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Abstract: Partial Least Squares (PLS) is a popular method for the development of a 
framework for the detection and location of process deviations. A limitation of the 
approach is that it has generally been used to monitor one recipe, one product, for 
example, consequently applications may have been ignored because of the need for a 
large number of process models to monitor multi-product production. This paper 
introduces two extensions - multi-group and multi-group-multi-block PLS.  These 
techniques enable a number of similar products, manufactured across different unit 
processes, to be monitored using a single model. The methodologies are demonstrated by 
application to a multi-recipe industrial manufacturing process. Copyright 2003 IFAC. 
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1. INTRODUCTION 
 
Of particular strategic importance, especially in 
highly competitive world markets, is the drive to 
reduce the amount of off-specification production, re-
work and waste, and minimize operating costs whilst 
continuously striving to reduce the levels of 
variability inherent within the manufacturing process.  
These drivers have led to the development of 
performance monitoring systems that not only 
provide early warning of the onset of process upsets, 
equipment malfunctions or other special events, but 
which also contribute to the identification and the 
location of the assignable causes of these events.  
 
One of the more recent approaches for assessing and 
improving the performance and operation of 
manufacturing processes, and the quality and 
consistency of production, has been Multivariate 
Statistical Process Control (MSPC). The underlying 
methodologies are equally applicable to continuous 
and batch processes and have been investigated by a 
number of researchers including Kosanovich and 
Piovoso, (1995), Kourti et al, (1995), Martin et al, 
(2002); Simoglou et al, (2000); Rius et al 1997, 

Weighell et al, (2001) and Wise and Gallagher 
(1996).  
 
Today production processes are required to meet the 
needs of changing markets and product 
diversification resulting in a drive towards flexible 
manufacturing. The process performance 
methodologies reported in the literature have 
typically focused on single product manufacture.  
Thus to accommodate market driven changes and 
multi-product manufacturing, there is a real need for 
process models which allow a range of product types, 
grades or recipes to be monitored using a single 
process representation. Traditionally multiple product 
manufacture has been handled through the 
development of separate control charts for each type 
of product, recipe or grade. In many process 
monitoring situations this may be impractical 
because of the large number of control charts 
required to monitor all the products being 
manufactured and the limited amount of data 
available from which to develop a process 
representation. Thus for the statistical monitoring of 
multiple products, there is a need to develop a 
methodology whereby the between group variation is 



removed, so that interest can focus on the within 
process (product) variability.   
 
An extension to the statistical projection technique of 
Principal Component Analysis has previously been 
reported, Lane et al. (2001).  Within this paper the 
methodology is extended to Partial Least Squares 
(PLS).  In particular both multiple group and multi-
group multi-block algorithms are proposed based on 
combining the variance-covariance matrices of each 
of the individual groups. The latent variable loadings 
are then calculated from the pooled variance-
covariance matrix of the individual groups.  For the 
calculation of the pooled correlation (variance-
covariance) matrix, it is assumed that a common 
eigenvector subspace spanned by the first a 
eigenvectors of the individual correlation (variance-
covariance) matrices exists. 
 
The approach is illustrated through the development 
of multi-group PLS models for the monitoring of a 
commercial semi-discrete batch manufacturing 
operation, which involves the production of a variety 
of products (recipes), some of which are only 
manufactured in small quantities.  In this particular 
application the multi-group methodology is able to 
handle different recipes that contain a number of 
different raw materials, as well as several ingredients 
that are specific to a particular recipe, and different 
numbers of monitored process variables. By grouping 
the recipes into a number of sub-groups (families), 
separate monitoring schemes for each family can be 
developed. The advantage of this approach is that 
instead of developing a separate model for each 
individual product type, which could result in a large 
number of models, a multi-group model is built for 
each family. An extension to this application was 
considered where several recipes undergo a pre-
mixing as well as a main mixing stage. For this study 
a multi-block multi-group methodology was 
developed. 
 
