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Abstract: This paper proposes a robust model predictive control for systems with stable

and integrating poles. The approach combines the methods developed in Odloak (2004) 

and Carrapiço and Odloak (2005) to obtain a robust controller for integrating systems

when multi-plant uncertainty is considered. The key idea in this development is to

separate the control problem in two sub-problems, each of which takes into account the

required robust constraints. Nominal stability is achieved by using an infinite output 

horizon, and the whole method is based on a state space model formulation that leads to 

an offset free MPC. The simulation examples illustrate the performance and robustness of 

the proposed approach and demonstrate that it can be implemented in real applications.
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1. INTRODUCTION 

Robust stability is still one of the main weaknesses 

of the available MPC technology (Qin and Badgwell,

2003). However, this subject has been extensively

treated in the control literature (Kothare et al., 1996, 

Mayne et al., 2000; Morari and Lee, 1999, Ralhan

and Badgwell, 2000, Lee and Yu, 1997). A robust

controller is meant to guarantee closed loop stability 

for different process operating conditions. It is well

known that numerous chemical processes are

nonlinear but they can be approximated by a set of 

linear models, where each linear model represents 

the process locally, around a specific operating

condition. If the controller is based on a single linear

model, it is desirable to assure that this controller

will remain stable for the whole family of models

that represent the process. 

The standard form to get stability in MPC is the

strategy known as infinite horizon. However, this

formulation requires additional features in order to

achieve offset free tracking. Rodrigues and Odloak

(2003) present an incremental state-space model

formulation that produces offset free MPC. This

formulation adds integrating modes to the system,

that must be zeroed at the end of the control horizon

in order to keep the infinite cost bounded. If, in

addition, the system to be controlled has already

integrating modes, a set of constraints must be added 

to the original problem to compensate both, the

original and new unstable modes. As a result, the

optimization problem may become infeasible, and 

the convergence of the cost to zero may be

deteriorated.

In this paper, we first present the general model

formulation for systems with stable and integrating

modes. Then, a single infinite horizon MPC problem

is presented as a tutorial to introduce a two-step

formulation, which should result more reliable to

prevent infeasibilities. This two-step formulation is 

extended to deal with a multi-model representation of

the real plant and the convergence of the method is

analyzed. Finally, we provide some simulation

results and the conclusions.

2. INFINITE HORIZON MPC FOR 

INTEGRATING SYSTEMS 

2.1 Model Formulation

We assume at first a MIMO system with nu inputs

and ny outputs. For each pair (yi, uj), there is a

transfer function model
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where . When the poles of the system

are non-repeated, the k

,na nb

t

,

i

th coefficient of the step 

response can be calculated as follows:

0
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na
d k i

i j i j i j l l i j

l

S k d d r d k  (2) 

where rl, l=1, 2, …, na are the non-integrating poles

of the system, t is the sampling time and the

coefficients  are obtained by partial

expansion of G

0

, , ,, ,d

i j i j l i jd d d

i,j. A state-space model that produces 

an offset free MPC can be expressed in the following 

form:

1x k Ax k B u k (3)

y k Cx k   (4) 
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In this model formulation, xs corresponds to the

integrating states introduced by the incremental form

of the inputs, xd corresponds to the stable states and 

xi corresponds to the original integrating states of the

system.

2.2 Infinite Prediction Horizon

The cost function of the infinite horizon MPC can be

written as follows

1,

1

1

0

T

k k

j

m
T

j

V u e k j Qe k j

u k j R u k j

(5)

where is positive definite and

is positive semi-definite,  is 

the error of the predicted output at sampling time k+j

including the effect of future control actions, y

ny nyQ nu nuR
rj ye k j y k

r is the

desired output reference and m is the control horizon

(as usual in MPC, beyond the control horizon, the

input moves are assumed equal to zero). As was 

described by Carrapiço and Odloak (2005), the cost

function (5) would become unbounded since the

model formulation described earlier contains

integrating modes. To avoid this difficulty, it is

necessary to include the following constraints into

the optimization problem

0
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Now, substituting eqs. (6) and (7) into eq. (5) and

rearranging the infinite term, the IHMPC can be

formulated as follows 

Problem P1 

1,

1
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k k
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 (8) 

subject to:

(6), (7), and 

, 0, 1, ,u k j U j m 1 (9)

max max

min max

0

1
j

i

u u k j u

U u k j
u u k u k i u

where Q  is obtained from the solution of the well

known Lyapunov equation
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T T TQ F QF F Q F , (10)

and  are: the maximum input

increment, and the minimum and maximum input

values respectively. 

max min max, ,u u u

2.3 Preventing Infeasibilities

As long as Problem P1 remains feasible, the

convergence of the closed loop system can be 

guaranteed. However, depending on the size of the

disturbance or the set point change, a conflict

between constraints (6), (7) and (9) may arise. This is 

so because in practice the control horizon may be

short to reduce the computer effort, and the 

maximum control move may be small to produce a 

smooth operation of the system. Carrapiço and 

Odloak (2005) presented two methods to extend the

feasibility range of the infinite horizon controller for

integrating systems with incremental state space 

model. One of these strategies, that includes slack 

variables to relax the constraints (6), (7) and (9) in 

Problem P1, is based on an optimization technique

developed by Lee and Xiao (2000). The latter

propose a two-step approach to solve the problem of

including the steady state economic optimization in

the conventional MPC of stable and integrating

systems represented by step response models.

Following this idea, the extended controller is 

obtained as the solution of the two following

problems:

Problem P2a 

,

2 , 2 , ,
,
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i

a kk

Ti i T
a k k k a k a k

u

V S u R u

0

T

subject to

( ) ,au k j U j

1 ,( ) 0i i i

k m a kx k D u   (11) 

where

, ( ) ( 1)
T

T
a k a au u k u k m , R  and 

S2 are positive definite matrices, and  is a

vector of slack variables for the integrating states that

provides extra degrees of freedom.

i ny

k

Let the optimal solution to Problem P2a be

designated * *
,,i

k a ku  and consider the resultant

input increment
1

* *

0

( 1) ( 1) (
m

a

j

u k m u k u k j) . (12) 

This optimal input increment is passed to a second

problem, which is solved within the same time step:

Problem P2b 

,
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where , ( ) ( 1)
T

T T
b k b bu u k u k m , S1

is a positive definite matrix and s ny

k  is a new

vector of slack variables. 

The control law obtained through the sequential

solution of problems P2a and P2b above leads to the

convergence of the system output to the reference

value.

3. PLANT UNCERTAINTY DESCRIPTION 

In order to characterize the model uncertainty, we 

assume that matrices D0, Dd and F of the model

represented in (3) are not exactly known but they lie

within a set . This set is composed by a finite

number of integrating models with the same

dimensions, that is,

1 L , (14)

where ,A B designate each individual plant of 

the set, and matrices A and B depend on matrices D0,
Dd and F. Note that matrix Di is assumed to be

known, which may be acceptable in many practical 

applications.

In addition, let us assume that the true plant T  lies 

within the set , and there exist a most likely plant

(also laying in ), which is named nominal plant

( N ).

4. COST CONTRACTING MPC FOR 

INTEGRATING SYSTEMS

Badgwell (1997) developed a robust linear quadratic

regulator for the multi-plant uncertainty described in

(14). Combining Problems P2a and P2b with

Badgwell’s results, an extended cost contracting

robust MPC for integrating systems can be obtained

as the solution of the following sequence of

optimization problems:

Problem P3ar 

,

3 , ,
,

2 ,

min ,
i

a k k N

i

a k a k k N
u

Ti i T

k N k N a k a k
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(15)
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1 , 0,i i i
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T

T T
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Now, the optimal input increment is passed to the

second problem through the constraint
1 1

0 0

m m

b a

j j

u k j u k j .
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Problem P3br 

,
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where stands for the optimal solution

obtained in Problem P3ar, 

au k i

, 2 0
T

T

b k b bu u k u k m ,

and s

k  are such that: 

0

2 , 0,s s i

k m m N b ke k D D u

L

      (23) 

Remarks

* Note that in Problem P3ar, since we assume that all 

models have the same matrix Di, only the nominal

one is considered.

