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Abstract: A new approach using differentiation to design “self-optimizing”
(Skogestad, 2000) control system is proposed and applied to the evaporation
process of Newell and Lee (1989). Using the chain rule of differentiation, an explicit
expression of gradient in terms of system’s Jacobian matrices has been derived
for the first-order optimal condition of a constrained optimization problem. This
gradient function can directly be used as a controlled variable to achieve self-
optimization. To cope with conditionally active constraints, a cascade control
structure has been proposed. With this structure, the optimal condition and
conditionally active constraints can automatically switch each other to be active
or inactive depending on disturbances so that both are satisfied. Both ideas have
been demonstrated with the evaporator system. For the evaporation process, it
is also shown that a traditional engineering judgement for level control structure
selection may lead to a wrong decision. Simulation results show that the proposed
control system does achieve self-optimization with various disturbances.

Keywords: Plantwide Control, Self-Optimizing Control, Control Schemes,
Decentralized Control, Cascade Control, Automatic Differentiation.

1. INTRODUCTION

Chemical process plants are always controlled in
different layers. For example, several local control
layers are designed to maintain local controlled
variables at the desired operating point whilst
a plantwide optimization layer is responsible to
adjust the setpoint to the local layers according to
different situations (disturbances). Traditionally,
these two layers are designed separately for differ-
ent (economic and dynamic) objectives although
they need working together. Recently, Skogestad
(2000) introduced an important concept of “self-
optimizing control”, which provides a new link be-
tween these two layers. Self-optimization is a con-
trol strategy where by controlling certain specially
selected variables at their nominal setpoints, it au-
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tomatically achieves the optimal (or acceptable)
operating conditions without re-optimization even
in the presence of disturbances.

The optimality of a self-optimizing control sys-
tem is strongly related to the control structure
selected. In his seminal work, Skogestad (2000)
proposed a design procedure to select a self-
optimizing control structure. This procedure has
been applied to several chemical processes such
as the Tennessee Eastman process (Larsson et

al., 2001) and the evaporation process of Newell
and Lee (Govatsmark and Skogestad, 2001). How-
ever, in the above work, the controlled variables
considered are limited to the existing measure-
ments. Therefore, only suboptimal performance is
achievable with the control structure selected, i.e.
an average loss is always expected in the control
system.



In this work, the local-optimal condition of a
self-optimizing control system is derived. This
condition can be represented in a combination
of existing measurements. Therefore, the optimal
condition can be used as controlled variables to
achieve local self-optimization. Moreover, to deal
with “soft-constrained” measurements, a cascade
control structure is proposed, which can automat-
ically cope with both requirements of optimality
and constraints. This approach has been applied
to the evaporation process of Newell and Lee
(1989). With a carefully designed decentralized
cascade structure, the control system does achieve
self-optimization without violating process con-
straints. Another issue with self-optimizing con-
trol is the back-off from the nominally optimal
setpoints (Heath et al., 2000). The case study
shows that the optimality of the self-optimizing
system is very sensitive to the size of back-off.
Therefore, a tighter back-off is always looked for.
This is achieved in the case study by using the
particularly designed decentralized control struc-
ture.

The paper is organized as follows: The local-
optimal conditions with process constraints for
self-optimizing control is derived in section 2. To
cope with conditionally active constraints, a cas-
cade control structure to satisfy both optimality
and constraint requirements is proposed in sec-
tion 3. The self-optimizing control condition and
structure are applied to the evaporation process
in section 4, where a decentralized cascade con-
trol structure is design to achieve the minimum
back-off and to cope with process constraints.
Simulation results of various control schemes are
compared in terms of the self-optimality in section
5. The paper is concluded in section 6.