 

2. CURRENT METHODOLOGIES 
 
2.1 Introduction 

 
The main advantage of statistical projection 
techniques such as PCA and PLS is their ability to 
handle large numbers of highly correlated process 
variables. At the same time they have the ability to 
project the information contained within large data 
sets onto lower dimensional subspaces defined by a 
few latent variables, which are a weighted 
combination of the original variables. However, 
when the number of variables contained within a data 
set becomes extremely large the monitoring charts 
and in particular the diagnostic charts can become 
difficult to interpret. When this occurs there is often a 
temptation to exclude a number of the measured 
variables in an attempt to make the charts more 

manageable. Excluding variables can lead to a loss of 
information, model mismatch or incorrect diagnostic 
information. Consequently the concept of the multi-
block techniques has grown in popularity. 
 
2.2. Hierarchical and Multi-block  Modeling 
 
The objective of hierarchical principal component 
analysis (HPCA) and multi-block projection to latent 
structures (MBPLS) is to divide the process into a 
number of meaningful blocks and then apply PCA or 
PLS to the individual blocks. The individual block 
scores are combined into a consensus matrix and 
PCA or PLS is once again applied. The consensus 
scores are then used to monitor the overall process. 
Consequently when a process disturbance occurs, it 
is possible to isolate the block in which the 
disturbance has occurred. The individual block scores 
are then used to provide information on the specific 
variables that are indicative of the source of the 
disturbance. A schematic of the MBPLS monitoring 
scheme is shown in Fig. 1. Here the consensus 
monitoring chart detects the process disturbance and 
the corresponding contribution plot identifies the 
block in which the disturbance occurred and finally 
the contribution plot for that particular block 
identifies the variables indicative of the disturbance. 
 

 
Fig. 1. Multi-block process performance monitoring. 
 
The concept of hierarchical multi-block PCA and 
PLS was initially introduced around 1986. More 
recently papers on hierarchical algorithms have been 
published by Wold et al (1996) and Westerhuis et al 
(1998). The original algorithm was termed 
Consensus PCA (CPCA) and was presented as a 
method for comparing several blocks of descriptor 
variables measured on the same object. The data was 
divided into a number of blocks and the block 
loadings computed. In turn these were used to 
calculate the block scores, which were combined into 
a “super” block. The super block loadings were then 
computed and normalised to unit length. Finally a 
super score is computed. After convergence all the 
blocks are deflated using the super scores and a 
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Block level 

Block2 



second super score, orthogonal to the first, is 
computed using the block residuals. 
 
The algorithm presented by Wold et al (1996), 
Hierarchical Principal Component Analysis (HPCA), 
is similar to CPCA. The only difference being that 
instead of normalising the super loadings Wold et al 
(1996) normalised the super scores. In that paper the 
HPCA algorithm was demonstrated through its 
application to a catalytic cracker where both the 
process and quality variables were divided into a 
number of separate blocks and the resulting blocks 
combined into two consensus matrices, one for the 
process and one for the quality data. A second PLS 
was then carried out between the two consensus 
matrices.  
 
Both the CPCA and HPCA algorithms were reviewed 
by Westerhuis et al (1998). They reported that both 
algorithms had convergence problems and needed 
modification. For the CPCA algorithm the block 
loadings as well as the super loadings had to be 
normalised. In a similar manner, the individual block 
scores of the HPCA algorithm also required 
normalising to unity. However, this still does not 
guarantee convergence with the algorithm 
converging to different solutions depending on the 
initial super score starting vector.       

 
 

3.  MULTI-GROUP PLS 
 
The multiple group modeling approach was initially 
developed for principal component analysis, Lane et 
al. (2001).  It can however be extended to PLS.  PLS 
is a projection based method which maximizes the 
correlation between the process variables X and the 
quality variables Y. The objective being to 
summarize the variation in the data set using 
surrogate or latent variables that are linear 
combinations of the process variables. 
Dimensionality reduction is achieved if the number 
of latent variables is less than the number of process 
variables in the data set. A detailed description of 
PLS is given by Geladi and Kowalski (1986) and 
Garthwaite (1994).   
 
For the multi-group approach, the algorithm 
presented by Lindgen et al. (1993) forms the basis of 
the computational approach adopted here.  This 
method uses the sample variance-covariance matrix, 

XYYX TT , to estimate the latent variable loadings 
vector W, where X is the standardised process data 
matrix and Y is the standardised quality data matrix. 
The loading vector W1 is the first eigenvalue of the 
matrix XYYX TT . Once W1 has been estimated, the 
latent variable scores t are calculated as: 
 

11 XWt =  (1) 
 

With the regression loading vectors, P and Q, given 
by:- 
 

11
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tt
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11
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The X and Y data block matrices are then deflated to 
give:- 
 

T
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T
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The second latent variable is then calculated as: 
 

2new2 WXt =  (4) 
 
where W2 is the first eigenvalue of :- 
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T
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This iterative procedure is continued until all the 
required latent variables have been computed. To 
extend this PLS algorithm to multiple group 
situations requires pooling the sample variance-
covariance matrices of each of the groups and 
estimating the common loadings vectors iW  from 
the pooled variance-covariance matrix. For example 
for the two group case, this would require pooling the 
variance-covariance matrices: 
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where Xi are the standardised matrices of the process 
data for each data group and Yi are the standardised 
matrices of quality data for each data group. In both 
cases .2,1=i  The pooled variance-covariance matrix 
is given by: 
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(7) 

 
where in  are the number of observations in each 
group, .2,1=i   The loadings vector W is the first 
eigenvector of the pooled variance-covariance 
matrix. The iteration procedure can then be followed 
in a similar manner to that described previously. 
 
The pooled correlation (variance-covariance) 
approach is based on the existence of a common 
eigenvector subspace spanned by the first a 
eigenvectors of the individual correlation (variance-
covariance) matrices. A formal statistical model was 



defined by Flury (1987), who computed the common 
principal components using Maximum Likelihood 
Estimation (MLE). Previously Krzanowski (1984) 
had demonstrated that the common principal 
components derived using the pooled correlation 
(variance-covariance) matrix were almost identical to 
those computed from MLE. In practice the pooled 
correlation (variance-covariance) approach proposed 
by Krzanowski (1984) is simpler to apply than the 
MLE approach which requires the implementation of 
an iterative algorithm.  
 
Furthermore, the pooled correlation (variance-
covariance) approach compares the subspaces 
defined by the eigenvectors associated with the 
largest eigenvalues whereas no conditions are placed 
on the MLE approach proposed by Flury (1987). This 
is a major consideration when determining the 
method to be used for calculating the latent variables 
for process monitoring. In process monitoring, it is 
convention to construct the process models using the 
eigenvectors corresponding to the largest 
eigenvalues. As a consequence determining the 
common principal components from the pooled 
correlation (variance-covariance) matrix is more 
appropriate for the industrial processes being 
considered (Lane et al, 2001). 
 
 

4. MULTIPLE GROUP MULTI-BLOCK 
PROJECTION TO LATENT STRUCTURE 

 
The algorithm for multiple group PLS can be 
extended to situations were the process and/or quality 
variables can be divided into separate blocks. Multi-
block PLS is particularly useful in situations where 
the number of variables is very large making the 
monitoring schemes unwieldy and difficult to 
interpret (MacGregor et al. 1994). As an example, 
the algorithm for a multiple-group two-block case is 
presented. 
 
1. Construct the individual variance-covariance 

matrices for each group and each block: 
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where Xskl is the scaled process data for group k 
and block (l), Ysk is the  scaled quality data for 
group k and nk is the number of observations in 
group k. 

 
2. The pooled variance-covariance matrix is then 

calculated for each block (l): 
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where N is the total number of observations in 
all k groups and g is the number of groups. 
 

3. The loading vector for the first latent variable for 
each block ( 1lw ), i.e. the leading eigenvector of 
the respective pooled variance-covariance 
matrices ( lR ), is then calculated. 

 
4. The latent variable scores ( klt ) for each group 

and each block are given by: 
 

1lsklkl wXt =   k = 1,…, g and l = 1, 2. (10) 
    

5. The scores for each block are then combined into 
a consensus matrix: 

 
]:[ 21 kkk ttT =  (11) 

 
where kT  is the consensus matrix for group k. 

 
6. The consensus pooled variance-covariance 

matrix is then constructed with the scores 
matrices ( kT ) replacing the process data ( sklX ) 
in the following way: 
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where ( kR ) are the individual consensus 
variance-covariance matrices given by: - 
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7. The latent variable loading vector ( 1v ) for the 

consensus model is the leading eigenvector of 
the matrix ( cR ). 

 
8. The consensus latent variable scores are then 

calculated for each group: 
 

1vTt kck =  (14) 
 

9. The loading vectors for each group and each 
block are then calculated: - 
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10. The process data matrices ( sklX ) and the quality 

data matrices ( skY ) are then finally deflated: 
 



T
klklsklnewskl ptXX −=  

T
kcksknewsk qtYY −=  

(16) 

 
Steps 1 to 10 are repeated with each new set of 
residual matrices replacing the previous matrices 
until all the required latent variables have been 
extracted. 
  
 

5. INDUSTRIAL APPLICATION 
 

5.1. Process Description 
 
The industrial process selected to demonstrate the 
detection and diagnostic capabilities of the multi-
group and multi-group multi-block methodologies is 
a batch production process in a manufacturing sense. 
The process includes the two main characteristics of 
batch operation, flexibility and finite duration. 
However, in a statistical sense the data matrix is only 
two-dimensional with a single, between batch source 
of variability. This is as a result of the semi-discrete 
nature of this particular manufacturing process, with 
the process variables being measured only once 
during each batch.   
 
The process produces a wide range of household 
products to meet the demands of a rapidly changing 
and evolving market. It comprises a sequence of 
individual production steps involving the sequential 
dosing and mixing of a number of raw materials. 
During each raw material addition (dosing) a number 
of process measurements are recorded including 
operations and dosing times, flow meter 
measurements and load cell dose weights, batch 
temperature and temperature of the hot and cold 
process water added to the batch. 
 
There are two types of product produced on the plant. 
Each formulation can be subdivided into a number of 
different recipes, which in-turn can be further 
subdivided into a number of different varieties. The 
formulations are manufactured in separate areas of 
the plant, with each area having two mixers that are 
used simultaneously. For some recipes there is a pre-
mixing stage which is carried-out in parallel with the 
main mixing process, prior to being added to the 
main mix. Off-line analysis of several historical data 
sets showed that there were distinct differences 
between the mixers (Lane et al, 2001). As a 
consequence a separate model would be required for 
each mixer as well as for each variety of recipe, 
which is not a practical solution.   

 
5.2. Multi-group PLS 
 
To demonstrate the application of multiple group 
PLS the production of four recipes is considered. 
Each process mixer is also considered as a separate 

‘recipe’ and thus the process model contains four 
distinct groups as shown in Table 1. It is observed 
that recipes 3 and 4 have fewer raw materials and 
process variables than recipes 1 and 2. 
 

Table 1: Composition of the multi-recipe data sets 
 

Recipe
 

Mixer Batch’s Raw 
Mat’s 

Proc 
Var’s 

Qual 
Var’s 

1 1 19 23 120 1 
2 2 21 23 120 1 
3 1 20 17 90 1 
4 2 29 17 90 1 

 
The pooled variance-covariance matrix is constructed 
as a weighted sum of the individual elements of the 
individual variance-covariance matrices.  To address 
recipes containing different numbers of raw materials 
and process variables, the pooled variance-covariance 
matrix is constructed from the individual elements of 
each of the individual variance-covariance matrices:  
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where ),( jkpR  is the th),( jk  element of the 

pooled covariance matrix, ( )jki ,R  is the th),( jk  
element of the individual variance-covariance matrix 
for recipe i, ĝ  is the number of recipes containing 

both the ith and jth variables and N̂ is the total number 
of observations for the groups containing both the ith 
and jth variables. If either or both of the variables are 
not present in a recipe then there is no contribution to 
the pooled variance-covariance matrix. 
 
Fig. 2 shows the reference model constructed using 
the pooled variance-covariance matrix of the four 
groups to calculate the latent variable loadings. The 
ability to handle data sets containing different 
numbers of variables is a powerful advantage of the 
pooled variance-covariance approach. However, care 
needs to be taken when considering recipes 
containing different numbers of variables because the 
inclusion/exclusion of variables may affect the 
covariance structure of the data set. Cross-validation 
indicated that the first ten latent variables, explaining 
60% of the process variation and 70% of the quality 
variation were sufficient to monitor the process.  
 
To demonstrate the detection and diagnostic 
capabilities of the multiple-group PLS model, a batch 
exhibiting an abnormal product temperature profile 
was projected onto the reference model, Fig. 3. The 
bivariate scores plot of latent variables 3 and 4 
clearly identified the batch as being abnormal. In this 
particular example, by examining the loadings, it was 
identified that latent variable 3 was associated with 



the product temperature and latent variable 4 the 
temperature of the process water added to the batch.  
 
The monitoring of process performance takes place 
on the completion of each raw material dosing step. 
It can be seen that the observations move away from 
the centre of the control region following the first 
raw material dosing. Subsequent observations 
continue to drift away from the control region and an 
“out-of-statistical-control” signal occurs after 
completion of the third raw material dosing. 

 
Fig. 2. Bivariate Scores Plot (Pooled) (Recipe 1 'x', 

Recipe 2 'o', Recipe 3 '+', Recipe 4 ‘*‘ ) 

 
Fig. 3.  Bivariate scores plot for latent variable three 

versus latent variable four.  
 
The contribution plot for latent variable three (Fig. 
4), for the first observation outside the action limits, 
shows three variables making larger contributions to 
the latent variable scores - variable 4 (cold process 
water temperature), variable 5 (product temperature 
following the first raw material dosing) and variable 
14 (product temperature following third raw material 
dosing). 
 

 
Fig. 4. Contribution Plot for latent variable three 
 

The problem was identified to be due to the failure of 
the process water cooling system and water entered 
the batch above the required temperature, which led 
to the product temperature being abnormally high. As 
the product temperature is monitored following each 
raw material dosing, the latent variable scores 
continue to move away from the control region. A 
second dosing of process water also occurred later on 
in the batch which can be observed by the small 
change in the direction of the scores following the 
seventh raw material dosing (Fig. 3). At present no 
remedial action is taken during the production 
process and one of the motivations for the on-line 
application was to allow operators to be more 
proactive when a processing problem occurs. 
 
 

6.  MULTI-GROUP MULTI-BLOCK PLS 
MONITORING 

 
Several of the recipes in the manufacturing process 
undergo a pre-mixing as well as a main mixing stage 
during their manufacture. This makes multi-block 
PLS a particularly attractive methodology for 
building a monitoring model as there is a natural 
blocking of the variables. To demonstrate the 
multiple group multi-block PLS methodology three 
recipes were selected. This resulted in six data sets, 
since each recipe can be produced in either of two 
mixing areas. The composition of the data set is 
summarised in Table 2.  
 

Table 2: Composition of the process data sets 
 

Recipe Mixing 
Area 

Batch’s Quality 
Variables 

1 1 48 3 
1 2 43 3 
2 1 16 3 
2 2 27 3 
3 1 51 3 
3 2 31 3 

 

Pre-mixer Main-mixer 
Raw 

Materials 
Process 

Variables 
Raw 

Materials 
Process 

Variables 
10 41 17 84 
10 41 17 84 
10 41 17 84 
10 41 17 84 
10 41 17 84 
10 41 17 84 

 
In this case each recipe contains the same number of 
raw materials. This was because the recipes were 
very similar and only differed in terms of colouring. 
In this application the individual colourings were 
treated as being the same raw material because the 
colouring was only considered as being a “minor” 
raw material and was perceived to have no influence 
on product quality. 



As in the previous study, a set of monitoring charts 
were constructed using data collected when the 
process was manufacturing acceptable quality 
product and there were no assignable causes of 
variation present in the data. In this example three 
sets of monitoring charts were required one for each 
individual block and one for the overall process, i.e. 
the consensus model.  
 
The fault detection and diagnostic capabilities of the 
multiple group multi-block PLS model, are 
demonstrated using a batch where a raw material 
overdosing took place. As with the previous example, 
each latent variable score “x” represents the status of 
the current “on-line” batch following each successive 
raw material dosing.   The consensus scores plot for 
monitoring the overall process (Fig. 5) shows an 
“out-of-statistical-control” signal at the sample point 
following the overdosing. Unlike the previous 
example, the latent variable scores cluster in the 
center of the control region indicating “good” 
operation until the overdosing occurs. Following the 
overdosing there is an abrupt departure from the 
control region. 

 
Fig. 5. Latent variable scores plot (Consensus chart) 
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Fig. 6. Contribution plot for latent variable 2 

(Consensus chart) 
 
Examination of the contribution plot for latent 
variable 2 (Fig. 6) identified the pre-mixer as being 
the process subsection where the overdosing 
occurred. Inspection of the monitoring chart for the 
pre-mixer (Fig. 7) also identified the “out-of-
statistical-control” signal at the sample time 
following the overdosing.   In contrast no out-of-
control signal was identified from the latent variable 
scores plot of the main mixer (Fig. 8). 
 

 
Fig. 7.Latent variable scores plot (Pre-mixer chart) 

 
Fig. 8.Latent variable scores plot (Main mixer chart) 
 
For this particular fault both the consensus and the 
pre-mixing monitoring charts detect the fault at the 
same time. This is due to the small number of 
variables included in each block and the abrupt 
impact that the fault had on the latent variable scores. 
This is a direct consequence of the individual block 
monitoring charts only monitoring the deviation of 
the variables contained within that particular block 
and not the whole process, which is the case with the 
consensus monitoring charts. 
 
Investigation of the contribution plot for latent 
variable 2 (Fig. 9) identified variables 9 (dosing 
time), 10 (load cell dose weight), 11 (flow meter dose 
weight) and 12 (product temperature) as being 
responsible for the “out-of-statistical-control” signal.  

Fig. 9. Contribution plot for latent variable 2 (pre-
mixer). 

 
From this information, it was concluded than an 
overdosing of raw material 3 had occurred. A process 
engineer later confirmed that the overdosing was 
caused by a malfunction of a dosing valve that 
controls the amount of raw material being added into 
the batch. Prior to the application of MSPC, a similar 
problem had caused the manufacture of a number of 



“out-of-specification” batches before the problem 
had been identified, by chance.  
 
In such manufacturing situations only a few “key” 
variables may be monitored and faults impacting on 
the remaining variables can be missed.  The study 
has demonstrated that such processes could be 
monitored effectively using multi group multi-block 
MSPC. In contrast to the pre-mixing monitoring 
chart, the latent variable scores for the main mixer 
remain clustered in the center of the control region 
throughout the manufacture of the entire batch (Fig. 
8). This is because the fault detected in the pre-mixer 
has no impact on the variables being monitored in the 
main mixer. However, as the product from the pre-
mixer is added to the main mixer, the product in the 
main mixer will be affected by the pre-mixer fault 
unless the process is halted when the fault occurs. 
 
 

7.  CONCLUSIONS 
 
The industrial application has demonstrated the 
extension of PLS based MSPC methodologies to 
processes where different products or recipes are 
produced with a different number of variables being 
monitored. In the manufacturing application, the 
eigenvectors of the pooled variance-covariance 
matrices gave a good representation of the production 
process even though in some cases the recipes 
contained a different number of raw materials and as 
a consequence the data sets contained different 
numbers of variables.  
 
The results showed that for both multi group and 
multi group multi-block PLS the models had good 
detection and diagnostic properties. The latent 
variable scores plots detected batches which were 
out-of-statistical-control and the corresponding 
scores contribution plots identified the variables 
responsible for the out-of-control signal. In this 
application the contribution plots gave explicit 
information about the process abnormalities.  
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