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Abstract: Hybrid Systems consist of continuous time and/or discrete time pro-

cesses interfaced with some logical or decision making process. In this paper, a

class of hybrid systems - switched linear systems is considered. It is shown that

for this class of hybrid systems, it is possible to combine subspace methods with

mixed integer programming. While most approaches are based on an input-output

framework, we a state space identification approach is advocated. The states of

the system are extracted from input-output data using sub-space methods. Once

these states are known, the switched system is re-written as a mixed logical

dynamical (MLD) system and the model parameters are solved for via mixed

integer programming. An example is reported at the end of this paper.
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1. INTRODUCTION

Most existing methods for system identification make

use of an input-output framework where the input

signals, u(t) to the system, and the output signals,

y(t), from the system are observed data. For lin-

ear systems, a set of already established algorithms,

are available in literature, with the prediction er-

1 corresponding author. email: guaym@chee.queensu.ca

ror method (Ljung, 1999) being very common. In

this paper we focus on the development of system

identification techniques for hybrid systems. Hybrid

systems consist of a family of continuous/discrete-

time subsystems and a rule that orchestrates the

switching between them. In the particular case where

all the individual subsystems are linear, a switched

linear system is obtained. Considerable work has

been performed in the area of hybrid system iden-
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tification (Trecate et al., 2003; Bemporad et al.,

2001; Roll, 2003; Del Vecchio et al., 2003; Vidal et

al., 2003; Huang et al., 2004).

While most existing techniques are based on an

input-output framework, the approach proposed in

this paper advocates a state- space construction. A

recent work by Huang et al. (2004) also looks at

solving this problem using a state space approach.

A major difference is that we approach this problem

by advocating the combination of two different algo-

rithms. Using a subspace identification technique, the

identification problem is formulated in matrix form

and the states of the system are then extracted. A

basic assumption in this work is that the order of the

system has a known upper bound, and the number of

discrete states is known a priori. We assume that the

states of the system is not known a-priori and focus

on showing that for a very simple class of hybrid

systems, it is possible to combine subspace meth-

ods with mixed integer programming. This paper is

structured as follows: In section 2, we consider the

class of hybrid system we are dealing with. In section

3, we present the contributions of this work, together

with an example. Finally, we draw our conclusions in

Section 4.

2. THE CLASS OF HYBRID SYSTEMS

Hybrid Systems are a class of systems that ex-

hibit discrete/logical and continuous dynamics. Hy-

brid systems are ubiquitous in nature with most

research work focusing on modeling and control of

such systems. Examples of hybrid systems include

the dynamics of a car, elevator, etc. Many chemical

processes, which are not inherently hybrid, make use

of hybrid controllers. An example can be found in

Lennartson et al. (1996),where a hybrid controller is

designed for a chemical mixing process.

In this paper we consider a special class of hybrid

system, switched linear system. These consists of

linear (state space) sub-models with a rule that

determines which of the sub-models is active at any

time t. A general form for the deterministic, discrete

time switched linear systems is as follows:

xt+1 = A(Υt)xt + B(Υt)ut (1)

yt = C(Υt)xt + D(Υt)ut (2)

where xt ∈ R
n, ut ∈ R

m and yk ∈ R
l are the

states, inputs and measured outputs of the system

respectively. Υt, which we refer to as the active mode

at time t, assumes its values in the set {1, ..., ns} 2 , so

that the system parameters A(Υt) ∈ R
n×n , B(Υt) ∈

R
n×m, C(Υt) ∈ R

l×n and D(Υt) ∈ R
l×m switch

among ns different discrete states. The evolution of

the discrete state Υt is modeled as a polyhedral

partition of the hybrid state space (Bemporad and

Morari, 1999).

Prior to solving this problem, we make the following

assumptions:

Assumption 1. The system to be reformulated can

be represented or approximated by the following

equations

xt+1 = A(Υt)xt + But (3)

yt = Cxt + Dut (4)

Assumption 2. Each of the modes is persistently

excited for a long time in the data available.

Assumption 3. Each of the sub-linear system is con-

trollable ,observable, and of the same order n

Assumption 4. The order, n, and the number of

discrete states, ns,of the system is known a priori

Remark 5. Assumptions 1, 3 and 4 are non-trivial

as the purpose of this paper is to demonstrate and

motivate -using a simple class of hybrid systems- the

use of subspace and integer methods. Assumption 2

makes sure that all the modes are excited, enabling

the different possible states to be identified. With

2 ns ∈ R is the number of discrete states in the the hybrid

system
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Assumption 3, we have that the controllability and

observability matrices are full rank.

Remark 6. Comparing these assumptions with other

methods; we note that in most of the methods

mentioned earlier (Vidal et al., 2003), the assumption

is that the number of discrete states is not known.

A major difference is that we use a state space

framework, and look for a way of combining two

algorithms.