2. LOCAL SELF-OPTIMIZING CONDITIONS

Consider the following optimization problem:

min
x,u

J = φ(x, u, d) (1)

s.t. f(x, u, d) = 0

g(x, u, d) ≤ 0

where x ∈ R
nx , u ∈ R

nu and d ∈ R
nd are state,

input and disturbance variables respectively. For
a given disturbance, d, the solution of the above
optimization problem is denoted as, x∗ and u∗.
Assume that at the optimal point, the following
equalities hold:

F (x∗, u∗, d) =

[

f(x∗, u∗, d)
g1(x

∗, u∗, d)

]

= 0 (2)

where f(·) and g1(·) are vector-valued functions
with dimensions of nf and n1 respectively. If
m = (nx + nu) − (nf + n1) 6= 0, then according

to the Kuhn-Tucker conditions, there are m first-
order optimal conditions. Denote u∗ = [uT

1
uT

2
]T

with u2 ∈ R
m, z = [x∗T uT

1
]T and v = u2. Then

the optimization problem (1) can be re-stated as:

min
z,v

J = φ(z, v, d) (3)

s.t. F (z, v, d) = 0

The first-order optimal conditions of the above
optimization problem are:

Jv = φv +
∂z

∂v
φz = 0 (4)

Fv +
∂z

∂v
Fz = 0 (5)

If the Jacobian matrix, Fz is not singular, then
the second condition (5) gives:

∂z

∂v
= −FvF−1

z (6)

Inserting (6) into the first condition (4) leads to
the following m-dimension optimal condition:

G(z, v, d) := Jv|F=0 = φv − FvF−1

z φz = 0 (7)

Normally, the left-hand-side of the above condi-
tion is a function of x∗, u∗ (u1, and u2) and d. For
a given disturbance, d, equation (7) corresponds
to an unique solution of v = u2, from which all rest
system variables, x∗ and u1 can be determined.

If F (x∗, u∗, d) = 0 is the only active constraints
for all possible disturbances, then it is clear that
G(z, v, d) = 0 is the only condition which must
be maintained to ensure the process operation is
optimal. In other words, if condition G(z, v, d) = 0
is retained by the control system, then optimal
operation can be achieved without re-optimization
for different disturbances, i.e. the plant is self-
optimizing controlled.

For an optimization problem, the solution of
G(z, v, d) = 0 is independent from the selection
of variable, v, if Fz is non-singular. However,
the selection may have an effect on the actual
cost achieved because different v correspond to
different flatness of J around the optimal point.
The flatter the cost function at the optimal point,
the less sensitive to control error, thus the better
(Skogestad, 2000). For example, in a single degree
of freedom case, i.e. both v and z are scalar,
similar to (7), if both Fv and Fz are non-singular
and z is chosen as the independent variable, then
the gradient is

Jz|F=0 = φz − FzF
−1

v φv = −FzF
−1

v Jv|F=0 (8)

Therefor, in a proximity of the optimal point, if
|Fz| > |Fv|, then |Jv|F=0| < |Jz|F=0|, i.e. the
curve of J against v is flatter then the one of J
against z around the optimum. Hence, z should be
chosen such that |Fz| > |Fv| at the optimal point.
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Fig. 1. Cascade structure for self-optimizing and
constraint control

For a small system, the gradient function, G(z, v, d)
can be derived analytically. Therefore, it should
have no difficulty to implement it as a nonlinear
soft measurement for feedback control. For a large
or complicated process, it may not be a trivial
task to get an analytical expression of the gradient
function. However, according to equation (7), the
gradient function is composed of the first-order
derivatives of the cost function and the nonlinear
system model functions. Therefore, the numerical
values of the gradient function for different dis-
turbances can be calculated by performing on-line
linearization at individual sampling time. For this
purpose, the automatic differentiation techniques
developed in recent years (Griewank, 2000) will
play an important role.

3. SELF-OPTIMIZING CONTROL
STRUCTURE

According to the above analysis, the control struc-
ture of a self-optimizing plant should be selected
as follows:

• Stabilization control. Variables related to un-
stable modes of the plant must be controlled.

• Constraint control. Those included in g1 = 0
need to be controlled.

• Self-optimizing control. The gradient func-
tion, G(z, v, d) = 0 is to be controlled.

However, active constraints of a process plant
may not always be the same. Some output con-
straints, such as temperature and pressure limits
may becomes active under certain circumstances.
Traditionally, these variables are always selected
as controlled variables. However, by controlling
these variables at their nominal setpoints, the
plant operation will not be optimal at most times.

To satisfy both requirements of self-optimization
and operation constraints, a cascade control struc-
ture is proposed as shown in Figure 1.

