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Abstract: This paper shows how to calculate feasible regions, parameterized in
terms for the present state xk, for MPC controllers for constrained linear systems.
The dependence of the feasible region on the prediction horizon is also made clear.
It is also shown how the procedure may be modified to find guaranteed feasible
regions in the presence of unknown, bounded disturbances. These ’robust’ feasible
regions are used to propose a very simple MPC controller which achieves robust
feasibility. Copyright c©2005 Author
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1. INTRODUCTION

Model Predictive Control (MPC) has been a re-
markable industrial success.A distinguishing fea-
ture of MPC controllers is the relative ease with
which constraints in both states/outputs and in-
puts are handled. This paper starts by addressing
the calculation of feasible regions and correspond-
ing required prediction horizon for MPC. It is
then shown how to calculate feasible regions that
are robust to unkonwn, bounded disturbances.
Subsequently, the parametrization of the robustly
feasible regions are used to propose a simplified
MPC controller. We start from a fairly typical
MPC formulation:

min
u0,u1,··· ,uN−1

N−1∑
k=0

(
uT

k Ruk + xT
k Qxk

)
+ xT

NQfxN

(1)
with constraints
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Gxk + Huk ≤ b, k ∈ [0, . . . , N, . . . , N + j] (2)

xk+1 = Axk + Buk, x0 = given (3)

Q � 0, Qf � 0 R � 0 (4)

Input constraints are normally present in in real-
life problems, these are usually the only con-
straints in (2) that are enforced at k = 0 (the
corresponding rows in G are zero). For (2) to be
meaningful, i.e., for the constraints to be fulfilled
for a time horizon beyond the prediction horizon
N , the control action in the interval N ≤ k ≤ N +
j needs to be defined. Here the common assump-
tion is made that the infinite horizon LQ-optimal
controller for the weighting matrices R and Q is
used, and that Qf is the solution of the corre-
sponding algebraic Riccati equation. Additional
assumptions are

A1 The system described by (3) is stabilizable.
A2 (Q1/2, A) is observable.
A3 The constraints defined by (2) constitute a

closed and bounded polyhedron in the space
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spanned by {x, u}, and {0, 0} is in the interior
of this polyhedron.

A1 and A2 are necessary to guarantee closed loop
stability, A1 is implied by the assumption that a
(stabilizing) LQ-optimal controller can be found.
A3 is not very restrictive. Manipulated variables
in practice have a limited range of manipulation.
In cases where the physical constraints do not im-
pose constraints on all states, artificial constraints
can be added so far from the origin that operation
in the region of the added constraints is unlikely
and/or represent unacceptably poor performance.

The purpose of extending the constraint horizon
in (2) from N to N + j is to ensure that the
(unconstrained) LQ-optimal controller K will not
violate any constraints. When these constraints
are fulfilled, applying at each time step u0 from
the solution of (1) and applying the LQ-optimal
controller K will result in the same closed loop
trajectories for states and manipulated variables
after time k = N . Closed loop stability of the
MPC controller then follows from the stability of
the LQ-optimal controller (since the constraints
never become active for time steps k ≥ N),
see (Scokaert and Rawlings, 1998) for a proof.
The matrices Q and R play much the same role
in MPC as in conventional LQ-optimal control,
and Qf and K follow from Q and R. Issues
that are particular to MPC (or, constrained LQ
regulation) are

I1 The determination of j in (2).
I2 Efficient representation of the constraints for

the period N ≤ k ≤ N + j, since many of the
constraints in (2) may be redundant.

I3 Determination of the prediction horizon N ,
and the relationship between N and the feasible
region.

The focus of this paper is on issue 3 above, and will
be addressed in section 3. However, tackling this
issue will require that issues 1 and 2 have been
addressed first. For completeness, section 2 will
therefore address issues 1 and 2, by specializing
the results of (Gilbert and Tan, 1991) to con-
strained linear systems. The calculations involved
in addressing issues 1-3 can be performed off-
line, at the design stage when there is presumably
ample time for computations. The focus in this
paper will therefore be on the clarity of presenta-
tion rather than finding the computationally most
efficient algorithms.