* Equations (20), (22) and (23) represent L
constraints each (as many as models are considered),

that has to be satisfied by the same , and byku

1

s s

k k . Despite both,  and ku s

k  are 

optimization variables, only  is actually

independent of the model since a given input

sequence generates one output steady state offset per

model.

ku

* sx k  and ix k  are measured states and then 

correspond to the actual plant T .

* Variable  is the optimal control sequence

obtained at time step k-1 and translated to time k.

,b ku

4.1 Convergence of the method

The following theorem shows that the control

algorithm produced by the solution of Problem P3r

provides convergence of the true system output to the

reference value. 

Theorem 1: Consider an integrating system whose 

true model is unknown but lies within the set .

Assume that in the control objective V3b,k, the weight

S1 is large enough to prevent offset in the system

output.

Assume also that Problem P3r is feasible at time

steps k, k+1, k+2, … and the system outputs are not

saturated. Then, the control law obtained as the

solution of Problem P3r drives the true system to the

reference value. 

Proof

First stage 

Let the optimal solution to Problem P3ar be

, , i

a k ku 1; and let the optimal solution to Problem

P3br, be , , ,s

b k ku

( 1)bu u k

. Note that for every 

optimal input sequence, there is one slack variable

per model. The first control move  is injected 

into the true process and the time is moved to k+1.

Because of equation (21), it can be shown that

*( )bu k

(u k* * 1) 0
T

T T
b m, 1a k

and *
1

i
k

i
k  is a feasible solution to Problem P3ar.

Now, considering that R

*
,a kV

 is negligible in comparison

to S2, the corresponding value of the objective

function of Problem P3ar at time k+1 is still V .

Consequently, the optimal solution of Problem P3ar 

will be V . Since we have selected 

*
3 ,a k

*
1 33 ,a k

2SR , the objective function of Problem P3ar will

converge to zero, which corresponds to .0i

k

Second stage

Now, for a large k, 0i

k T ; that is2:

1 , 0i i

m a kx k D u .                      (24) 

Take again the solution , , ,s

b k ku . For 

the true model the corresponding cost is:

3 , ,

1

1

1

0

, ,s

b k b k k T T

T
s s

k T k T

j

m
T Ts s

b b k T k T

j

V u

e k j Q e k j

u k j R u k j S

Assume that we inject the first control action
*

bu k into the true plant and move time to k+1. At 

this time, the objective for , 1 1, ,s

b k k T Tu , is: 

3 , 1 , 1 1

* * *

3 , ,

* * *

, ,

, , 1

1 ,

s

b k b k k T T

T
s s

b k b k k T T k T

Ts

k T b b

V u

V u e k

Q e k u k R u k

1 There is only one slack i

k for all the models because Di

is known. 
2 Note that who decides the value of the slack i

k T

(which is zero in this case) is the complete increment
1

0

m

aj
u k j , and not the individual increments 

au k j .
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where

, 1 1 1
T

T T

b k b bu u k u k m 0

and 1

s

k T  is such that

0

1 21i s i

k T m T m b ke k D D u , 1 0.

Note that, since the state at time k+1 corresponds to

the true plant, and ; then0i

k 1

s s

k T k T .

Since no new input increments are added in , 1b ku ,

the predicted output (in the absence of integrating

modes) will be the same as in the case of using

, for the true models.,b ku

Now assume that the optimal solution to problem

P3br is found at time k+1. We know that the plant

lies in the family , so the robustness constraint

(22) must be satisfied for the true plant at time k+1.

That is: 

* *

3 , 1 , 1 1

3 , 1 , 1 1

, ,

, ,

s

b k b k k T T

s

b k b k k T T

V u

V u

      (26)

Combining (25) with (26) we obtain:

* * * *

3 , 1 , 1 1 3 , ,

* *

* *

, , , ,

1 1

s s

b k b k k T T b k b k k T T

T
s s

k T k T

T

b b

V u V u

e k Q e k

u k R u k

This shows that the sequence of optimal cost is non-

increasing. Finally, since we assume that S1 is large

enough to prevent output offset, the error converges 

to zero for the true plant.

5. SIMULATION RESULTS 

The system adopted to test the robust controller is

based on the ethylene oxide reactor system presented 

by Rodrigues and Odloak (2003). This is a typical

example of the chemical process industry that

exhibits stable and integrating poles. The following

transfer matrix represents the system

0.19 1.7

19.5 1
( )

0.763 0.235

31.8 1

s s
G s

s s

,

and the translation into the model formulation

presented in section 2, can be seen in Carrapiço and 

Odloak (2005). 

We focus on a case in which both, the stable gains 

and the time constants are uncertain parameters. The 

true plant has a larger gain and a smaller time

constant than the nominal model used in the

controller, which is a quite critical situation. The set

 contains the five models indicated in Table 1. 

The differences between the nominal model and the 

true plant were selected so that the nominal

controller becomes unstable.

Table 1: Parameters of the Models used in the Test.

Mo 1 Mo 2 Mo 3 Mo 4 Nom True

d
0

12 -4.68 -4.68 -0.17 -0.17 -1.7 -4.68

d
0

21 -2.10 -0.08 -2.10 -0.08 -0.76 -2.10

r12 .8787 .9738 .9262 .9738 .9500 .8787

r21 .8963 .9448 .9932 .9932 .9690 .8963

Figures I, II and III show the simulation responses 

when a set point change of 2 and 3 units is made on

output 1 and 2 respectively. In Figure I, it can be 

seen that the input constraint , umaxu min and umax

become active during the transient states. This shows 

the capability of the controller to handle input

constraints, together with the additional robust

requirements. Another property to remark is the

flexibility of the controller to tolerate a short control

horizon. This is a critical parameter to reduce the

computational cost.

Figures IV and V, show the responses for the same

system when the robust constraints are not added to

the MPC formulation (nominal controller). In this

case the manipulated variables saturates giving

oscillatory system behaviour. The tuning parameters

of the robust controller are shown in Table 2. 
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Figure I. Input responses of the robust controller.

0 20 40 60 80 100 120 140 160 180 200

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

time (sec)

O
u
tp

u
ts

y2

y1

Figure II. Output responses of the robust controller.
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Figure III. Secondary cost of the robust controller.
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Figure IV. Input responses of the nominal controller,

maintaining the same tuning parameters.
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Figure V. Output responses of the nominal controller,

maintaining the same tuning parameters.

Table 2: Controller parameters.

T m maxu maxu minu

1 3 0.5 0.75 -0.75

Q R R S1 S2

0.1 0.1 0.1 2.5 1000

6. CONCLUSION 

In this paper we have presented a method to extend a 

particular robust MPC controller to the case of 

systems containing stable and integrated modes.

Robust stability is achieved by assembling cost 

contracting constraints with the constraints necessary

to compensate the unstable modes of the system. On 

the other hand, the control formulation allows dealing

with problems that cannot be reduced to the regulator

problem due to unknown disturbances or model non-

linearities, and can be directly implemented in real 

applications. A representative example shows the

capability of the controller to handle significant

uncertainty in both, the stable gains and the time

constants of the system, in the case that inputs

constraints become active during the transient states. 
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