In Figure 1, an inner loop is closed for constraint
control. The setpoint of the inner loop is deter-
mined by the outer loop, which is designated for
self-optimizing control by maintaining the gradi-
ent function G(z, v, d) at zero. Within the feasible
range of the process constraint, the setpoint of the
inner loop is floating as a manipulated variable

to satisfy the self-optimizing condition. However,
when disturbances cause the process towards out-
side of the constraints, the saturation block will
limit the setpoint within the constraint so that
the controlled variable of the inner loop will be
kept within feasible range. In this way, the self-
optimizing control and constraint control loops al-
ternatively become active and inactive to achieve
constrained self-optimization.

The limits in the saturation block may also need
to be consider with a suitable back-off to avoid
dynamic violation of the constraints in the worst
disturbance.

The cascade structure is more or less similar to
traditional multilevel optimizing control system
where the optimization layer calculates the opti-
mal setpoint for lower level process control loops.
However, in the self-optimizing control configura-
tion, the optimal setpoint is produced by a nor-
mal process control loop without realtime online
optimization. In a self-optimizing control system,
gradient is dynamically calculated. Therefore, the
setpoint produced by gradient control changes
smoothly from one operating point to another.
This is preferable to step setpoint change derived
by static optimization and may lead to better
results as shown by the case study in the following
sections.

4. EVAPORATOR SELF-OPTIMIZING
CONTROL

4.1 Gradient function

The constrained self-optimizing control strategy is
applied to the evaporation process of Newell and
Lee (1989), shown in Figure 2. This is a “forced-
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Fig. 2. Evaporator System

circulation” evaporator, where the concentration
of dilute liquor is increased by evaporating solvent
from the feed stream through a vertical heat ex-
changer with circulated liquor. The process vari-
ables are listed in Table 1 and model equations
are given in Appendix A.



Table 1. Variables and Optimal Values

Var. Description Value Units

F1 Feed flowrate 10 kg/mim

F2 Product flowrate 1.41 kg/mim

F3 Circulating flowrate 23.05 kg/mim

F4 Vapor flowrate 8.59 kg/mim

F5 Condensate flowrate 8.59 kg/mim
X1 Feed composition 5 %

X2 Product composition 35.5 %

T1 Feed temperature 40 oC

T2 Product temperature 91.22 oC
T3 Vapor temperature 83.61 oC

L2 Separator level 1 meter

P2 Operating pressure 56.42 kPa

F100 Steam flowrate 10.02 kg/mim

T100 Steam temperature 151.52 oC

P100 Steam pressure 400 kPa

Q100 Heat duty 366.63 kW

F200 Cooling water flowrate 230.54 kg/mim
T200 Inlet C.W. temperature 25 oC

T201 Outlet C.W. temperature 45.5 oC

Q200 Condenser duty 330.77 kW

The economic objective is to minimize the oper-
ational cost [$/h] related to steam, cooling water
and pump work (Heath et al., 2000; Wang and
Cameron, 1994):

J = 600F100 + 0.6F200 + 1.009(F2 + F3) (9)

The process has the following constraints related
to product specification, safety and design limits:

X2 ≥ 35 + 0.5% (10)

40 kPa ≤ P2 ≤ 80 kPa (11)

P100 ≤ 400 kPa (12)

F200 ≤ 400 kg/min (13)

0 kg/min ≤ F3 ≤ 100 kg/min (14)

Note a 0.5% back-off has been enforced on X2 to
ensure the variable remaining feasible for all pos-
sible disturbances. The process model has three
state variables, L2, X2 and P2 with eight degrees
of freedom. Four of them are disturbances, F1,
X1, T1 and T200. The rest four degrees of freedom
are manipulable variables, F2, P100, F3 and F200.
The optimization problem of (9) with process
constraints, (10) to (14) has been solved under
nominal disturbances:

d =
(

F1 X1 T1 T200

)T
=

(

10 5 40 25
)T

(15)

The minimum cost obtained is 6178.2 $/h and cor-
responding values of process variables are shown
in Table 1.

At the optimal point, there are two active process
constraints, X2 = 35.5% and P100 = 400 [kPa].
These two constraints will keep active within
whole disturbance region, which is defined as
±20% of the nominal disturbances. Physically,
the first active constraint is because a higher
outlet composition requires more solvent to be
evaporated, therefore needs more steam, cooling
water and pump cost. For the second constraint,

since heater duty, Q100 is determined by both
steam pressure, P100 and circulating flowrate, F3,
reducing P100 will increase F3 due to energy
balance. However, the sensitivity of P100 to steam
cost is much lower than that of F3. Hence, an
optimal operation should keep X2 at its lower
bound and P100 at its higher bound.

