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COMBINED GAIN-SCHEDULING AND MULTIMODEL CONTROL 
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Abstract: Reactive distillation (RD) is a favourable alternative to conventional series of 
reaction-separation processes. Control of RD is challenging due to its integrated 
functionality and complex dynamics. Linear PID algorithm is not satisfactory and 
needs because of the need for adequate retuning over a wide range of operating 
conditions. Combined gain-scheduling and multimodel control scheme is proposed to 
handle the nonlinearities of the process. Simulation results show the superior 
performance of the proposed method to that of a standard PI control.  
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1. INTRODUCTION 
 
The RD column is gradually becoming an important 
unit operation in chemical process industry.  It offers 
reduction in both investment as well as operational 
costs. Tight control of product composition and 
conversion is fundamental for an economically 
optimal operation. Unfortunately, both composition 
and conversion cannot be economically and reliably 
measured on-line and in real time. Moreover, the 
relationship between the product composition and the 
potential manipulated variable (eg. reboiler duty) 
may reveal multiplicity. Inferential control via stage 
temperatures, which have monotonic relationship 
with the manipulated variable, is commonly adopted.  
 
Directionality of a chemical process means that a 
vector of inputs (eg. manipulated variables) is 
differently amplified according to its direction. It has 
been known to create considerable complex problem 
in control system design for multivariable processes 
such as in conventional distillation (Sågfors and 
Waller, 1995). Standard PID with fixed parameters is 
not satisfactory because of the need for adequate 
retuning over a wide range of operating conditions.  
 
Inferential control of RD, which has directionality in 
the process gain, is investigated in this study. Limited 
number of reports has discussed control aspects of 
RD. Control strategies of batch RD (Sorensen and 
Skogestad, 1994) and its structure for optimisation 
(Wajge and Reklaitis, 1999) have been investigated. 
Recently, nonlinear control of batch RD has been 
proposed (Balasubramhanya and Doyle III, 2000). 

For continuous RD, a nonlinear input-output 
linearizing controller and nonlinear controller have 
been designed for ethylene glycol system (Kumar 
and Daoutidis, 1999). A robust PI control scheme has 
been proposed for the same system (Loperena et al., 
2000).  Linear and nonlinear control strategies have 
been applied for an ethyl acetate system (Vora and 
Daoutidis, 2001). A variety of control structures have 
also been explored for two product RD (Al-Arfaj and 
Luyben, 2000). 
 
For ethyl tert-butyl ether (ETBE) RD, which is the 
focus of this study, general control considerations 
have been presented (Sneesby et al., 1997). 
Combined composition and conversion control have 
been discussed (Sneesby et al., 1999). Control 
performance of a variety of one-point control 
schemes has been compared (Bisowarno and Tadé, 
2002). Pattern-based predictive control has recently 
been proposed for controlling the product 
composition (Tian et al., 2003). Effectiveness of 
control schemes has been compared for single and 
double-feed RD (Al-Arfaj and Luyben, 2002). 
Standard PI algorithms, which were employed for all 
cases, indicated more advanced controller is required 
to improve the control performance. 
 
In this study, combined gain-scheduling and 
multimodel control will be implemented on one-point 
control of an ETBE RD. The models cover 
directionality of the process gain and a switching 
scheme will be employed to integrate them. Its 
performance will be compared to that of a standard 
PI controller. 



2. REACTIVE DISTILLATION 
 
A pilot scale packed RD column for ETBE 
production serves as an example for a typical single-
feed two-products RD process. The column consists 
of 1 rectifying stage, 3 reactive stages, 4 stripping 
stages, a total condenser, and an electric partial 
reboiler, respectively, as shown in Figure 1. The feed 
is a mixture of isobutylene, ethanol, ETBE, and n-
butane, resulting from a pre-reactor, which converts 
most of isobutylene to ETBE. Typical operating data 
including the operating range are summarised in 
Table 1. The primary and secondary manipulated 
variables are reboiler duty (QR) and reflux rate (LR), 
respectively. LV control scheme, which outperforms 
other control schemes for this column (Bisowarno 
and Tadé, 2002), is employed.  
 
Inferential control is adopted to control the ETBE 
purity. The relationship between the purity and the 
reboiler duty reveals input multiplicity phenomena as 
shown in Figure 2. Based on the sensitivity analysis, 
stage 7 temperature is found to be the most 
appropriate measured variable to infer the ETBE 
purity (Tian and Tadé, 2000). Figure 2 also shows the 
relationship between the stage 7 temperature and the 
UHERLOHU�GXW\��7KH�QRQOLQHDU�SURFHVV�JDLQ��� 77� 4r) 
is large around the nominal operating condition and 
becomes small outside this range.  
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Fig. 1 ETBE Column with the controllers 
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Fig.2 Stage 7 temp./purity vs. QR (LR = 2.2 l/min) 

Table 1 ETBE RD column characteristics and Inputs 
 

Column Specifications: 
Nre/Nrx/Nst 3/3/5 
Feed stage 6 
Overhead pressure 950 kPa 
Feed Conditions: Range Nominal* 
Temperature 30oC 30oC 
Rate (l/min) 0.684-0.836  0.76 
Comp. (mol) 70–80 mol% 

conversion 
in the pre-reactor 

0.291 ETBE,  
0.091 EtOH,  
0.073 iBut,  
0.545 nBut 

Man. Variables: Range Nominal* 
LR (l/min) 2.0 – 2.4  2.2  
QR (MJ/min) 0.4825-0.555 0.520 

* Nominal (optimum) operating condition for 
designing the control system 

 
 

3. CONTROL OBJECTIVES 
 
The main objective of the control system is to keep 
the controlled stage 7 temperature close to the set-
points despite the presence of disturbances. The most 
significant disturbances are changes in the feed flow 
rate and in the feed composition. The second 
objective is a sufficiently fast set-point tracking. 
These two objectives must be achieved for the entire 
operating range of the reactive distillation column. 
 
 

4. CONTROL DESIGN METHOD 
 
Adaptive control with multimodel was introduced in 
(Narendra and Balakrishnan, 1997). The basic idea is 
to choose the best model for the column from an a 
priori known set of models at every instant, and then 
apply the output of the corresponding controller to 
the column. Firstly, the process identification is 
performed by rapidly choosing the smallest error 
with respect to a criterion (switching). Unlike the 
previous work, the controller parameters are then 
adjusted using a parameter-adaptation algorithm in 
this study (gain-scheduling).  
 
 
4.1 Multimodel 
 
Although a single highly nonlinear and/or adaptive 
model may be used to represent the process 
dynamics, several simple fixed multimodels are 
employed. They are chosen to cope with nonlinear 
and time varying characteristics of each operating 
condition point. A proper switching scheme is 
needed to integrate the models. As a result, process 
identification and rapid control action can be 
satisfied.    
  
Simplified input-output dynamic models of the 
manipulation  and  disturbance  paths  are    identified 



Table 2 Multimodels based on open-loop tests 
 

LR (l/min) QR, min QR, nom QR, max 
2.0 4709.5 

238.4Ti s + 1 
4679.5 

78.5Ti s + 1 
498 

21 Ti s + 1 
2.2 6442.75 

197.4Ti s + 1 
4675 

73.2 Ti s + 1 
493 

23.2 Ti s + 1 
2.4 960.5 

122.4Ti s + 1 
9043.5 

126.1Ti s + 1 
1472 

54.9Ti s + 1 
Disturbances at LR = 2.2 l/min 
Feed rate  0.412 

23.75Ti s + 1 
 

Feed comp.   0.163 
6.75Ti s + 1 

 

 
around the optimum reboiler duty at constant reflux 
rate. Referring to Figure 2, three simplified models 
are derived to capture the nonlinearity of the process 
gain for each constant reflux rate. At each of the 
reboiler duty of 0.4825, 0.520, and 0.555 MJ/min, 
respectively, the models are derived at the reflux rate 
of 2.0, 2.2, and 2.4 l/min, respectively. The models of 
disturbance patch are derived at the optimum reboiler 
duty of 0.520 MJ/min. Table 2 shows the models 
formulated as first order transfer functions. 
 
 
4.2 Switching scheme 
 
The switching scheme involves firstly monitoring a 
performance index based on the identification error 
for each model and then switching to the model with 
smallest index.  A small identification error leads to a 
small tracking error (Narendra and Balakrishnan, 
1997). The performance index (IE) is formulated in 
equation 1, 
 
,(� � � i

2 ��� �∫� -λ(t-τ)� i
2 GW�� �≥���DQG� �!������������ 

 
ZKHUH� � DQG� � DUH� WKH� ZHLJKWLQJ� IDFWRUV� RQ� WKH�
instantaneous measures and the long-term accuracy, 
respectively. These two free design parameters 
provide smooth transition between different process 
PRGHOV�� i is the difference between the outputs of the 
model and the real plant.  
 
 
4.3 Gain Scheduling 
 
Gain scheduling is based on linear time-invariance of 
the process at a number of operating points. A linear 
controller is then designed for each operating point. 
Therefore, the parameters of the controller should be 
interpolated or scheduled (Rugh and Shamma, 2000). 
The controller gain is commonly scheduled due to 
the process nonlinearity with constant dynamics. 
 
Switching between local linear controllers is a 
conventional way for gain scheduling. A function of 
a scheduling variable can also be employed to 
interpolate the gain. Measured ouput or set-point may 
be used as a scheduling variable (Bequette, 2000).  
 

set-point        output 
 
 
 
 
 
 
 
          
 
Fig. 3 Combined gain-scheduling and multimodel 

control scheme 
 
In this study, the scheduling controller gain (Kc) is 
formulated in equation 2 (Ogunnaike and Ray, 1994), 
 

Kc = 
Kp

Kpo Kco
           (2) 

 
where Kco and Kpo are the reference values of the 
controller gain and process gains, respectively. The 
time varying process gain (Kp) is identified and 
computed on-line from the inferred variable and the 
manipulated variable. 
 
The reference control parameters are tuned by using 
Abbas method (Abbas, 1997). This method relates 
the controller parameters to the characteristics of a 
first-order plus time delay model and the desired 
over-shoot of the closed loop system (Alexander and 
Trahan, 2001). For a PI controller, the controller 
parameters are formulated in equation 3, 
 
 

Kc = �(Kpo
��T
+

+
   (3a) 

  
Ti = ��T +    (3b) 

 
ZKHUH�.SR��7��DQG� �DUH�WKH�RSHQ-loop process gain, 
WLPH�FRQVWDQW�� DQG� WLPH�GHOD\�� UHVSHFWLYHO\��DQG� � LV�
the desired closed-loop time constant.  
 
The general structure of the combined gain-
scheduling and multimodel control scheme is shown 
in Figure 3. G1, Gn, GS, and IE are the simplified 
model 1, the simplified model n, the gain-scheduling 
controller, and the performance index, respectively. 
 
 

5. CONTROL PERFORMANCE 
 
The control performance of the proposed method is 
compared to that of a standard PI controller. The 
desired closed-loop time constant is chosen to be 5 
min. Applying the Abbas method, the controller gain 
and time constant of the PI controller in the range of 
operating conditions are 0.00622 oC/(MJ/min) and 

GS RD Plant 

G1 

Gn 

IE 



84.53 min, respectively. For the proposed method, 
the time constant is kept constant at 84.53 min while 
the controller gain is computed on-line as a function 
of the scheduling variable. 
 
Figures 4 and 5 show the dynamic responses when 
the feed flow rates (Ff) increase or decrease steeply 
by using either standard PI or the proposed method, 
respectively. The Figure shows that the disturbance 
rejection of the proposed method is superior to the 
standard PI controller. 
 
Figure 6 shows the dynamic response resulting from 
step change in the feed composition (Fc). The 
changes were represented by changes in the pre-
reacted feed from 80 to 70 mol% of the isobutylene 
conversion. Figure 6 shows the proposed controller, 
which can tightly control the stage 7 temperature, 
does not keep the purity at the set-point value. This 
results from the model mismatch.  Although more 
models can be employed to enhance the control 
performance, the intrinsic problem remains. This 
problem results from the difficulties to infer 
composition from VLE temperature measurements in 
multi-component mixture.  
 
Figures 7 and 8 show the dynamic responses for step 
changes in the set-point value (T7). The proposed 
method clearly has better set-point tracking as shown 
by shorter settling time. 
 
The corresponding values of the integral absolute 
error (IAE) and integral of time-weighted absolute 
error (ITAE) criteria are shown in Table 3. The 
criteria confirm the previous analysis that the control 
performance can be improved by using the proposed 
method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Dynamic responses due to +10% Feed rate 

step change 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Dynamic responses due to –10% Feed rate step 

change 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 6 Dynamic responses due to feed concentration 

step change 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Dynamic responses due to +5 set-point step 

change 
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Fig. 8 Dynamic responses due to –5% set-point step 

change 
 

 
Table 3 Comparison of IAE and ITAE indices 

 
Magnitude IAE ITAE 
 PI GS* PI GS* 
+10% Ff 219 8.3 19990 1120 
-10% Ff 218 8.3 19877 1113 
80-70%conv. (Fc) 81 8.3 7741 1117 
+5oC T7 19 4.1 389 288 
-5oC T7 15 4.3 334 294 

* The proposed method using gain-scheduling and  
   multimodel control scheme 
 
 

6. CONCLUSIONS 
 
The combined gain-scheduling and multimodel 
control has been applied to a RD column for ETBE 
production having nonlinearity in the process gain. 
Several input-output first order models were derived. 
Gain-scheduling control was then implemented 
employing the multimodel for model identification 
and scheduling the controller gain. The proposed 
controller is superior to standard PI control with 
fixed parameters for RD columns. However, the 
effectiveness is reduced for feed composition 
disturbances. This work clearly demonstrates that 
nonlinear processes can be controlled successfully 
with a linear multimodel concept.   
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Abstract: Gath-Geva fuzzy clustering algorithm is a nonparallel fuzzy clustering 
algorithm and is not easy to get a suitable and interpretable fuzzy set. The outputs of the 
Takagi-Sugeno fuzzy model can influence the input space partition. Neglecting this 
influence increases the identification error. In this paper, a modified Gath-Geva fuzzy 
clustering algorithm is introduced to solve these problems. Together with weighted least 
square method, we construct Takagi-Sugeno model to identify non-linear system. The 
identification of the glass oven demonstrated the effectiveness of the proposed method. 
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1. Introduction 
 

Fuzzy modelling and identification techniques have 
become an active research area due to its successful 
application to non-linear complex systems, where 
traditional methods are difficult to apply because of 
lack of sufficient knowledge. Among the different 
fuzzy modelling techniques, the Takagi-Sugeno (TS) 
fuzzy model has attracted most attention. 
 
The TS fuzzy model consists a set of if-then rules 
that have a special format with a polynomial function 
type consequent. The TS fuzzy model approach tries 
to decompose the input space into fuzzy subspace 
and then approximate the system in each subspace by 
a simple linear regression. Without the time-
consuming and mathematically intractable 
defuzzification operation, the TS fuzzy model is the 
most popular candidate for fuzzy modelling. 
 
There are two main issues in the process of 
constructing a TS fuzzy model. The first is how to 
determine the premise structure, and the second is 
how to estimate the parameters of the TS fuzzy 
model. Fuzzy clustering and least square method 
have proved to be suitable techniques to create TS 
fuzzy model.  
 
Fuzzy clustering algorithms like the algorithm by 
Gustafson and Kessel (GK), Gath and Geva (GG), or 
the fuzzy C-means algorithm partition the input 
space into adequate subspaces and detect linear local 
substructures. Therefore, these algorithms are very 
suitable to construct TS fuzzy model from data. A 
modified Gath-Geva algorithm is proposed in this 
paper. 
 

The paper is organized as follows. In section 2, we 
formulate the TS fuzzy model. A modified Gath-
Geva fuzzy clustering (MGG) algorithm is described 
in section 3. Identification of glass oven is provided 
in section 4 to illustrate the effectiveness of the 
modified Gath-Geva algorithm. Finally, Section 5 
constrains some conclusions. 

 
2. Takagi-Sugeno Fuzzy Model 

 
The Takagi-Sugeno Fuzzy Model was proposed by 
Takagi, Sugeno in an effort to develop a systematic 
approach to generating fuzzy rules from a given 
input-output data set. A typical fuzzy rule has the 
form: 

 
Ri: if x1 is Ai,1 and �  and xp is Ai,p then yi is fi(x) 

where  

ppiiii xaxaaxf ,11,0,)( +++= "
 

in which i=1,� ,k, xi(1 i c), are the input variables, 
yi is the output variables, Ai,j, (1 j S�, are fuzzy 
sets defined on the universe of discourse of the input. 
fi(x) is usually a linear polynomial function in the 
input variables. 
 
In the TS fuzzy model, each fuzzy rule describes a 
local linear model. All these local models combine to 
describe a non-linear complex system, which is 
difficult to find a global model. 
 
The outputs of the TS fuzzy model is computed using 
the normalized fuzzy mean formula: 

∑
∑

=

=
∗

= c

i i

c

i ii

xA

xfxA
ky

1

1

)(

)()(
)(

 
where Ai is the level of fulfilment of the ith rule: This work is supported by NSFC (60174051/F03) 

and ICTF (DZYFYY0204) 



 

     

)()()()( ,22,11, ppiiii xAxAxAxA ×××= "
 

 
in this paper, Gaussian membership functions are 
used to represent the fuzzy sets Ai,j: 
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where vi,j represents the centre and ³ � � � �  the variance 
of the Gaussian function.  

 
3. Modified Gath-Geva fuzzy clustering 

algorithm 
 

The algorithm by Gath and Geva is an extension of 
the Gustasfon-Kessel algorithm that also takes the 
size and the density of the clusters into account. 
Contrary to the GK algorithm, the GG algorithm 
does not restrict the cluster�s volumes and the 
clusters can be directly described by univariate 
parametric membership functions. So lower 
approximation error and more relevant consequent 
parameters can be obtained than GK algorithm can. 
 
The Gath-Geva fuzzy clustering algorithm can 
briefly described as follows: 
1) Choose c the number of the clusters and the 

weighting exponent m > 1; 
2) Generate the matrix U with the membership 

degrees 
� �µ

 randomly. U must satisfy 

condition 
1

1 , =∑ =

N

k kiµ
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3) Compute the centre of the clusters: 
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4) Compute the fuzzy covariance matrices: 
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5) Compute the distance between the data zk and 

the centre of the clusters vi: 
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6) Update the partition matrix U of the 

membership degrees: 
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7) Stop if ε<− − ____ )1()( ll UU  else go to the step 
3 

 
Univariate membership functions can often be 
assigned linguistic labels. This makes fuzzy systems 
transparent, i.e. easy to read and interpret by humans. 

But it is difficult to specify meaningful labels for 
membership functions with high dimensional 
domains. So it is necessary to decompose multi-
dimension membership functions to univariate 
membership functions. Projection method was often 
utilized. 
 
The projections of ellipses or ellipsoids, which are 
the clusters of the Gath-Geva fuzzy clustering 
algorithm, are rectangles that contain the ellipses (see 
Fig.1). In this transformation process, the 
information about the clusters rotation and the 
scaling of the axes is lost, and thus decomposition 
error is made. To circumvent this problem, we 
propose a new Gath-Geva fuzzy clustering method. 

Fig.1 Axes parallel and nonparallel clusters 
 

In Fig.1, the axes parallel cluster is illustrated. 
Obviously, axes parallel cluster has no rotation and 
thus reduce decomposition error. In Gath-Geva fuzzy 
clustering algorithm, if the covariance matrix is a 
diagonal matrix, only the axes are scaled and no 
rotation is performed.  
 
For modification of the Gath-Geva algorithm, we 
assume the data are realization of p-dimensional 
normal distributions and each of these normal 
distributions is induced by p independent, one-
dimension normal distribution.  
 
The probability density function of the ith normal 
distribution is 
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where 
)(i

jσ
is the jth element of the diagonal of the 

ith covariance Ai. 
 
We introduce a fuzzification of the a posteriori 
probabilities in order to determine the parameter 
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We determine the maximum likelihood estimator for 
the formula to obtain the estimation for the parameter: 
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the distance between the data zk and the centre of the 
clusters vi  is modified as: 
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Thus, we gain the axes parallel version of Gath-Geva 
fuzzy clustering algorithm with diagonal covariance 
matrix. 
 
The outputs of the TS model can influence the input 
space partition. Neglecting this influence, the Gath-
Geva fuzzy clustering algorithm misses some data in 
the output space, and cannot get the most optimized 
clusters. Fig.2 illustrates such circumstance for a 
two-input single-output system. The input variables, 
x1 and x2, are divided into clusters, S1 and S2. After 
identification, S1 projects to S1, and S2 projects to S2. 
The dots denote the outputs of the system and the 
lines denote the linear consequents of TS model. 
Obviously, some data leak out of the ellipsoids, and  
identification error increased. 

 
Fig.2 (a) input variables clustering (b) the actual 

outputs and the model outputs 
 

To solve this problem, J.Abonyi introduce the error 
between actual output and model output, thus the 
formula of distance was modified as follow: 
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The second part of the 
2
,kiD

 considers the influence 
mentioned above, and in this way the performance of 
the TS model is proved. 
 
In this paper, the weighted least-squares estimator is 
used to estimate the consequent parameters of TS 
model. 
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where Xe = [X 1] and X is the input matrix.Ïi  is a 
matrix having the membership degrees on its main 
diagonal. y is the output of the system. 
 
From above, we give the modified Gath-Geva 
algorithm used to construct TS model. 
 
The modified Gath-Geva fuzzy clustering algorithm 
can briefly described as follows: 

1) Choose c the number of the clusters and 
the weighting exponent m > 1, choose the 
termination tolerance ¦ > 0 

2) Generate the matrix U with the 

membership degrees  !µ
 randomly. U 

must satisfy condition 
1

1 , =∑ =

N

k kiµ
. 

3) Compute the centre of the clusters and 
Compute the standard deviations of the 
membership functions: 
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4) Compute the consequent parameters of TS 

models: 
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5)  Compute the distance between the data zk 
and the centre of the clusters vi: 
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6) Update the partition matrix U of the 

membership degrees: 
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7)   Stop if ε<− − ____ )1()( ll UU  else go to the 
step 3 

 
4. Using modified Gath-Geva fuzzy clustering 

algorithm to construct TS model for glass oven 
 

In this section, we will use the method mentioned 
above to construct Takagi-Sugeno model for glass 
oven. Other algorithms, including FMID and ANFIS, 
will also be used to identify the glass oven. The 
comparison of the result will prove the validity of the 
modified Gath-Geva fuzzy clustering algorithm. 
 
The glass oven has 3 inputs (2 burners and 1 
ventilator) and 6 outputs (temperature from sensors 
in a cross section of the furnace). The data have been 
pre-processed: detrending, peak shaving, delay 
estimates and normalization. The data set, including 
1260 entries, is divided into a training subset and a 
test subset, each containing 600 samples. The 
number of clusters is 2. 
 
The performance considered to evaluate the obtained 
model will be the root mean square error: 
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where P is the number of outputs and N is number of 
data, yk is the actual output, and ky?  if the model 
output. 

Table 1 compares the performance of the model 
identified with these techniques, including FMID and 
ANFIS. 

 
Table1. Comparison of the performance of the 
different algorithms 

Method Train data error Test data error 

MGG                0.8395     1.0732 
FMID 0.8563  1.0489     
ANFIS 0.7771 1.1403  

 
The observation of this table indicates that modified 
Gath-Geva fuzzy clustering algorithm has slightly 
better performance than FMID in the training data set 
and slightly better performance than ANFIS in the 
test data set.  
 
We explain the interpretability of the obtained TS 
fuzzy model of the 4th output as flows. For the 
number of clusters is two, there are also two rules. 
 
R1: 

1

������ ������ ������
������ ������ ������A

 
=  

 
 

[ ]1 ������ ������ ������ ������B = − −
R2: 

2

������ ������ ������
������ ������ ������A

− − − 
=  

 
 

[ ]2 ������ ������ ������ ������B = − − −  

The first row of Ai represents the centre v and the 
second row represents the variance ³ 2 of the 
Gaussian function. Bi is the consequent parameters of 
the TS fuzzy model. 
 
In Fig.3, we plot the curves of the actual outputs and 
the TS fuzzy model outputs of the 4th output of the 
glass oven. (a) is the result of training data and (b) is 
the result of test data. 

 
 

Fig.3 (a) the actual outputs (solid lines) and the TS 
model outputs (dotted lines) of the 4th outputs 
(training data, 90 samples).  

 

 
Fig.3 (b) the actual outputs (solid lines) and the TS 
model outputs (dotted lines) of the 4th output (test 
data, 65 samples). 
 
This identification of the glass oven proves that the 
modified Gath-Geva fuzzy clustering algorithm can 
be used efficiently to construct Takagi-Sugeno fuzzy 
model. 

 
5. Conclusions 

 
We have proposed a modified Gath-Geva fuzzy 
clustering algorithm together with weighted least 
square method to create Takagi-Sugeno fuzzy model. 
Through minishing the projection error and 
considering the model outputs influence on input 
space partitions, we get interpretable and more 
accurate Takagi-Sugeno fuzzy model. 
 
This method was used to identify the glass oven. The 
result proves that this method is sufficient to 
construct Takagi-Sugeno fuzzy model. We also 
compare other modelling methods, including FMID 
and ANFIS, with this method. The comparison 
shows its superiority. 
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indicate that it is more effective than PID control. Copyright © 2002 IFAC 

 

 

Keywords: Artificial Neural Network, Nonlinear, Model Based Predictive Control, 
Predictive Functional Control 

 

 

1. INTRODUCTION 
 

Model Based Predictive Control (MBPC) refers to a 
class of algorithms that compute a sequence of 
manipulated variable in order to optimize the process 
performance. It is recognized as an efficient control 
strategy by the industrial control community. The 
first MBPC techniques were developed in 1970s. 
Model Predictive Heuristic Control (MPHC) based 
on finite impulse response has been successfully 
applied in PVC plant, a distillation column and 
power plant by Richalet, et al.(1978). Dynamic 
Matrix Control (DMC) based on finite step response 
was developed by Cutler, et al.(1980). Not only 
MPHC but also DMC belong to MBPC based on 
nonparametric model. In 1987, the Generalized 
Predictive Control (GPC) of Clarke, et al.(1987a,b) 
which absorbs the advantages of predictive control 
and adaptive control can turn the model parameter 
online. The Predictive Functional Control (PFC) 
which belongs to the third generation predictive 
control has been developed by Richalet, et al.(1988), 

which has been successfully used in the fast and 
accurate robot control. 
 
Many processes are sufficiently nonlinear to preclude 
the successful application of linear model based 
predictive control technology. MBPC such as DMC 
and GPC developed initially for linear processes have 
been successfully extended to nonlinear processes by 
many researchers (Mutha, et al.(1998), Robit, et 
al.(1998)). Henson(1998) has published excellent 
technical reviews of Nonlinear Model Based 
Predictive Control (NMBPC). It has presented the 
current status of NMBPC technology, and meanwhile 
outlined myriads of directions for future research. 
 
The purpose of this paper is to develop a Nonlinear 
Predictive Functional Control (NPFC) based on the 
Artificial Neural Network (ANN) model. The general 
principle of PFC is discussed in section 2. In section 
3, the ANN model is developed. NPFC using ANN 
model is developed in section 4. Simulation results 
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are elucidated in section 5 and conclusion is 
described in section 6. 
 
 

2. GENERAL PRINCIPLE OF PREDICTIVE 
FUNCTIONAL CONTROL 

 
PFC belongs to the classical family of MBPC. It is 
essentially based on the following three principles of 
MBPC: predictive model, receding horizon 
optimization, modeling error compensation. 
 
 
2.1 Predictive model 
 
PFC uses a model to predict future output. The 
output of the model ym(k+i) can be divided into two 
main components: free response yl(k+i) and forced 
response yf(k+i). 
 
Free response has nothing to do with future inputs 
and thus just depends on the actual model output.  
 
The other component of the model output is forced 
response that depends on the set of future 
manipulated variables and has nothing to do with the 
actual model output. The structure of manipulated 
variables is the key to the control performance in 
PFC. The future manipulated variable are structured 
by a linear combination of functions defined forehead 
that we refer to as base functions. The future 
manipulated variables u(k+i) and forced response are 
given by: 

∑
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Whereμn stands for coefficients, ubn(i) the nth base 
function at t=iTs, ybn(i) is the advance output of the 
nth base function at t=iTs and Ts is the sampling 
period. The selection of the base functions depends 
on the nature of the set point and on the process. 
Often the polynomial base function set is used.  

 

 
 

2.2 Receding Horizon Optimization 
 
Various types of reference trajectories can be used. 
The most elementary reference trajectory is a 
first-order exponential trajectory. The reference 
trajectory yr(k+i) can be given by: 

yr(k+i)=c(k+i)-λi  (c(k)-yP(k))   (3) 

Where c is the set point, λ = −e Ts Tr( / )  and Tr is the 

95% response time of the reference trajectory, yP is 
the process output. 
 
The control objective of PFC is to minimize the sum 
of squared errors between the predicted output and 
the reference trajectory at all coincidence points. The 
objective function can be given by: 
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     )()()(~ ikeikyiky m +++=+   (5) 

Where )(~ iky +  is the predicted output at 

t=(k+i)Ts, ym(k+i) is the output of the model at 
t=(k+i)Ts, e(k+i) is the predicted errors, H1, H2 are 
coincidence horizon. 
 
 
2.3 Modelling error compensation 
 
The output of the predictive model and the process in 
general differ due to model mismatches, secondary 
input and disturbances which are not taken into 
account by the predictive model. There are several 
procedures to eliminate a permanent off-set by 
compensating the reference trajectory with the 
predicted errors between model and process output at 
each time instant of the coincidence horizon. The 
predicted errors can be given by: 

 e(k+i)=yP(k)-ym(k)   (6) 
Where yP(k) is the process output at t=kTs, ym(k) is 
the model output at t=kTs. 
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3. ARTIFICIAL NEURAL NETWORK MODEL 
 
PFC uses a model to predict future outputs. Any type 
of predictive model such as transfer function, state 
equations and ANN model can be used. NPFC 
requires the availability of a suitable nonlinear 
dynamic model of the process. The NPFC controller 
may be based on a fundamental model or a 
combination of the fundamental and empirical model. 
First, it is difficult for us to construct sufficiently 
accurate comprehensive mathematical process 
models. On the other hand, the potential disadvantage 
of the fundamental modeling approach is that the 
resulting dynamic model may be too complex to be 
useful for NPFC. In this work, ANN model is 
employed as the predictive model in PFC. 
 
During the last decade, there has been an increasing 
trend in the industry towards the use of ANN. It has 
been proven that a feed forward ANN which is 
comprised of a great number of interconnected 
neurons can approximate any continuous function to 
any desired accuracy. This makes feed forward ANN 
very suited to deal with complex nonlinear. A feed 
forward layered ANN is employed as the model of 
NPFC. 
 
The structure of ANN is shown in Fig 1. It consists 
of a layer of input neurons, a layer of output neurons, 
and two hidden layers. The transfer function f1(x) of 
the first hidden layer neuron is given by: 
         f1(x)=(ex-e-x)/(ex +e-x)   (7) 
The activate function f2(x) of the second hidden 
layer neuron is shown by: 
   f2(x)=1/(1+e-x)     (8) 
 
The transfer function f3(x) of the output hidden layer 

neuron is given by: 
  f3(x)=x       (9) 

 
The most important aspect of the ANN is learning the 
information about the system to be modeled. The 
most versatile learning algorithm for feed-forward 
layered network is back propagation (BP). 
Unfortunately, BP is very slow because it requires 
small learning rates for stable learning, on the other 
hand, it is possible for the network solution to 
become trapped in the local minimum. 
Levenberg_Marquardt(LM)( Matlab User’s Guide, 
1994) optimization algorithm is used in this 
investigation. This technique is more powerful than 
gradient descent, but requires more memory. 
 
The L_M update rule is given by: 
      △W=(JTJ+μI)-1JTE    (10) 
Where J is the Jacobian matrix of derivation of each 
error to each weight, μis a scalar, and e is an error 
vector. If the scalar μ  is very large, the above 
expression approximates gradient, while if it is small 
the above expression becomes the Gauss-Newton 
method. 
 
 

4. NONLINEAR PREDICTIVE FUNCTIONAL 
CONTROL 

 
A NPFC strategy is developed in this section. The 
principle of the NPFC using ANN is shown in Fig. 2. 
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4.1 Artificial neural network model 
 
Predictive model plays a key role in predictive 
functional control. It demands that certain precision 
must be attained, at the same time with multi-step 
prediction. Generally there are two kinds of 
structures which can fulfil multi-step prediction using 
ANN, one is cascade, the other is parallel. Cascade 
structure, in which the output of time k+1(ym(k+1)) 
can be achieved from the data of time k, and next 
time ym(k+1) as input to estimate the output of time 
k+2(ym(k+2)), and so on. The benefit of this structure 
is that only one ANN model is needed. But there also 
exists the accumulation of prediction error in such a 
structure. Parallel structure needs many ANNs to 
predict, with each ANN for a specific step. The 
benefit of parallel is that the prediction error is 
comparatively small, but the disadvantage is that the 
calculation is heavy for there are so many ANNs to 
be trained. In this paper, a new structure for 
multi-step prediction is proposed. Only an ANN is 
needed in such a structure. In order to fulfil 
multi-step prediction, an additional input J(J=1,2,…H) 
is employed, which distinguishes the ANN outputs 
ym(k+J). So the multi-step prediction is realized. 
 
 
4.2 Nonlinear predictive functional control using 
artificial neural network model 
 
The objective function of NPFC is similar to the 
other classical MBPC. With a certain optimization 
procedure we can determine a sequential manipulated 
variable that minimizes the objective function. The 
objective function of NPFC is given by equation 4. 
The method of Levenberg-Marquardt or 
Gauss-Newton which can be realized by MATLAB 
TOOLBOX is used as optimization algorithm. 
 
The algorithm of NPFC can be summarized in the 
following steps: 

1) Select the sample for training 
2) Identify the ANN model with sample 
3) Evaluate the extent of ANN model 
4) Realize the NPFC strategy using ANN model 

and L_M optimization algorithm 

① Calculate the error between the output of 
process yp(k) and actual model output 
ym(k) 

② Calculate the actual model output 
ym(k+i),i=1,2,…,H and the predictive 

output of the process i)(ky~ +  

③ calculate for reference trajectory of 
yr(k+i), i=1,2,…,H 

④ calculate the sequence manipulated 
variable u(k+i) i=1,2,…,H using the 
method of L_M optimization algorithm. 

⑤ Perform u(k) and go to ① at the next 
sample time. 

 
 

5. SIMULATION 
 
In order to evaluate the performance of the NPFC, a 
Continuous Stirred Tank Reactor (CSTR) is chosen 
as an application example. 
 
 
5.1 Reactor 
 
The dynamic equations describing the CSTR systems 
can be written as: 
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The dynamic equations can be written in 
dimensionless from Venkateswarlu(1997) as: 
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    Where x1 and x2 are the dimensionless reactant 
concentration and temperature, respectively. The 
input u is the cooling jacket temperature. The 
physical parameters are chosen as: 
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Here the task is to control the reactant concentration 
x1, and the manipulated variable is the input u of the 
cooling water temperature. 
 
 
5.2 Predictive model of artificial neural network 
 
Given the x1(k), x2(k),u(k) at the t=(k)Ts and J, the 
x1(k+J) at the t=(k+J)Ts can be obtained. The number 
of neurons in the two hidden layers is 10, 
respectively. In order to evaluate the performance of 
the ANN model, 30 groups input data are created at 
random to compare the output of the ANN and 
process. The output of ANN model (+) and the 
output of the process (o) are shown in the Fig 3(a). 
The errors between the output of ANN model and 
process are shown in Fig 3(b). We can obtain that the 
accuracy of ANN model is enough for NPFC. 

5.3 Simulation of nonlinear predictive functional 
control and PID control for CSTR 
 
Simulation studies are carried out in order to evaluate 
the performance of the NPFC, the results of PID are 
also presented as a reference. The parameters of PID 
are P=0.2, I=30 seconds and D=0. The NPFC selects 
one base function. The parameters of NPFC are given 
by H=5, Tr=10 seconds. 
 
The setpoint of concentration is changed from x1=0.2 
to x1=0.6 at t=20, at the same time, a step 
disturbance 0.1 has been applied to the system at 
t=200. The results of PID control are shown in the 
Fig 4(a). The manipulated variable of PID is shown 
in Fig 4(b). The results of NPFC are shown in the Fig 
5(a). The manipulated variable of NPFC is shown in 
Fig 5(b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3(a) Results of process output and ANN output

Fig. 3(b) Errors between process output and ANN output

Fig. 4(a) Results of PID control 

Fig. 4(b) Manipulated variable of PID control
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As can be seen from the figure, PID control has fast 
response but has large overshoot. NPFC using ANN 
has slow response but no overshoot. Compared with 
PID control, NPFC can reject the disturbance more 
effectively. 
 

6. CONCLUSION 
 
An NPFC using ANN model strategy is presented for 
control of high-nonlinear system. The performance of 
this strategy is evaluated by applying it to a CSTR 
for controlling them at the desired state operating 
point. The results illustrate that the NPFC is more 

effective for control nonlinear system than PID 
control. 
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1. PREFACE 

Computational Intelligence (CI) is a new chapter in 
Intelligence Theory[3]. The reason why the research 
of Artificial Intelligence (AI) did not achieve 
expected progression perhaps is that AI depend on 
excessively the advantage of computer - precise 
arithmetic and the fast calculation to imitate the 
complex thinking and action of human being[8]. But 
thinking and action of human being do not often 
depend on precise arithmetic and fast calculation, 
furthermore, the ability to abstract of human being 
plays, I think, the most important role in the 
intelligence of human being, but this ability is just 
what computer lacks extremely. So, an one-year old 
babe perhaps don't understand any arithmetic, and 
can't calculate at all, but some intelligence of his or 
hers is far more better than any current sophisticated 
computer. It is possible that the thinking mechanism 
of human being can hardly be cryptanalyzed 
completely, so, what machine can achieve or imitate 
is perhaps only fragmentary and dyshematopietic 
intelligence of human being forever, no matter what 
advanced machine can hardly reproduce entirely the 
complicated mechanism of the thinking of human 
being[7] [8].  

But for practical application in engineering, it is 
enough to achieve our given purpose, to obtain a 
satisfactory but not optimal result, and the truly 
advanced theory, algorithm or method perhaps are 
those that are not complicated, sophisticated and 
optimal but practical, feasible, satisfactory, reliable 
and simple, thus, take a strategy attempt to incarnate 
but not to realize or imitate the complex thinking and 
behavior of human being is not only a remedy for 
computer's shortcoming, but also a practical, feasible 
and simple shortcut. So, in this paper, a new method 
for CI - CI formulated with Analytic Functions and 
Logics is given, Logics mentioned in this paper are 
expressed as "if … , then … " instructions of 
computer program, they are enough to incarnate 
logical relation for practical project, it is no need to 
resort to more complex method. 

 

2. COMBINE CI WITH PID 

Today, the most popular controller is still PID 
controller, even in developed country - Japan, the 
rate of utilization of PID controller reached 84.5%[10]. 

But general PID has many intrinsic shortcomings. In 
order to improve the performance of general PID , 
many scholars had done a lot of research. So, how to 
combine Computational Intelligence with widely 
used general PID is very significative in theory and 
in practice. So, in this paper, a new PID controller- 
CISAPID is put forward. 

In our practical project for engineering, this 
controller seems not highly depend on the precise 
model of controlled object (we could not find the 
precise model), but make use of some Analytic 
Functions and Logics to regulate arguments of PID 
real-timely according to the feedback information, to 
incarnate some intelligence of human being to a 
certain degree in a practical, flexible, simple way, 
and to incarnate knowledge, experience and rules of 
experts and skilled operators, thus, it has some 
characteristics of Fuzzy Control and Expert Control. 
But it is not confined to the patterns of Fuzzy Control 
and Expert System, because fuzzy rule table is not 
intuitionistic, and is not convenient to establish, 
furthermore, we don't want to make the control 
system too complex. In practical project, the more 
simple a system is, the more practical, feasible, 
reliable and robust it often is. So, if it is able to 
achieve the same satisfactory efficiency, the control 
system should be simple as best as possible, thus, not 
only the control efficiency is improved, but also the 
hardware cost and the developing cycle are reduced 
markedly, thus this system is advanced in fact. 
According to the viewpoint of James C. Bezdek, CI 
is based on the data provided by operator, but 
traditional AI is on so-called "knowledge". He 
defined the CI system as follows: When a system 
only treats with the data from bottom, and possess 
the part for pattern recognition, and don't make use of 
knowledge in the sense of AI, then, this system can 
be viewed as a CI system. Such a system would have 
characteristics as follows: has the adaptability of 
compute; has the tolerance of compute error; close to 
the speed that human handling problem; close to the 
error rate of human being[3]. So, we can also think in 
the same way: If a controller treats with the data from 

     



 
bottom only based on Logics and Analytic Functions 
abstracted from experience, rules and knowledge of 
experts and operators, and possess the part for 
pattern recognition, and don't make use of 
knowledge in the sense of AI, then this controller can 
also be viewed as a CI controller. So, CISAPID can 
also be viewed as a controller based on CI. 

 

 

3. CISAPID 

For typical standard negative feedback control 
system, general PID controller can be expressed as: 

u=Kp(e+
iT

1
∫e dt +Td dt

de
)                                            (1) 

The CI Self-adaptive PID Controller (CISAPID) can 
be formulated as follows[6] [5]: 

u=(1-k_u)*(Kp_e*e + Ki_e*∫ e dt + Kd_e_de*
dt
de

+ 

Kd_dde* 2

2

dt
ed

) + k_u* u0                                                (2) 

Kp_e=Kp0_e+Kp1_e*(1-exp(-Kp_s*W_Kp_e*(e-p*s)2)) (3) 
Ki_e=Ki0_e+Ki1_e*exp(-W_Ki_e*e2)                              (4) 
Kd_e_de=Kd_e+ Kd_de                                                    (5) 
Kd_e=Kd0_e+Kd1_e*exp(-Kd_s*W_Kd_e*(e-p*s)2)       (6) 
Kd_de= Kd0_de+ Kd1_de*exp(-W_Kd_de*(de)2)            (7) 
Kd_dde= Kd0_dde+ Kd1_dde*exp(-W_Kd_dde*(d2e)2)  (8) 
u0=(u_0+u_1*u_power+u_2*(u_power)2+...+u_n*(u_pow
er)n+...)/(1+u_power+(u_power)2+...+(u_power)n+...)   (9) 
 

e=setting value-actual value, error e. Kp_e, Ki_e, 
Kd_e indicate that these arguments are related to e. 
Kd_de indicate that the argument is related to de, the 
first-order differential of e; Kd_e_de indicate that the 
argument is related to e and de; Kd_dde indicate that 
the argument is related to d2e, the second-order 
differential of e; So as to the rest. If arguments 
except Kp0_e, Ki0_e, Kd0_e are all 0, then, 
CISAPID turn itself back to general PID. The 
reasons why we construct Analytic Functions as 
above and more detailed information about 
arguments tuning, please refer to my master’s degree 
thesis. The tuning method of Kp0_e, Ki0_e, Kd0_e 
can refer to the tuning method of general PID based 
on object model or dynamic response curve[1], such 
as Ziegler Nichols - frequency response method[9], 
CohenCoon - response curve method[2],integral 
squared error - ISE[4] and so on. Because physical 
meaning of the other arguments are explicit, simple, 
and regular, so, it is not very difficult to determine 
them by off-line simulation or resort to experience 
and by means of trial-and-error method. Further 
more, what needed to tune are their initial arguments, 
the running arguments are self-adjust online and real-
timely based on the initial arguments according the 
situation on-site. Even if you did not tune these 

arguments very well, or the controlled object and 
other factors had already changed, the control 
efficiency would not decline greatly (but the burden 
of executing mechanism would perhaps increase), 
thus, the self-adaptability and robust of this controller 
are good.  

 

3.1 The proportional action of CISAPID 
Kp_e=Kp0_e+Kp1_e*(1-exp(-Kp_s*W_Kp_e*(e-p*s)2)) (3) 
 
Kp_e is similar to a reversed double peak gaussian 
function, the larger the W_Kp_e is, the more sharp 
the curve is, the value of W_Kp_e should ensure that 
system would respond enough proportional action 
within a wide range, so the value of W_Kp_e should 
be minor; p is a sign variable, when e＜0, p=-1; 
when e≥0, p=+1. s≥0 is an offset; Kp_s is related 
to offset s, and is a coefficient to adjust W_Kp_e, 
when |e|≥s, Kp_s=1, when |e|<s, it is allowed Kp_s
≠1. Because of offset s, the minimum value of Kp_e 
is not at the point of e=0, but at the point of e=+s or 
-s. If system is not very stable, and the requirement 
for accuracy and rapidity are not high when system is 
near to the equilibrium point, then, Kp_s should be 
nearly equal to 0, thus, when |e|＜s, Kp_e would 
hardly increase with the reduction of |e|, and seems 
to be a constant, and this is beneficial to system 
stability.  
Analytic Function of formula (3) in fact incarnated 
knowledge, rules and experience of experts and 
operators, and approximately incarnated the fuzzy 
rules as follows:                                                          
if |e| is "extreme big", then proportional action Kp_e 
should be "very big"; 
if |e| is "very big", then proportional action Kp_e 
should be "comparatively big"; 
if |e| is "comparatively big", then proportional action 
Kp_e should be "not big and not small"; 
if |e| is "a bit big" (namely, |e| is a little bigger than 
s), then proportional action Kp_e should be 
"comparatively small"; 
if |e| is "not big and not small" (namely, |e|=s), then 
proportional action Kp_e should be "minimum"; 
if |e| is "comparatively small" (namely, |e| is a little 
smaller than s), then proportional action Kp_e should 
be "comparatively small"; 
if |e| is "very small" (namely, |e| is approaching to 0 
or |e|=0), then proportional action Kp_e should be 
"not big and not small"; 
 

3.2 The integral action of CISAPID 
Ki_e=Ki0_e+Ki1_e*exp(-W_Ki_e*e2)                              (4) 
Ki_e is a gaussian function related to error e. The 
value of W_Ki_e should cause system respond 
integral action only within narrow ranges (error is 
very small). When error e becomes a little big, 
integral action should be near to 0 in order to carry 
out the isolation of integral action and to avoid 
integral saturation. So the value of W_Ki_e should be 
a little larger, then the curve of Ki_e would be very 

     



 

     

sharp. Ki0_e should be far less than Ki1_e to help to 
realize the isolation of integral.  
Analytic Function of formula (4) in fact incarnated 
knowledge, rules and experience of experts and 
operators, and approximately incarnated the fuzzy 
rules as follows:  
if |e| is "extreme big", then integral action Ki_e 
should be "extreme small"; 
if |e| is "very big", then integral action Ki_e should 
be "extreme small"; 
if |e| is "comparatively big", then integral action 
Ki_e should be "very small"; 
if |e| is "a bit big" (namely, |e| is a little bigger than 
s), then integral action Ki_e should be "very small"; 
if |e| is "not big and not small", then integral action 
Ki_e should be "comparatively small"; 
if |e| is "comparatively small", then integral action 
Ki_e should be "a bit small"; 
if |e| is "very small" (namely, |e| is approaching to 0 
or |e|=0), then integral action Ki_e should be "not 
big and not small"; 
 
3.3 The differential action of CISAPID 
Kd_e_de=Kd_e+ Kd_de                                                    (5) 
Kd_e=Kd0_e+Kd1_e*exp(-Kd_s*W_Kd_e*(e-p*s)2)       (6) 
Kd_de= Kd0_de+ Kd1_de*exp(-W_Kd_de*(de)2)            (7) 
Kd_dde= Kd0_dde+ Kd1_dde*exp(-W_Kd_dde*(d2e)2)  (8) 
 
Kd_e is a double peak gaussian function. p is a sign 
variable, when e＜0, p=-1;when e≥0, p=+1. s≥0 is 
an offset, and is not the same value as that of formula 
(3); Kd_s is related to s, and is a coefficient to adjust 
W_Kd_e, when |e|≥s, Kd_s=1, when |e|＜s, it is 
allowed that Kd_s≠1. For the reason of simple, you 
can assign Kd_s=1. But if disturbance is severe, then, 
you should assign Kd_s ＞ 1, then, when |e| is 
approaching to 0, differential action Kd_e can reduce 
more quickly, thus, system would not be very 
sensitive to disturbance.  
Analytic Function of formula (6) in fact incarnated 
knowledge, rules and experience of experts and 
operator, incarnated approximately the fuzzy rules as 
follows:  
if |e| is "extreme big", then differential action Kd_e 
should be "extreme small"; 
if |e| is "very big", then differential action Kd_e 
should be "extreme small"; 
if |e| is "comparatively big", then differential action 
Kd_e should be "comparatively small"; 
if |e| is "a bit big" (namely, |e| is a little bigger than 
s), then differential action Kd_e should be "not big 
and not small"; 
if |e| is "not big and not small" (namely, |e|=s), then 
differential action Kd_e should be "maximum"; 
if |e| is "comparatively small" (namely, |e| is a little 
smaller than s), then differential action Kd_e should 
be "comparatively big"; 
if |e| is "very small" (namely, |e| is approaching to 0 
or |e|=0), then differential action Kd_e should be 
"not big and not small"; 
 
Kd_de and Kd_dde are help to control more ahead 
when controlled object is of very great inertia and 
hysteresis such as furnace temperature control 

system. If the inertia and hysteresis are not very great, 
or if filtering for de and dde are not very satisfactory, 
then Kd_de and Kd_dde are not necessary. 
Knowledge, rules, experience of experts and 
operators and the fuzzy rules incarnated by the 
Analytic Functions of formula (7)(8) are similar to 
those of (3), the main deffrence is that the curve of 
Ki_e should be very sharp. 
From above, we can see that CISAPID is not only a 
controller of proportional action, integral action and 
differential action, it is actually related to the first-
order and second-order differential of error e, the 
ability that it can control ahead according to the error 
tendency is very strong, so, engineering application 
of this thesis is kiln temperature control system with 
very great inertia and hysteresis. 
 
3.4 Dynamical Weighting Average Algorithm with 

selection 
It is also important to make use of u0. When adjust 
system on-site, because of the intrinsic shortcoming 
of general PID and complexity of control system, 
you can only compromise among stability, rapidity, 
accuracy and anti-disturbance. System would often 
oscillate even if you make great effort to tune the 
arguments of PID. The purpose of u0 is just to turn 
this disadvantage into advantage.  
It can be observed, the oscillation of output u is often 
symmetrical about "a specific value", so, the 
oscillation in fact provide some important 
information: this "a specific value" is probably close 
to so-called "setting value" or "right value", so, if we 
can properly figure out this "a specific value" and let 
it be u0, and add this u0 to output u, then, it is 
equivalent to give a reference point to output u (if 
k_u=0.5), and it also seems to calculate output u 
based on "setting value" or "right value", thus, it is 
possible that output u would probably be just right, 
and thus system would eliminate oscillate very soon 
of its own accord. the calculation of u0 is as follows:  
u0=(u_0+u_1*u_power+u_2*(u_power)2+...+u_n*(u_pow
er)n+...)/(1+u_power+(u_power)2+...+(u_power)n+...)   (9) 
 
u_0, u_1, u_2, ... , u_n, ... represent the value of 
output u at current moment, previous one moment, 
previous two moment, … , previous n moment, … , 
This is in fact the Dynamical Weighting Average of 
output u at each moment. The selection of weight 
coefficient u_power is very important, if we make 
u_power=0.9847, then, u_300 would have little 
effect on u0, because u_300 is multiplied a coefficient 
u_power300=0.9847300=0.009799＜0.01=1%. So, the 
nearer u_i approach to current moment, the more 
effects it has on u0; the further u_i is away from 
current moment, the less effects it has on u0. This 
Dynamical Weighting Average Algorithm is coincide 
with practical situation, the u0 that figured out as 
above mainly reflect current working information, 
but also reflect previous working information to 
certain extent, thus, this u0 is quite possible to close 
to so-called "setting value" or "right value". Further 
more, we can also multiply a coefficient u_power_i 
before corresponding u_i. 



 

     

u_power_i=Ku0_e/(Ku0_e+Ku1_e)+Ku1_e/(Ku0_e
+Ku1_e)*exp(-W_Ku_e*(e_i)2)                             (10) 
Assign biggish value to W_Ku_e, and make Ku0_e 
far too less than Ku1_e, thus curve u_power_i is very 
sharp, only when e_i is very little, then u_power_i 
would approach to 1, otherwise, u_power_i is always 
very little, thus, those u_i that correspond to biggish 
e_i are filtered off, however, those u_i that 
correspond to minor e_i are selected. So, algorithm 
of formula (9) change into the algorithm of formula 
(10) with selection, and better efficiency would be 
get.  
Of course, what mentioned above are only close to, 
not equal to so-called "setting value" or "right value", 
but for practical project in engineering, it is enough 
to incarnate the idea of "closing to"; If k_u=0, then 
output u of CISAPID would not relate to u0. If 
"setting value input" of system is a constant, then k_u 
could be greater than 0.5, or even near to 1. In fact, 
The Analytic Functions of formula (9) and (10) 
incarnate the ideal of "stabilizing by force" and 
"Sampling and Statistical Learning", and computer is 
always in a state of self-studying and self-perfecting, 
the more it has learned, the more it become "clever" 

[8]. Statistical Learning has solid theoretical basis, 
and is drove fully by objective data, so, playing an 
important role in CI. Basal model, strategy and 
algorithm related to the design of Statistical Learning 
perhaps is a direction needed our efforts in future. 
Practical running of the algorithms mentioned above 
shows: With u0, CISAPID can shorten control time 
notably if input is step signal, can come into stable-
state and close to "setting value" or "right value" 
more quickly, and can keep stable-state for a 
comparatively longer time. But, if system is simple 
and is very stable, then, it is not necessary to make 
use of this algorithm;If system is tracking system and 
the requirement for rapidity is high, it is also not 
appropriate to make use of this algorithm.  
 
 

4. SIMULATION[6] 

Typical object G(S)=
)150)(160(
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 is taken 

as controlled object to carry out simulation. As to 
such second-order object with great inertia, great 
hysteresis in practical project, what is the most 
important may be stability and rapidity but not 
accuracy or control time (is allowed to correspond to 
5% (or >5%) error range). There are four criterion 
for performance comparison during simulation: 
1.Integral Squared Error (ISE), (let J=∫e2dt); 2. Rise 
time (defined as the time needed that system rise 
from zero to 90% steady-state value); 3.Average 
value of |e|; 4.Overshoot; 

ISE and Rise time are main criterions. Arguments of 
General PID (perhaps had been optimized in 
reference [6]) are as follows: Kp=5, Ki=0.025, 
Kd=90; Arguments of CISAPID (only satisfactory 
but not optimized) are as follows: Kp0_e=4.999, 
Kp1_e=217, W_Kp_e=100, p_s=0.085, 

Kp_s=0.0002119, Ki0_e=0.015, Ki1_e=0.1, 
W_Ki_e=100, Kd0_e=90, Kd1_e=100, 
W_Kd_e=100, d_s=0.2, Kd_s=2 

 

4.1 Performance comparison 
 

setting value

CISAPID

general PID

Fig.1 Comparison between CISAPID and general 
PID for ideal case 

When the case is ideal, and there are no disturbance 
and non-linear parts, the performance of general PID 
is very well, but it is still inferior to that of CISAPID. 
General PID: ISE is 29.29, average value of |e| is 
0.07128, rise time is 66 seconds, overshoot is 3.014%; 
CISAPID: ISE is 21.15, enhancement is 27.79%, 
average value of |e| is 0.06706, enhancement is 
5.92%, rise time is 42 seconds, enhancement is 
36.364%, overshoot is 2.319%, enhancement is 
23.06%; 
If controlled object changed greatly, for instantce, 
hysteresis changed to 8 seconds, pole points changed 
to 1/110 and 1/100, simulating curves are as follows:  
 

setting value 

CISAPID

general PID 

Fig.2 Comparison between CISAPID and general      
PID if controlled object had changed 

Compare with Fig.1: general PID: ISE is 55.38, 
55.38-29.29=26.09, average value of |e| is 0.1581, 
0.1581-0.07128=0.08682, rise time is 100 seconds, 
100-66=34, overshoot is 23.91%, 23.91%-
3.014%=20.896%; CISAPID: ISE is 41.56, 41.56-
21.15=20.41<26.09, average value of |e| is 0.1316, 
0.1316-0.06706=0.06454<0.08682, rise time is 71 
seconds, 71-42=29<34, overshoot is 23.88%, 
23.88%-2.319%=21.561%>20.896%; 
From above we know that the performance of general 
PID and CISAPID are both worsen when controlled 



 

     

object changed, but the worse of CISAPID are less 
than those of general PID except overshoot. 
 
4.2 Comparison for Anti-disturbance 
We could suppose that disturbance is a sinusoidal 
input of which the amplitude is 0.2 and the frequency 
is 0.0314 radian／ second (cycle is 200 seconds), 
then, simulating curves are as follows:  

   
 

input superposed sinusoidal disturbance 

CISAPID

general PID 

Fig.3 Comparison between CISAPID and general  
PID if disturbance is sinusoidal 

It can be known from the Fig.: general PID: ISE is 
46.38, average value of |e| is 0.1207, rise time is 65 
seconds, overshoot is 19.38%; CISAPID: ISE is 
34.94, enhancement is 24.67%, average value of |e| is 
0.1065, enhancement is 11.765%, rise time is 44 
seconds, enhancement is 32.31%, overshoot is 
24.28%, enhancement is - 25.28%; When input is 
changing, the requirement for rapidity is main to 
make system follow the change of input quickly 
enough, it is allowed that overshoot increased a bit. It 
also can be known from the Fig.: the output of 
CISAPID and general PID are both lag behind input, 
but, after system become stable, the lag of CISAPID 
is less about 1 second than that of general PID.  
If load (yd) decreased 0.2 suddenly at t=400, and 
increased yd=0.2 suddenly at t=700, and setting value 
of input increased 0.2 suddenly at t=1000, then, 
simulating curves are as follows:  
 

setting value 

CISAPID 

general PID 

Fig.4 Comparison between CISAPID and general  
PID if load changed suddenly and disturbance  
is a step input 

It can be known from the Fig.: general PID: ISE is 
32.74, average value of |e| is 0.05612, rise time is 66 
seconds, overshoot is 3.014%; CISAPID: ISE is 

24.63, enhancement is 24.77%, average value of |e| is 
0.05451, enhancement is 2.87%, rise time is 42 
seconds, enhancement is 36.364%, overshoot is 
2.319%, enhancement is 23.06%. 

4.3 Comparison for non-minimum phase 
Add a non-minimum phase part on the base of 
previous controlled object, then, transfer function is 

G(S)=
)150)(160(

)1(5
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 instead, simulating 

curves are as follows:  
 

setting value

CISAPID

general PID 

Fig.5 Comparison between CISAPID and general    
PID if there is a non-minimum phase part 

It can be known from the Fig.: general PID: ISE is 
29.91, average value of |e| is 0.07195, rise time is 66 
seconds, overshoot is 3.48%; CISAPID: ISE is 21.95, 
enhancement is 26.613%, average value of |e| is 
0.06958, enhancement is 3.294%, rise time is 41 
seconds, enhancement is 37.88%, overshoot is 
4.735%, enhancement is - 36.06%, this is because 
rise time reduced greatly, rapidity improved greatly, 
so, overshoot increased a bit more;On the whole, if 
there is a non-minimum phase part, performance of 
CISAPID is still better than that of general PID 
greatly (main criterion ISE improved 
21.95%,rapidity(rise time) improved 37.88%).  
 
 
5. CONCLUSION 
The constitution, principle and qualitative arguments 
tuning experience of an ameliorative PID controller- 
Computational Intelligence Self-Adaptive PID 
Controller (CISAPID) has analysed in detail, and the 
ability for anti-disturbance, robustness, adaptability 
and the performance for non-minimum phase system 
of CISAPID are also discussed. Contrastive 
simulation between CISAPID and general PID 
showed that the efficiency of CISAPID is better than 
that of general PID, and practical application in 
engineering (High Temperature tunnel kiln in 
TEGAOTE special kiln Corporation, Sansui, 
GuangDong Province) also showed that the 
performance of CISAPID is practical, feasible, 
satisfactory, reliable but simple, better than that of 
general PID 
 
5.1 Innovative ideas of CISAPID 
Here, we should first thank QingChang Zhong, 
JianYing Xie, Hui Li, please refer to reference [6] for 



 

     

specific details, they bring gaussian function into 
PID and put forward a new PID controller- Variable 
Arguments PID (VAPID). But, the constitution of 
proportional gain function and differential gain 
function of VAPID are all have something to be 
improved, and they were probably not aware of : If 
this idea improved appropriately, it is in fact a new 
idea for CI with Analytic Functions and Logics at 
which computer is good. Then, this new idea only 
process bottom data, and possess the part for pattern 
recognition (by means of Analytic Functions and 
Logics), and don't make use of knowledge in the 
sense of AI, but can incarnate knowledge, rules and 
experience of experts or operators and can perform 
Fuzzy Logic Control and Expert Control to a certain 
extent, thus, this system is a CI system in fact. So-
called innovative ideas in this thesis are listed simply 
as follows, please refer to my master’s degree for 
more details, and we urgently welcome precious 
critical advice.  
1) A new idea - incarnate Computational Intelligence 
with analytic functions and Logics 
2) Particular structure of CISAPID 
3) Proportional action of CISAPID 
4) Differential action of CISAPID: (1) Based on e; (2) 

Based on de; (3) Based on d2e 
5) Dynamical Weighting Average Algorithm with 

selection of CISAPID 
 
5.2 The problems to be improved for CISAPID 
There are many arguments of CISAPID, it is a little 
inconvenient to tune so many arguments, and we 
have not yet find perfect tuning method in theory, all 
these are to be improved in future.  
As to so many arguments that to be tuned and 
optimized, resort to Neural Network, Genetic and 
Evolutive Algorithms maybe good ideas.  
 Sampling and Statistical Learning, and the basal 
model, strategy and algorithm related to the design of 
Statistical Learning perhaps is a direction needed our 
efforts in future. 
At last, it is needed to point out: The reasons why we 
attempt to incarnate but not to realize or imitate are 
mainly as follows: 1) It is easy to incarnate, but it is 
difficult to realize or imitate. 2) Algorithms are 
comparatively concise, feasible, ingenious, but they 
are enough to achieve given target for practical 
application in engineering.  
But all these are still only the execution but not the 
creation of intelligence of human being, in the long 
run, research for CI should probably aim at the 
purpose of creating intelligence.  
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Robust Stability Analysis for Descriptor Systems with State
Delay and Parameter Uncertainty ‡

Shengyuan Xu ∗ James Lam ∗ Chengwu Yang †

Abstract: This paper considers the problem of robust
stability analysis for continuous descriptor systems with
state delay and structured uncertainties. A computa-
tionally simple approach to test stability of descriptor
delay systems is proposed. Based on this, we developed a
sufficient condition which guarantees that the perturbed
descriptor delay system under consideration is regular,
impulse-free and stable for all admissible uncertainties.
An example is provided to demonstrate the application
of the proposed approach.

Keywords: Continuous descriptor systems, robust sta-
bility, time-delay systems, uncertain systems.

1. Introduction

In the past years, much attention has been addressed to
the study of stability analysis and controller design for
time-delay systems since time delays are often the main
causes for instability and poor performance of systems
and encountered in various engineering systems such as
chemical processes, long transmission lines in pneumatic
systems, and so on [8] . When parameter uncertainty
appears in a delay system, the problem of robust stability
as well as robust stabilization has been dealt with and
various approaches have been proposed [5, 16] .
On the other hand, it is known that descriptor sys-

tems provide a more natural description of dynamical
systems than state-space systems and have attracted much
interest in recent years. Descriptor systems are also re-
ferred to as singular systems, implicit systems, general-
ized state-space systems, differential-algebraic systems or
semi-state systems [4] . Applications of such systems can
be found in dynamic models of chemical systems [2, 11] ,
mechanical engineering [9] , and other areas. There have
been many research works on extending existing theories
and results based on state-space systems to descriptor
systems [4, 14] . Recently, there has been a growing in-
terest in the study of robust stability analysis and robust
control for descriptor systems [6, 7, 15, 21] . In [6] and
[7] , upper bounds on structured perturbations ensuring
robust stability for uncertain continuous and discrete de-
scriptor systems were given, respectively. For descriptor

∗ Department of Mechanical Engineering, University of Hong
Kong, Pokfulam Road, Hong Kong.
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systems with unstructured uncertainties, [20] and [22]
studied the robust stability problem by extending the
concept of “quadratic stability” for state-space systems,
and some sufficient conditions for robust stability were
obtained. Similar results for discrete-time descriptor sys-
tems were reported in [21] . Very recently, discrete de-
scriptor systems with time delays as well as parametric
uncertainties were studied in [18] , where both robust
stability and robust D-stability results were presented.
For continuous descriptor delay systems with unstruc-
tured uncertainties, sufficient conditions for both robust
stability and robust stabilization were given in [19] . It
is worth pointing out that when dealing with the robust
stability problem for descriptor delay systems, similar to
delay-free case [6, 7] , not only stability robustness, but
also regularity and impulse immunity (for continuous de-
scriptor systems) and causality (for discrete descriptor
systems) should be considered simultaneously [18, 19] ,
while for state-space delay systems the latter two issues
do not arise. For continuous descriptor delay systems,
although robust stability results for unstructured uncer-
tainties were obtained in [19] , when structured uncer-
tainties appear, no results on robust stability are avail-
able in the literature, this issue is still open.
In this paper, we deal with the problem of robust sta-

bility for continuous descriptor systems with state delay
and structured uncertainties. The purpose is to devel-
ope conditions such that the perturbed descriptor delay
system under consideration is regular, impulse-free and
stable for all admissible uncertainties. We first present a
computationally simple stability condition for descriptor
delay systems without parameter uncertainties. Then,
by this and some properties of modulus matrix, a robust
stability condition is proposed, which can be viewed as
an extension of existing results on robust stability for
descriptor systems without delay. Finally, an example
is given to demonstrate the effectiveness of the proposed
approach.

Notation. Throughout this paper, for matrices X,
Y ∈ Rn×n, the notation X ≥ Y means that Xij ≥ Yij , i,
j = 1, 2, . . . , n, where Xij , Yij (i, j = 1, 2, . . . , n), are ele-
ments of X and Y , respectively. I is the identity matrix
with appropriate dimension. The superscript “T” rep-
resents the transpose. C+ is the closed right-half plane.
kx(t)k denotes the Euclidean norm of vector x. ρ(M)
refers to spectral radius of matrix M and |M |m is the
modulus matrix of M. Matrices, if not explicitly stated,
are assumed to have compatible dimensions.



2. Preliminaries and Problem
Formulation

Consider the following linear continuous descriptor sys-
tem with parameter uncertainties and state delay:

(Σ) : Eẋ(t) = (A+∆A)x(t)

+(Ad +∆Ad)x(t− τ) (1)

x(t) = φ(t), t ∈ (−τ , 0] (2)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input. The matrix E ∈ Rn×n may be descriptor, we shall
assume that rank E = r ≤ n. A and Ad are known real
constant matrices with appropriate dimensions. τ > 0 is
a constant time delay of the system, φ(t) is the compat-
ible continuous vector valued initial condition. ∆A and
∆Ad are time-invariant parameter uncertainties and are
assumed to have the following properties [7, 13] :

|∆A|m ≤MA, |∆Ad|m ≤Md (3)

whereMA andMd are constant matrices whose elements
are all nonnegative. The constant matrices MA and Md

represent the highly structured information for the addi-
tive perturbation matrices ∆A and ∆Ad. The parameter
uncertainties ∆A and ∆Ad are said to be admissible if
(3) holds.

The nominal descriptor delay system of (1) can be
written as:

Eẋ(t) = Ax(t) +Adx(t− τ). (4)

Definition 1 [4, 14]

(I) The pair (E,A) is said to be regular if det(sE − A)
is not identically zero.

(II) The pair (E,A) is said to be impulse-free if deg(det(sE−
A)) = rankE.

(III) The pair (E,A) is said to be stable if all of its finite
eigenvalues are in the open left-half plane.

The descriptor delay system (4) may have an impul-
sive solution, however, the regularity and the absence
of impulses of the pair (E,A) ensure the existence and
uniqueness of an impulse-free solution to this system,
which is shown in the following lemma.

Proposition 1 [19] Suppose the pair (E,A) is regular
and impulse free, then the solution to (4) exists and is
impulse-free and unique on (0,∞).

In view of this, we introduce the following definition
for descriptor delay system (4).

Definition 2 [19]

(I) The descriptor delay system (4) is said to be regu-
lar and impulse-free if the pair (E,A) is regular and
impulse free.

(II) The descriptor delay system (4) is said to be stable if
for any ε > 0 there exists a scalar δ(ε) > 0 such that,
for any compatible initial conditions φ(t) satisfying

sup−τ≤t≤0 kφ(t)k ≤ δ(ε), the solution x(t) of system
(4) satisfies kx(t)k ≤ ε. Furthermore,

x(t)→ 0, t→∞

The purpose of this paper is to develop robust α-
stability conditions for descriptor delay systems. To this
end, it is worth pointing out that the regularity, impulse
immunity as well as stability robustness should be con-
sidered simultaneously when dealing with the problem
of robust stability analysis for uncertain descriptor de-
lay systems [19] , which is similar to the robust stability
analysis for uncertain descriptor systems without delay
[6, 7] .

3. Main Results

In this section, a computationally simple robust stability
condition for descriptor delay systems will be developed.
We first present the following lemma which will play a
key role in the derivation of our main results.

Lemma 1 Suppose the pair (E,A) is regular, impulse-
free and stable, then the descriptor delay system (4) is

regular, impulse-free and stable if

ρ
h
(sE −A)−1Ad

i
< 1, ∀ s ∈ C+. (5)

Proof. From the Definition 2, the regularity and im-
pulse immunity of the pair (E,A) implies that the de-
scriptor delay system (4) is regular, impulse-free. To
show the stability of system (4), we first note that from
[4] the regularity and impulse immunity of the pair
(E,A) guarantees that there exist two invertible matrices
P and Q such that

PEQ =

"
I 0

0 0

#
, PAQ =

"
A1 0

0 I

#
(6)

where A1 ∈ Rr×r. Since the pair (E,A) is stable, we
have that sI − A1 is invertible for all s ∈ C+, which
implies that (sE −A)−1 is well defined for all s ∈ C+.
Now, write

PAdQ =

"
Ad1 Ad2

Ad3 Ad4

#
(7)

compatibly with (6). Noting

lim
s→∞ (sE −A)

−1
Ad = