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Abstract: In this paper, a method to build asymptotic estimators for continuous
stirred tank reactor in the case of constant pressure and constant volume liquid
phase is proposed. The estimator is based on the measurement of temperature
and some concentrations. This method works for highly nonlinear reactions,
with realistic thermodynamic properties and is based on the preservation of two
fundamental conserved quantities: the mass and the energy. Simulations results
for an example are proposed and discussed.
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1. INTRODUCTION

Observers or estimators for nonlinear systems
were much studied in the last ten years: so a very
important literature exists for the construction
of observers or estimators for chemical reactions
occurring in a continuous stirred tank reactor
(CSTR) (see (Dochain et al., 1992), (Dootingh et

al., 1992), (Gibon-Fargeot et al., 1994), (Alvarez-
Ramirez, 1995) and (Gibon-Fargeot et al., 2000)).

In this paper, it is shown how the so-called asymp-
totic observer presented in (Dochain et al., 1992)
can be reformulated so that the reconstructed
variables correspond to fundamental conserved
quantities: the mass conservation and the energy
conservation.

2. THE MODEL

This section is devoted to establishing the model
used in this study. The material balance and the
energy balance are successively presented.

Consider a liquid phase perfectly mixed continu-
ous stirred tank reactor. The liquid phase chem-
ical reactions and the jacketed reactor in which
the reaction takes place are modeled with the
following assumptions:

• The heat flux exchanged with the jacket is
represented by Φjac. It is assumed to be
depending on to the temperatures of the
jacket and of the mixture T in the reactor.

• At the inlet of the reactor, the pure com-
ponents are injected separately at the same
temperature Te.

• r independent reactions involving S species
are occurring in the CSTR.
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• It is supposed that the reactional volume
remains constant as well as the pressure.

3. THE INVARIANTS IN CHEMICAL
REACTION SYSTEMS

The material balance for each specie is given by:

dn

dt
= (QC)e −

Q

V
n + V N TR(n, T, V ) (1)

with n the component mole number vector,
(QC)e the molar flow rate vector at the inlet:
the ith element is given by Qei where Qei is the
volumetric inlet flow rate for the ith specie and
Cei, the concentration at the inlet for the ith

specie, Q the total volumetric flow rate at the
outlet, N the stoichiometric matrix, R the vector
of the reaction rate, V the reactional volume and
T the temperature of the mixture.

We first present the invariants for chemical reac-
tions relative to the mass balance. The aim is to
use these invariants in order to express a part of
the differential equations of the species balance in
such a way that the reaction terms disappear.

Up to some permutations of the state vector n
and as presented in (Dochain et al., 1992) or in
(Villermaux, 1985; Makila and Waller, 1981; Srini-
vasan et al., 1998) there exists a linear transfor-
mation:

z =

[
z1

z2

]
=

[ (
IR | 0 . . . 0

)
n

PT n

]

for chemical reaction systems which leads to the
following system with z1 ∈ IRR and z2 ∈ IRS−R:

dz1

dt
=

(
IR | 0 . . . 0

)
(QC)e −

Q

V
z1 + V NR(z, V )

(2)

dz2

dt
= PT (QC)e −

Q

V
z2 (3)

z2 is related to the conservation of atoms in the
chemical processes.

The energy balance is extensively used in mod-
eling purposes. In general, this balance is often
expressed with a constant specific heat capacity
for the mixture. In this presentation we do not
assume this hypothesis. Let us express the energy
balance in terms of temperature as it is usually
the case:

dT

dt
=

(QC)
T
e (he −

[
∂H(n,T )

∂n

]
)

∂H(n,T )
∂T

−

Q
V

(H(n, T ) −
[

∂H(n,T )
∂n

]T

n)

∂H(n,T )
∂T

−
Φjac

∂H(n,T )
∂T

−

[
∂H(n,T )

∂n

]T

V N TR(n, T, V )

∂H(n,T )
∂T

(4)

where the vector he represents the molar enthalpy
of each species at the inlet, the species being
injected separately at the same temperature Te.
H(n, T ) =

∑
i nihi(n, T ) represents the total

enthalpy of the mixture present in the CSTR. In
this energy balance (4), the reaction rates appears
explicitly as it is well known.

However by the use of the invariant concept, the
reaction rates can be eliminated from (4) leading
straight to the enthalpy formulation (5). Actually
the energy is a conserved quantity and in the
case of constant volume and pressure it also corre-
sponds to the enthalpy: this conservation principle
leads for open systems to the following conserva-
tion equation where only terms expressing energy
exchange with the environment:

dU

dt
=

dH

dt
= (QC)

T
e he −

Q

V
H − Φjac (5)

The equation (3) and (5) express variables z2

and H that are not affected by reaction. These
variables can be used to construct asymptotic ob-
servers as soon as R− 1 complementary variables
from (2) are measured as well as the temperature.

4. THE ASYMPTOTIC OBSERVER

In this section, we briefly recall the conditions
under which it is possible to construct the asymp-
totic observers.

So let us assume that:

• The first R − 1 components mole numbers
issued from z1 are available for on-line mea-
surements as well as the temperature of the
reactor.

• The outlet flow rate as well as the volume are
known.

• The stoichiometry of the reactions is known.
• A model is available to calculate the molar

enthalpy for the mixture.

Let us call n2 the vector formed by n2 and the
last element of n1 and consider the notation:
P =

[
P1 | P2

]
where P1 is a R−1×S−R matrix

corresponding to the measures states variables.
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Finally let us call n1mes the vector of measures
and P the physical domain of n2.

Theorem 1. Under the previous assumptions and
if the input Q

V
is regularly persistent, the system

formed by

dz2

dt
= PT (QC)e −

Q

V
z2

dH

dt
= (QC)

T
e he −

Q

V
H − Φjac

(6)

is an asymptotic observer of the non measured
states of n if the mapping

ψ :

P ⊂ IRS−R+1 −→ IRS−R+1

n2 −→

⎛
⎝ H(n1mes, n2)

PT
2

(
n1mes

n2

) ⎞
⎠

is injective.

The proof of this theorem is given in (Dochain et

al., 1992).

Remark 2. Since H is not necessarily linear with
respect to z2, the explicit inversion is not always
possible. For example, in the case that the non-
ideality of the mixture is represented by an excess
model as in (Sandler, 1999), the molar enthalpy
of the mixture h is given by:

h =
(
h(T, P )T x

)
+ ∆hex(T, P,x) (7)

with h the vector of the molar enthalpy of pure
ideal species, x the vector of molar fractions
and ∆hex(T, P,x) the excess term. Following the
mixture, this term can give rise different forms
and no general results can be deduced.

In the case of an ideal mixture, we obtain

h =
(
h(T, P )T x

)
(8)

Consider the following partition: hT =
[
h1 | h2

]
where h1 is a R−1×1 matrix formed by the molar
enthalpies

(
h1 . . . hR−1

)
and h2 =

(
hR . . . hS

)
and we can state:

Corollary 3. Under the previous assumptions and
if the input Q

V
is regularly persistent , the system

formed by (6) is an asymptotic observer of the non

measured states of n if

(
h2

P2

)
has a left inverse.

The estimated vector n̂ is given by:

n̂(t) =

(
h2

P2

)+ ((
H(t)
z2(t)

)
−

(
h1

P1

)
n1mes(t)

)
(9)

Remark 4. It can be noticed that in this formula-
tion the enthalpy of the reaction does not appear
as a parameter but is related to the formation
enthalpies of the species hiref .

5. ILLUSTRATION EXAMPLE

Let us illustrate the method with the following
simple reaction scheme involving three chemical
species X1, X2 and X3:

ν1X1−−−−−−−−−→
r1=k1(T )C2

1

ν2X2−−−−−−−−−→r2=k2(T )C2

ν3X3

with the stoichiometric coefficients (ν1, ν2, ν3).
where C1, C2 and C3 are respectively the concen-
trations in the species X1, X2 and X3. rv1 and rv2

represent the reaction rate of the two consecutive
reactions.