The hybrid system deterministic identification prob-

lem is therefore as follows:

Problem 7. Given s measurements of the input uk ∈
R

m and the output yk ∈ R
l generated by the

unknown deterministic system (3)-(4)of order n, and

ns discrete states, determine:

• The states of the system

• The system matrices A(Υ) ∈ R
n×n, B ∈

R
n×m,C ∈ R

l×n,and D ∈ R
l×m.

To solve this problem, we first extract the states of

the system from input-output data using subspace

methods(VanOverschee and Moor, 1996). Once these

states are known, the switched system is re-written as

a mixed logical dynamical (MLD) system (Bemporad

et al., 2001)and the model parameters computed.

3. MATRIX ANALYSIS

In this section, we re-write the system described by

(3)-(4) in Matrix form, and show how we can extract

the states and the parameters of the system. We

conclude this section with a relevant example. Let

us define the following parameters:

Definition 8.

Â
K
L = A(ΥtL)A(ΥtL−1)A(ΥtL−2)

. . . A(ΥtK+1)A(ΥtK
) (5)

Â
K
K = A(ΥtK

)

= Â
K (6)

where Â
K
L ∈ R

n×n.

Using results analogous to VanOverschee and Moor

(1996), we define the Hankel Matrix
︷︸︸︷
Y 2i

0 ∈ R
2il×j

containing the outputs yti ∈ R
l, as,

︷︸︸︷
Y 2i

0 : =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt0 yt1 yt2 . . . ytj−1

yt1 yt2 yt3 . . . ytj

. . . . . . . . . . . . . . .

yti−1 yti yti+1 . . . yti+j−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

yti yti+1 yti+2 . . . yti+j−1

yti+1 yti+2 yti+3 . . . yti+j

. . . . . . . . . . . . . . .

yt2i−1 yt2i yt2i+1 . . . yt2i+j−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

︷︸︸︷
Y 2i

0 : =

⎡⎢⎢⎣
Yp

. . .

Yf

⎤⎥⎥⎦ (8)

Yp ∈ R
il×j , and Yf ∈ R

il×j are Hankel matrices

containing past and future output data respectively.

i, l, and k are parameters defined by the user. We

also define the time-dependent ’hybrid observability

matrix ’, Ôr
w ∈ R

l(w−r+1)×n, between times tw and

tr,(irrespective of whether switching occurs or not)

as

Ôr
w :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CÂ
r

CÂ
r
r+1

...

CÂ
r
w−2

CÂ
r
w−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

w and r are user defined indexes.

Let
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U0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ut0 0 0 . . . 0

0 ut1 0 . . . 0

0 0 ut2 . . . 0
...

... . . .
. . .

...

0 0 0 . . . utj−1

ut1 0 0 . . . 0

0 ut2 0 . . . 0

0 0 ut3 . . . 0
...

... . . .
. . .

...

0 0 0 . . . utj

. . . . . . . . . . . . . . .

uti−1 0 0 . . . 0

0 uti
0 . . . 0

0 0 uti+1 . . . 0
...

... . . .
. . .

...

0 0 0 . . . uti+j−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

and

Ui =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uti 0 0 . . . 0

0 uti+1 0 . . . 0

0 0 uti+2 . . . 0
...

... . . .
. . .

...

0 0 0 . . . uti+j−1

uti+1 0 0 . . . 0

0 uti+2 0 . . . 0

0 0 uti+3 . . . 0
...

... . . .
. . .

...

0 0 0 . . . uti+j

. . . . . . . . .
. . . . . .

ut2i−1 0 0 . . . 0

0 ut2i 0 . . . 0

0 0 ut2i+1 . . . 0
...

... . . .
. . .

...

0 0 0 . . . ut2i+j−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

and define the matrix

X̂i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xti 0 0 . . . 0

0 xti+1 0 . . . 0

0 0 xti+2 . . . 0
...

...
. . . . . .

...

0 0 0 0 xti+j−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

nj×j (12)

where xti
, xti+1, .., xti+j−1 are the states and ti is the

first element of the state sequence. Similar to past

outputs, we define Xp ∈ R
nj×j (contains the past

states xt0 , xt1 , .., xtj−1), and Xf ∈ R
nj×j (contain-

ing the future state sequence xti , xti+1, .., xti+j−1)

as:Xp = X̂0,Xf = X̂i. also Up ∈ R
mj(i−1)×j and

Uf ∈ R
mj(i−1)×j as the matrix of past inputs and

future inputs respectively,and

Up = U0 (13)

Uf = Ui (14)

The results in this section of the paper can be

summarized by the following theorem which shows

how the switched linear state space system of (3)-(4)

can be reformulated in matrix form.

Proposition 9. If the switched linear system of (3)-

(4) satisfies assumptions (1)-(6), the system can be

represented by the following Matrix input-output

equations(Egbunonu, 2005).

Yp = ∆0Xp + Γ0Up (15)

Yf = ∆iXf + ΓiUf (16)

IiXf =AXp + FUp (17)

where

∆i =
[
Ôi

i+k−1 Ôi+1
i+k Ôi+2

i+k+1 . . . Ôi+j−1
i+k+j

]
∈ R

lk×nj

and

Γi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D . . . 0

CB . . . 0

CÂ
i+1B . . . 0

. . . . . . . . .

CÂ
i+1
i+k−2B . . . D

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(18)

F :=
[

Â
1
i−1B Â

iB Â
i+1B . . . Â

i+j−2B . . . B
]
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Ii :=
[

I I I . . . I
]

(19)

where F ∈ R
n×mjk,Γi ∈ R

lk×mjk, I ∈ R
n×n is the

identity matrix and Ii ∈ R
n×nj

3.1 Extraction of The States of the Hybrid System

Once our system is reformulated into matrix form,

using the Theorems from the preceding section, we

extract the states of the hybrid system by making

use of the following simple technique (VanOverschee

and Moor, 1996; Egbunonu, 2005) summarized in the

following theorem

Theorem 10. Given (15) to (17) and assuming that

the row space of the future inputs and the row space

of the past states is empty, we have that(Egbunonu,

2005)

(1) The matrix ∆i is equal to

∆i = L.S1 (20)

(2) The matrix Xf is equal to

Xf = ∆†
iWi (21)

(3) The state sequence Xf is equal to

IiXf (22)

Wi ∈ R
li×j , L ∈ R

li×li,and S ∈ R
li×j

3.2 Mixed Logical Dynamical Systems

After extracting the states, we now re-formulate our

system of (3)-(4) as a Mixed Logical Dynamical

(MLD) systems (Bemporad and Morari, 1999) i.e.

we can re-write equation (3)-(4) in MLD form as

x(t + 1) =
ns∑
i=1

zi(t) (23)

where

zi(t)≤Mδi(t)

zi(t)≥mδi(t)

zi(t)≤Aix(t) + Biu(t) − m(1 − δi(t)) (24)

zi(t)≥Aix(t) + Biu(t) − M(1 − δi(t))

δi(t) are 0 − 1 variables and the vectors M =

[M1, . . . , Mn]′, m = [m1, ..., mn]′ are defined as

Mj � max
i=1,...,ns

{
max

[x u]′∈�
Aj

ix + Bj
i u

}
(25)

mj � min
i=1,...,ns

{
max

[x u]′∈�
Aj

ix + Bj
i u

}
(26)

With this formulation, we can now solve for the pa-

rameters of the system, using least squares method.

The result is a Mixed Integer Programming Problem.

One must mention here that this method has a

drawback which is its computational complexity.

The branch and bound method utilized in solving

the problem, increases the computational time and

makes the solution algorithm potentially more com-

plex. To aid the algorithm, several bounds and as-

sumptions are introduced.

3.3 Example

In this section we look at an example of a linear

hybrid system and how we can use the Matrix Form

of the system to extract the states of the system.

Example 11. Consider the discrete switched linear

systems shown below:

x(t + 1) = Anax +

[
0.4

0.2

]
u (27)

y =
[
−2 1

]
x + 5u (28)

where x ∈ R
2, u ∈ R, y ∈ R, A ∈ R

2×2 na = {1, 2},
and

A1 =

[
−0.3 −0.2

−0.1 0.5

]
if K1x + J1u ≤ T1 (29)

A2 =

[
−0.5 −0.4

−0.1 0.3

]
if K2x + J2u ≤ T2 (30)
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K1 =
[

0.2 0.3
]
; K2 =

[
−0.2 −0.3

]
;J1 = 5;J2 =

−5, T1 = 0.8, T2 = −0.8

Using the methods described in the previous sections,

coupled with the aforementioned assumptions, we are

able to extract the states of the system, and generate

a set of parameters describing the system. (Results

were generated by using the TOMLAB/Xpress soft-

ware to solve the mixed integer problem). Figure 1

shows a validation graph of the outputs generated

by the actual and predicted system, with mean error

value of -0.006.

0 20 40 60 80 100
−8

−6

−4

−2

0

2

4

6

8
Validation Result Using PBRS of length 100

y

time (secs)

Actual Data

Predicted Data

Fig. 1. Validation of Predicted Switched Linear Sys-

tem (2)

4. CONCLUSIONS

In this paper, we have proposed a combined subspace

and mixed integer methods for identification of a

set of switched linear systems. We made use of a

state space modeling framework, and assumed that

the order of our system and the number of discrete

states where known. We also assumed a deterministic

model. Open issues includes the performance of the

algorithm in the presence of noise and/or distur-

bances. Also, a possible extension of the algorithm

would be to cases where the order of the system and

perhaps the number of discrete states are unknown.

A positive note is that since we are dealing with a

state space model, the availability of tested algorithm

for analysis and control of linear systems makes this

option very applicable and use-able.
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