These two active constraints plus the separator
level, which has no steady-state effect on the
plant operation, but must be stabilized at its
nominal setpoint, consume three degrees of free-
dom. Therefore, the first-order optimal condition
has one degree of freedom. Choose cooling water
flowrate, F200 as v and rest manipulated variables
and state variables as z, i.e.

z =
(

L2 X2 P2 F2 P100 F3

)T

By using (7), the following gradient function is
obtained (see Appendix B):

G = 0.6 − 0.5538
T201 − T200

F200

× (16)

(

6.306
0.16(F1 + F3) + 0.07F1

T100 − T2

+
42F1

36.6

)

4.2 Self-optimizing control structure

Among process constraints lised from (10) to (14),
X2 and P100 are actively constrained; F200 and
F3 are manipulated variables. Therefore, only P2

needs to be controlled in a cascade structure il-
lustrated in Figure 1. The primarily controlled
variables should include variables for stabilization,
variable for active constraint control and the gra-
dient function for self-optimizing control. Since
one of the active constraints, P100 is a manipulable
variable, it is kept at its maximum value in an
open loop. Thus the control structure has three
primary measurements, L2, X2 and the gradient,
G of (16), one secondary measurement, P2 and
three manipulated variables, F2, F3 and F200.

The next step is to pair these inputs and outputs
to construct a decentralized control scheme. The
evaporation process has been considered by many
researchers for decentralized control since the
model was published. Since the process dynamic
model has an integrator, the steady-state gain
matrix cannot directly be calculated. This blocked
people to use the RGA to select input/output
pairing. Most researchers including the original
authors have made their decisions based on the
following engineering heuristic judgement, using
product flowrate, F2 to control separator level, L2

(Newell and Lee, 1989; Heath et al., 2000; Kookos
and Perkins, 2001; Kookos and Perkins, 2002).
This judgement was also confirmed by applying
pole direction analysis (Govatsmark and Skoges-
tad, 2001). However, this decision will result in



a decentralized control system, which has strong
interactions and requires a big back-off for the
product composition. The big back-off will in-
crease operating costs significantly.

Actually, input-output pairing of an integrating
process can still be determined using the RGA
index with a specially determined steady-state
gain matrix (McAvoy, 1998). In this work, it is de-
termined via directly model analysis. From model
equations, it can be identified that F2 is the only
manipulated variable which can affect X2 if all
other loops are open, i.e. the model represents a
semi-decentralized system without any decoupling
compensator (Wang and Cameron, 1994). There-
fore, it is a natural choice to pair F2 with X2. Since
other loops will not impose any interactions to this
loop, the composition can be tightly controlled so
that the back-off of X2 can be significantly re-
duced. The rest loops are configure as follows: L2

controlled by F3, gradient function G controlled
by the setpoint of P2, which is in turn controlled
by F200 via the cascade structure of Figure 1. It
can be shown from the open-loop transfer function
of the process that this configuration results in a
near-triangular system, i.e. a system has only one-
way interactions. Therefore, it is relatively easy to
tune loop controllers to get satisfied performance.
It is worth to point out that this configuration
can also be obtained by applying the techniques
proposed by Samyudia et al. (1995).

5. SIMULATION RESULTS AND
COMPARISON

The above decentralized and cascade self-optimizing
control scheme is implemented with PI controllers
in a MATLAB/Simulink model. The parameters
of four PI controllers are shown in Table 2. In

Table 2. PI controller parameters

Loop Gain Integral time [min]

(L2,F3) 200 5
(X2,F2) 36.74 4.6619

(P2,F200) 200 6.667
(G,P2 Setpoint) 1000 2000

the simulation all disturbances are modelled as
a step signal passing through a first-order delay.
The amplitudes of step changes are randomly
produced within the ±20% range of the nominal
values. The changing intervals and time constants
of the first-order delays are shown in Table 3. With

Table 3. Disturbance model parameters

Disturbance Interval [min] Time constant [min]

F1 120 20

X1 6 2

T1 15 5

T200 15 5

Table 4. Alternative configurations and
operating costs

Structure Self-opt. loop Cost I [$] Cost II [$]

FF F200/F1 120,918 120,627
F F200 120,947 120,656

G T201 120,952 120,660

C P2 121,653 121,356

B F3 122,800 121,596

This work Gradient 120,916 120,625

the above configuration, simulation results of a 20-
hour operation are shown in Figure 3. The total
operating cost is $120,916. From Figure 3 (c) and
(i) it can be seen that around hour 4 and hour
19:30 there are two periods where the operating
pressure constraint becomes active. During these
periods, the gradient function presents big offsets,
i.e. the process has to sacrifice some cost to ensure
operating safety.

It also can be observed from Figure 3 (b) that
the product composition X2 has been tightly con-
trolled within 35.48% to 35.52% range. This is
much better than expected at design stage. There-
fore, a further reduction on the back-off value is
achievable. That means a further reduction in the
total operating cost.

Govatsmark and Skogestad (2001) have also inves-
tigated the self-optimizing control problem for the
same evaporation process. They proposed seven
most promising self-optimizing control structures.
Five of these structures (G, FF, F, C and B) are
listed in Table 4. Two structures using T2 and T3

for self-optimization are omitted for comparison
because they are equivalent to structure C using
P2. These structures are based on that separator
level L2 is controlled by F2. Thus, these configu-
rations cannot achieve 0.5% back-off of X2 under
the same disturbances as above. For comparison,
these structures are modified to use F2 to control
X2. A modification to use the cascade structure
to ensure P2 within its boundary is also imposed
on these structures. With the modifications in
place, these configurations plus gradient control
are simulated under the same disturbances condi-
tions as above. The total 20-hour operating costs
of these structures are shown in Table 4 (Cost
I). For comparison, the total costs with reduced
composition back-off (0.05%) are also listed (Cost
II). The table clearly shows that the gradient
control indeed is the best configuration. The costs
of other three configurations, FF, F and G are
only few dollars more than the optimal operation.
Since these variables are normal measurements,
in practical system, they are the best alternative
choices for self-optimizing control. Structure B is
the worst not only in cost bust also in constraint.
Simulation results (not shown in the paper) indi-
cate that it cannot maintain P2 within limits. The
relative loss of structure C is about 0.6% whilst
the absolute loss is over $800 per day. Therefore, it
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is not suitable for self-optimizing control in long-
term operating. It is worth to point out that this
comparison is based on constraint control on X2

and P100, i.e. all structures are at least partly
optimal. This might be the reason why the costs of
alternative configurations are close to each other.
Even through, the gradient control still provides a
benchmark for achievable operating cost for differ-
ent configurations. The reduction in composition
back-off can save about $350 per day in total
operating cost. It is significant in the long-term
operating point view. The benefit is due to the
input-output pairing configured appropriately.

The optimality of gradient control is also com-
pared with traditional two-layer optimizing con-
trol configuration, where the setpoint of P2 is
determined by a steady-state optimizer. The com-
parison is based on the assumption that distur-
bances in F1, X1, T1 and T200 change randomly
within ±20% of their nominal values. All distur-
bances change simultaneously at every 5 hours. It
has been found that it is necessary to pre-filter
the step change in the setpoint of P2 to avoid
overshot of P2 and to reduce the operating cost.

Table 5. Operating cost comparison

Optimal setpoint with filter Gradient
τ = 30 min τ = 45 min τ = 60 min control

287,756.01 287693.81 287,713.69 287,665.21

The overall operating cost is very sensitive to the
time constant of the filter. Fifty-hour operation
costs with three different filters are compared with
that of gradient control in Table 5. The results
in Table 5 show that setpoint filter with time
constant of 45 [min] is the best for direct P2

setpoint change. However, even with this carefully
designed filter, the direct setpoint change based
on steady-state optimization is still not as good
as the gradient control configuration. A dynamic
performance comparison between gradient control
and optimal P2 setpoint control with prefilter of
45 min is shown in Figure 4. Figures 4 (a) and
(c) show that the main difference between these
two configurations are at 0 hour and 40 hour when
P2 decreasing to the lower bound, where P2 has
faster response with gradient control than with
directly P2 setpoint optimizing control. This com-
parison reveals that the gradient control is more
or less equivalent to traditional two-layer directly
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setpoint optimizing control with a setpoint pre-
filter. However, the advantage of gradient control
is that it has a varying time constant adaptively
adjusted according to disturbances and current
process states. This feature makes the gradient
control is more promising than traditional two-
layer directly setpoint optimizing control.

6. CONCLUSIONS

The concept of self-optimizing control has been
scrutinized. Using the chain rule of differentia-
tion, an explicit expression of gradient in terms of
system’s Jacobian matrices has been derived for
the first-order optimal condition of a constrained
optimization problem. This gradient function can
directly be used as a controlled variable to achieve
self-optimization. To cope with conditionally ac-
tive constraints, a cascade control structure has
been proposed. With this structure, the optimal
condition and conditionally active constraints can
automatically switch each other to be active or
inactive depending on disturbances so that both

are satisfied. Both ideas have been demonstrated
with the evaporator system. For the evaporation
process, it is also shown that a traditional en-
gineering judgement for level control structure
selection may lead to a wrong decision.
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Appendix A. MODEL EQUATIONS

dL2

dt
=

F1 − F4 − F2

20
(A.1)

dX2

dt
=

F1X1 − F2X2

20
(A.2)

dP2

dt
=

F4 − F5

4
(A.3)

T2 = 0.5616P2 + 0.3126X2 + 48.43 (A.4)

T3 = 0.507P2 + 55.0 (A.5)

F4 =
Q100 − 0.07F1(T2 − T1)

38.5
(A.6)

T100 = 0.1538P100 + 90.0 (A.7)

Q100 = 0.16(F1 + F3)(T100 − T2) (A.8)

F100 = Q100/36.6 (A.9)

Q200 =
0.9576F200(T3 − T200)

0.14F200 + 6.84
(A.10)

T201 = T200 +
13.68(T3 − T200)

0.14F200 + 6.84
(A.11)

F5 =
Q200

38.5
(A.12)

Appendix B. GRADIENT FUNCTION

The gradient is derived based on that L2 and
X2 are perfectly controlled. Therefore, equations
(A.1)and (A.2) are simplified as follows:

F2 = F1

X1

X2

(B.1)

F4 = F1

(

1 −
X1

X2

)

(B.2)

Linking (B.2) with (A.6) gives

∂F3

∂P2
=

0.5616[0.16(F1 + F3) + 0.07F1]

0.16(T100 − T2)

The derivative of F100 to P2 is determined from
(A.9) and (A.8):

36.6

0.16

∂F100

∂P2

=
∂F3

∂P2

(T100 − T2) − 0.5616(F1 + F3)

From equations (A.10) and (A.12), it can be
derived that

∂F5

∂P2

=
(0.9576 × 0.507)F200

38.5(0.14F200 + 6.84)
(B.3)

∂F5

∂F200

=
(0.9576 × 6.84)(T3 − T200)

38.5(0.14F200 + 6.84)2

=
(0.9576 × 0.5)(T201 − T200)

38.5(0.14F200 + 6.84)
(B.4)

Hence, the partial derivatives of the cost function
given in (9) are:

∂J

∂F200

= 0.6

∂J

∂P2

= 600
∂F100

∂P2

+ 1.009
∂F3

∂P2

= 0.5616 ×

(

6.306
0.16(F1 + F3) + 0.07F1

T100 − T2

+
42F1

36.6

)

Denote f = F4 − F5 in (A.3). Then

∂f

∂P2

=−
∂F5

∂P2

∂f

∂F200

=−
∂F5

∂F200

Combining with (B.3) and (B.4) gives

∂f

∂F200

(

∂f

∂P2

)

−1

= 0.9862
T201 − T200

F200

(B.5)

To select a variable from P2 and F200 to derive
the gradient of J , the magnitude of the above
ratio is to be checked. For simplicity, the check is
only done at the nominal operating point, where
0.9862(T201 − T200)/F200 = 0.0877 < 1. Hence,
choosing F200 as independent variable leads to
a flatter gradient, therefore is less sensitive to
control error than choosing P2.

Choosing F200 as the independent variable and
using (7), the gradient function can be calculated
as

G =
∂J

∂F200

−
∂f

∂F200

(

∂f

∂P2

)

−1
∂J

∂P2

(B.6)

Inserting all relevant partial derivatives into the
above equation gives the gradient function in (16).