In (Grieder et al., 2004), it is stated that no
method for calculating N is known, and a method
of calculating the prediction horizon and associ-
ated feasible region was proposed, based on an
explicit MPC formultion. The method described
next only aims at describing the relationship be-
tween the prediction horizon N and the feasi-

ble region, without engaging the machinery of
explicit MPC. In this author’s opinion, explicit
MPC is one of the most exciting developments in
advanced control in recent years, but nevertheless
the majority of applications still rely on on-line
solution of optimization problems. The authors of
(Grieder et al., 2004) are prominent in the MPC
community. Although well known mathematical
tools are used in this paper, it is therefore fair to
assume that the application of these tools in the
present context is not generally understood by the
MPC community.

2. MAXIMAL OUTPUT ADMISSIBLE SETS
FOR CONSTRAINED LINEAR SYSTEMS

In (Rawlings and Muske, 1993) a conservative
criterion for estimating a value for j in (3) was
proposed. This criterion depends on the predicted
value of xN , and is thus impractical for on-line use.
While the criterion in (Rawlings and Muske, 1993)
makes it simple to check on-line whether a suffi-
ciently large parameter j is in use, it is hard to
know at the design stage what will be a sufficiently
large value for j. Introducing assumption A3
above allows us to determine a non-conservative
value for j at the design stage, and also to simplify
the quadratic programming problem by removing
redundant constraints, i.e., constraints that are
always fulfilled whenever other constraints are
fulfilled.

Applying the state feedback controller uk = Kxk

for k ≥ N , the resulting closed loop system can be
considered as an unforced linear system provided
constraints are not active for k ≥ N . The largest
set of initial conditions for which an unforced
linear system satisfies all constraints for all future
times is called the Maximal Output Admissible
Set, often denoted O∞. Correspondingly, the set
of initial conditions for which all constraints are
fulfilled up until time t is denoted Ot. Obviously,
O∞ ⊆ Ot+1 ⊆ Ot. The determination of output
admissible sets was addressed in (Gilbert and
Tan, 1991). We will apply their results to linear
systems subject to linear inequality constraints.
Assumption 3 above, together with the fact that
the system is stable in closed loop, allow us to use
some of the results of Gilbert and Tan (Gilbert
and Tan, 1991) in the following:

R1 O∞ is closed and bounded (and is convex due
to the linearity of the constraints).

R2 O∞ is finitely determined if O∞ = Ot for
finite t. For the cases studied here,O∞ is finitely
determined by construction.

R3 If Ot = Ot+1 then O∞ = Ot.

In our case, we are interested in the set to which
xN must belong in order for (2) to hold for all
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k ≥ N , assuming that the inputs are determined
by uk = Kxk. We will in the following denote the
set of states xN for which all inequality constraints
(2) are fulfilled for N ≤ k ≤ N + t by Ot. A
straight forward way of determining the maximal
output admissible set is therefore given by Algo-
rithm 1.

Algorithm 1. Maximal Output Admissible Set.

(1) Set t = 0, and let O0 be parameterized by
(2) for k = N .

(2) Increment the time index t, and express the
constraints at time t in terms of xN , using
the system model (3) and the equation for
the state feedback controller.

(3) Remove any redundant constraints for time
t. If all constraints for time index t are re-
dundant, Ot−1 = Ot, and hence O∞ =
Ot−1. Stop. Otherwise, augment the set
of constraints describing Ot−1 by the non-
redundant constraints for time t to define Ot.
Go to Step 2.

Due to R2 above, this algorithm will terminate
in finite time for the problems considered here.
Checking for redundancy of constraints is also
straight forward for linear systems subject to
linear inequality constraints.

Checking redundancy at step 3 in Algorithm 1
above does not necessarily guarantee that the
final set of constraints is minimal (i.e., does not
contain any redundant constraints). Redundant
constraints may still be present in the description
of O∞ due to the possible presence of redun-
dant constraints in the description of the origi-
nal polyhedron, or because a constraint that was
not redundant at time i was made redundant by
adding constraints at later times. Clearly, it is
simple to identify and remove any such redundant
constraints in the description of O∞, if necessary.

3. FEASIBLE REGIONS FOR MPC
CONTROLLERS

With the description of the ’terminal set’ O∞

within which the predicted state at time N must
lie, we are ready to address the issue of deter-
mining the feasible region for an MPC controller,
and how this feasible region depends on the value
of N . To this end, we will use what is known as
Fourier-Motzkin elimination. This is a procedure
for eliminating variables from sets of inequalities,
originally discovered by Fourier in the first half
of the 1800’s. The use of Fourier-Motzkin elim-
ination has been proposed in the control litera-
ture previously (e.g., (Keerthi and Gilbert, 1987),
(Kerrigan and Maciejowski, 2000)), and it should
be well known to people working with invariant

sets (also in the MPC context). Nevertheless, as
argued above, recent literature show that its appli-
cation in the present context is not widely known.

3.1 Application to MPC controllers

When applying Fourier-Motzkin elimination in
the design and analysis of MPC controllers, we
assume that we start from a description of the
maximal output admissible set O∞, as well as
a predefined feasible region (2) and the model
equations (3). A typical problem may then be to
find the required prediction horizon N such that
a feasible solution to the MPC QP problem exists
for all x0 such that

Arx0 ≤ br (5)

Naturally, it is assumed that the required feasible
region is consistent with the constraints in (2).
The most straight forward approach would then
be to guess at a value for N , use (3) to eliminate
xk from the constraints (in (2) as well as O∞)
for all k > 0, use Fourier-Motzkin elimination to
eliminate u0, · · · , uN−1, and finally check whether
the resulting feasible region is sufficiently large.
Instead, we will work ’backwards’ from the pre-
diction horizon, as this will allow a stage-wise
removal of redundant constraints, and allows ter-
minating the analysis once a sufficiently large
feasible region has been found. The stage-wise
removal of redundant constraints is important in
this context, as it reduces the complexity of the
description of the feasible region. The resulting
algorithm is as follows:
Algorithm 2. Calculating the required prediction
horizon N .

(1) Start with N = 0 (ordinary LQ-optimal
control) and corresponding feasible region
O∞.

(2) Check whether the feasible region is suffi-
ciently large. If yes, terminate.

(3) Set N ← N+1 and correspondingly x0 ← x1.
(4) Use (3) to express the ’new’ x1 in the con-

straints in terms of x0 and u0.
(5) Use Fourier-Motzkin elimination to remove

u0 from the constraints.
(6) Remove any redundant constraints. Go to

Step 2.

For Algorithm 2 to terminate in a finite number
of steps is clearly critically dependent on the
assumption that the desired feasible region is
consistent with the constraints in (2). For unstable
systems, this assumption also implies that the
desired feasible region is within the region that
can be stabilized by constrained inputs.

Applying Algorithm 2 now only requires a method
for checking whether the feasible region is suffi-
ciently large. A simple way of checking this is to
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check that all the constraints defining the feasible
region are ’redundant’ relative to the desired fea-
sible region described by (5).

Example 1.

We will here consider the example in (Grieder et
al., 2004). The system is given by

xk+1 =

[
0.7326 −0.0861
0.1722 0.9909

]
xk +

[
0.0609
0.0064

]
uk

The system should be regulated to the origin while
adhering to the constraints |uk| ≤ 2 ∀k ≥ 0 The
desired feasible region is given by |xk,i| ≤ 1000
and we want to determine the parameters N in
(1) and j in (2) such that this feasible region is
achieved. To fulfill assumption A3 above we add
the artificial constraints |xk,i| ≤ 2000. The weight
matrices are set to Q = I and R = 0.01.

Applying Algorithm 1, we find that the parameter
j in (2) should be set to j = 3, and that the
maximal output admissible set O∞ is defined by
eight inequalities. These inequalities all arise from
the constraints in the manipulated variable, and
are hence not influenced by the artificial con-
straints. Performing the Fourier Motzkin elimina-
tion, starting from the previously calculated O∞,
we get that the prediction horizon N needs to
be set to N = 68 to achieve the desired feasi-
ble region. Note that N + j = 71, which is the
same as the required horizon found in (Grieder et
al., 2004).

4. ROBUSTNESS TO DISTURBANCES

The methods presented in sections 2 and 3 do
not consider disturbances, and are hence quite
idealized and optimistic. In this section, we will
describe how the methods can be modified to
account for disturbances. In a similar fashion as
done above, the maximal output admissible set
(in the face of disturbances) will be considered
first, since O∞ is the starting point for calculating
prediction horizons N and corresponding feasi-
ble regions. Maximal output admissible sets with
disturbance inputs has been studied previously
in (Kolmanovsky and Gilbert, 1995), whereas ac-
counting for disturbances when calculating pre-
diction horizons and feasible regions represents an
extension of the results in (Grieder et al., 2004).
The same MPC formulation as in Section 1 will be
used, with the modifications that (3), is replaced
by

xk+1 = Axk + Buk + Edk, x0 = given (6)

Clearly, bounded control can guarantee neither
feasibility nor performance with unbounded dis-
turbances. We therefore assume that the distur-

bances are bounded, and are confined to a poly-
tope defined by the linear inequalities

Addk ≤ bd (7)

The zero disturbance, dk = 0, is assumed to lie in
the interior of this polytope.

4.1 Robust output admissible sets

Application of the state feedback controller uk =
Kxk to the system described by (6) yields

xk+l = (A + BK)lxk +

l−1∑
i=0

(A + BK)iEdk+l−i−1

(8)
Substituting (8) into (2) gives for timestep k + l

(G + HK)(A + BK)lxk ≤ b (9)

− (G + HK)

l−1∑
i=0

(A + BK)iEdk+l−i−1

Clearly, the right hand side of (9) cannot be eval-
uated at time k without advance knowledge of the
disturbances. However, to ensure feasibility of the
constraints, we need only consider worst case dis-
turbances (Kolmanovsky and Gilbert, 1995), i.e.,
the sequence of disturbances that minimizes the
RHS of (9). Note that the worst case disturbances
may be different for different constraints in (9),
and we thus need to solve one LP for each of
these constraints. Thus, we introduce the vector
h, where h = [h1 · · ·hm · · · ]

T and

hm = max
[dk,··· ,dk+l−1]

l−1∑
i=0

[
(A + BK)iE

]
m

dk+l−i−1

(10)
subject to the inequality (7) being fulfilled. Here
the subscript m on the matrices (A + BK)iE

indicates row number m of these matrices. Having
modified the constraints accordingly, we can still
use Algorithm 1 to determine the (robust) maxi-
mal output admissible set O∞, and R3 above still
serves as a test for identifying O∞ (Kolmanovsky
and Gilbert, 1995). However, it is no longer obvi-
ous a priori that O∞ is non-empty. We therefore
assumed that b− h > 0, otherwise the state feed-
back controller cannot guarantee feasible opera-
tion even if xk = 0. If this assumption is violated,
it will be necessary either to change weights Q

and R to retune the controller, or to take other
measures (other than feedback control) to reduce
the effects of the disturbances.

4.2 Robust feasible regions

The Fourier-Motzkin elimination can easily be
used to calculate feasible regions that are robust
to disturbances. The necessary modifications are:
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Fig. 1. Maximal output admissible sets O∞ for
Example 2 with and without disturbances.

• Begin the calculations from the robust output
admissible set O∞, calculated as described
above.

• The set of constraints used at each stage of
Fourier-Motzkin elimination should be the
intersection of the constraint sets over the
vertices of the disturbance set. Since (8)
is linear, the set of states for which there
exists a feasible solution for all vertices of
the constraint set will also admit a feasible
solution for disturbances in the interior or
along the edges of the disturbance set.

To illustrate the effects of considering distur-
bances in the calculation of output admissible
sets and feasible regions, we modify Example 1
above by introducing disturbances, with E =
diag(0.02, 0.003) in (6), and |dk,i| ≤ 1. Calculat-
ing j in (2), we still get j = 3, just as for the
disturbance free case, but the maximal output
admissible set is somewhat smaller. This can be
seen from Fig. 1, where the two maximal output
admissible sets are compared. Requiring the same
feasible region as in the disturbance free case, we
find that with disturbances we must increase the
prediction horizon n from 68 to 69 to account
for the disturbances. The resulting feasible regions
are compared in Fig. 2.

5. A SIMPLE, ROBUSTLY FEASIBLE MPC

The MPC criterion in 1, when used with the plant
model (6) cannot be optimized without a priori
knowledge of the disturbances. This is clearly
not realistic in most cases. Possible modifications
include optimizing the worst case value of the
criterion (leading to a min-max formulation), or
optimizing the expected value of the MPC criterion
1. Both these modifications lead to very complex
controllers with high computational load for linear
constrained systems. Next, a very simple MPC
controller is proposed, which retains the robust
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Required feasible region

Fig. 2. Feasible regions for Example 2 with and
without disturbances.

feasibility of a more complex formulation, while
the control performance may be reduced during
transients. Assume the following are given:

(1) A stabilizing controller K for the uncon-
strained linear system.

(2) The corresponding robust output admissible
set, represented by linear inequalitiesA0xk ≤
b0.

(3) Robust feasible regions for MPC controllers
of horizon N , represented by ANxk ≤
bN ;N ∈

[
1, . . . , N̄

]
, where N̄ is large enough

for the corresponding feasible region to cover
the required operating region.

The robust feasible region for the horizon-N con-
troller is known from the calculations described
above, and is parametrized by

ANxk ≤ bN (11)

At each timestep k, it is then very simple to
identify the smallest prediction horizon Nk such
that xk lies within the corresponding feasible
region. The basic idea behind the simplified MPC
is then to use a prediction horizon of 1, but
to constrain the optimization such that xk+1 is
known to lie within the feasible region for an MPC
of prediction horizon Nk − 1. Note that it is not
sufficient to add the constraint

ANk−1xk+1 ≤ bNk−1,

rather one has to ensure that that this constraint
is fulfilled for all possible disturbances - but with-
out knowledge of the actual disturbance values.
With xk given, (6) then gives

ANk−1Buk ≤ bNk−1 −ANk−1Axk −ANk−1Edk

(12)
In the same way as for the calculation in (10),
solving a set of LP is (in general) needed to
maximize the last term in (12). Let the results of
these LP’s be collected in the vector hNk−1. Thus,
we get
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min
u0

(
uT

0 Ru0 + xT
k+1Qfxk+1

)
(13)

s.t. ANk−1Axk +ANk−1Buk

≤ bNk−1 − hNk−1, (14)

H0uk ≤ b0 (15)

where (15) represents the input constraints for
k = 0 in (2). MPC controllers with robust fea-
sibility in the face of bounded disturbances have
also been proposed in previous works (Chischi et
al., 2001), (Sakizlis et al., 2004). The controllers
in these works use a prediction horizon of a fixed
length N (as is common in predictive control),
and constraints that are formulated to account
for the worst possible disturbance sequence. In
contrast, the controller proposed here uses a pre-
diction horizon of 1, while the constraints are
formulated to ensure that a feasible solution will
exist also at future times if a feasible solution
is found initially. The main advantage with the
robust MPC formulation proposed here is that it
requires the solution of quite small QP problems
(whether solved on-line or a priori using paramet-
ric programming). The worst case performance is
likely to be better with the controllers in (Chischi
et al., 2001), (Sakizlis et al., 2004), since perfor-
mance is optimized over an extended horizon N .

The idea of using a ’one step’ controller to guar-
antee constraint fulfillment for an infinite horizon
was recently proposed in the context of piecewise
affine systems in (Grieder et al., 2005). In some
ways, the ’one step’ controller proposed here is a
specialization of their controller to linear systems.
However, in order to achieve stability (Grieder et
al., 2005) assumes the origin to be an equilibrium
state, which precludes the possibility of persistent
bounded disturbances. The robust output admis-
sible set is control invariant, and hence stability is
guaranteed also in the face of bounded persistent
disturbances for the ’one step’ controller in this
work.

6. CONCLUSIONS

This paper uses well known mathematical tools
for determining the required prediction horizon in
constrained linear MPC to guarantee a specified
feasible region. It is shown how the calculation of
the prediction horizon and feasible region can be
modified to account for bounded disturbances. A
simple MPC formulation is then proposed, which
uses the robustly feasible regions to guarantee
robust feasibility while keeping the computational
load very low. The simple MPC controller does
not guarantee any form of optimality during tran-
sients (when constraints are active), but at steady

state it will inherit the optimality properties of the
state feedback controller.
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