate GPC whish
is equivalent to the dual-rate GPC is designed.

The design parameters are set as: Nm,1 = 1,
Nm,2 = 5, Nm,u = 2, αm = 0.752, λm,j =
0.005 (j = 1, · · · , Nm,u), µm,j = 1 (j =
Nm,1, · · · , Nm,2). With these parameters the dual-
rate GPC law is given by the following.

∆u[k] =

[
0.71 1.6 1.9 1.6 0.98

−0.20 0.20 0.64 1.1 1.5

]

×

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0.56y[k] + 0.44r

0.32y[k] + 0.68r

0.18y[k] + 0.82r

0.10y[k] + 0.90r

0.056y[k] + 0.94r

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

0.0070 0.0040 0.0073
0.012 0.0039 0.027
0.016 0.0038 0.055
0.019 0.0036 0.089
0.020 0.0035 0.13

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ x[k]) (56)

Next, the single-rate GPC law is designed using
(48) ∼ (53). The design parameters of the single-
rate GPC is set as: Ns,1 = 2, Ns,2 = 10, Ns,u = 4,
αs = 0.75, λs,j = 0.005 (j = 1, · · · , Ns,u),

µs,j =

{
1 (rem(j, 2) = 0)
0 (others)

(57)

(j = Ns,1, · · · , Ns,2). Then, the dual-rate GPC
law is given by the following.

∆u[k] =

[
0.71 0 1.63 0 1.9 0 1.6 0 0.98

−0.20 0 0.20 0 0.64 0 1.1 0 1.5

]

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.56y[k] + 0.44r

0
0.32y[k] + 0.68r

0
0.18y[k] + 0.82r

0
0.10y[k] + 0.90r

0
0.056y[k] + 0.94r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0070 0.0040 0.0073
0 0 0
0.012 0.0039 0.027
0 0 0
0.016 0.0038 0.055
0 0 0
0.019 0.0036 0.089
0 0 0
0.020 0.0035 0.13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x[k]) (58)

Using the derived control laws the plant is con-
trolled. Output and input results are illustrated
in Fig. 1 and Fig. 2, respectively. The sam-
pled outputs in the single-rate and the dual-rate
system are plotted by dot and circle in Fig. 1,
respectively. Because the dual-rate and the single-
rate GPC law calculate the same control inputs
shown in Fig. 2, the sampled outputs at interval
of 2[s] are the same. It follows from the simulation
results that the single-rate GPC law is designed
equivalent to the dual-rate GPC law using (48) ∼
(53).
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Fig. 1. Output results with the single-rate and the
dual-rate GPC
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Fig. 2. Input results with the single-rate and the
dual-rate GPC

7. CONCLUSION

We designed GPC in both a fast-rate single-rate
and a dual-rate system and discussed the relation
between them, and the conditions for identifying
the fast-rate single-rate GPC as the dual-rate
GPC were shown. It follows from our research
result that the fast-rate single-rate GPC can be
equivalent to the dual-rate GPC by selecting the
design parameters. Consequently, the dual-rate
GPC can be designed by the same way as the
standard single-rate system. Further, the relation
between the fast-rate single-rate and the dual-rate
GPC is made clear. Finally, in order to illustrate
the effectiveness of the proposed method, the
numerical examples have been shown.
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