Moreover we consider that the molar enthalpy for
each specie is hi = cpi (T − Tref )+hiref and that
the mixture is ideal. In this case the model is
represented by:

dn1

dt
= Qe1Ce1 −

Q

V
n1 − ν1r1(n1, T, V )V

dn2

dt
= Qe2Ce2 −

Q

V
n2 + ν2r1(n1, T, V )V

−ν2r2(n2, T, V )V
dn3

dt
= Qe3Ce3 −

Q

V
n3 + ν3r2(n2, T, V )V

dT

dt
=

∑3
i=1 QeiCeicpi(Tei − T ) − Φjac(∑3

i=1 nicpi

)
−

(ν2h2 − ν1h1) r1V(∑3
i=1 nicpi

)
−

(ν3h3 − ν2h2) r2V(∑3
i=1 nicpi

)

(10)

Let us consider the following variables: z1 =
ν1n1 + ν1

ν2

n2 + ν1

ν3

n3 and z2 =
∑3

i=1 nihi(T ).
Finally let us choose that n1 is measured and let
us call this measure n1m. Let us express the model
in the new system of coordinates.

dz1

dt
= ν1Qe1Ce1 +

ν1

ν2
Qe2Ce2 +

ν1

ν3
Ce3 −

Q

V
z1

dz2

dt
=

S∑
i=1

QeiCeihei −
Q

V
z2 − Φjac

(11)

From the knowledge of the invariants z1 and z2,
the construction of the estimate n̂2 and n̂3 is easily
performed:

ν1

ν2
n̂2 +

ν1

ν3
n̂3 = z1 − ν1n1m

(cp2 (T − Tref ) + h2ref )n̂2+
(cp3 (T − Tref ) + h3ref )n̂3

= z2 − n1m(cp1 (T − Tref ) + h1ref )
(12)

Let us apply these equations to the the example
treated by (Dochain et al., 1992). For the reaction
the stoichiometric coefficient are equal to 1. The
reaction rate vector is given by:
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(
r1

r2

)
=

⎛
⎝ k1e

−
E1

RT

(n1

V

)2

k2e
−

E2

RT

(n2

V

)
⎞
⎠

with

k1 = 1.1 10−3m3 mol−1 s−1, k2 = 172.2s−1

E1 = 2.09 104J mol−1, E2 = 4.18 104J mol−1

R = 8.3143J mol−1 K−1.

The heat flux with the jacket is expressed as
follows:

φjac = hAc (T − Tjac) (13)

with

h = 5103J s−1 m−2, Ac = 170m2

and the temperature of the jacket Tj = 350K. The
parameters and input variables are chosen as :

V = 10m3, Te = 350K, Ce1 = 104mol m−3

Ce2 = Ce3 = 0, Qe1 = 0.1m3s−1

Let us define the values for the computation of
the enthalpy:

Tref = 350K, cp1 = 1000J mol−1 K−1

cp2 = 1000J mol−1 K−1, cp3 = 1000J mol−1 K−1

h1ref = 0J mol−1, h2ref = −20.18 104J mol−1

h3ref =−45.18 104J mol−1

In the present example the initial states are set to
the following values :

n1(0 = 104mol, n2(0) = 5 104mol

n3(0) = 0mol, T (0) = 360K

and for the estimator:

z2(0) = 0.9(n1(0) + n2(0) + n3(0))

H(0) = 0.9

3∑
i=1

ni(0)(cpi(T (0) − Tref ) + hiref ).

For the computation of Q, the molar volume vi of
species are necessary: v1 = v2 = v3 = 0.167 10−4.

The simulation results presented below corre-
spond to the following profile of Qe1:
from t=0 to 300s Qe1 = 0.1,
from t=300 to 600s Qe1 = 0.2 and
from t=600s Qe1 = 0.1.

Figures 1 and 2 respectively give the profile of
the measurements: the temperature and n1. These
values are injected in the estimator. Finally, fig-
ures 3 and 4 give the profile of n2 and n3 and of
their estimates.
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Fig. 1. The temperature profile.
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Fig. 2. n1 profile.
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Fig. 3. n2 profile and its estimation.
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Fig. 4. n3 profile and its estimation.
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6. CONCLUSION

The estimator presented in this paper is based on
the first principle invariants: mass invariants and
the energy invariant. The use of the enthalpy is
clarified with respect to previous works (Dochain
et al., 1992) on asymptotic observers. It permits
to present how to use the conserved quantities for
models of chemical reactions. This work can be
applied to gaseous phase reaction. The important
hypothesis is that the volume remains constant.
The generalization to non ideal mixture is theo-
retically possible and will necessitate the use of
differential algebraic methods.
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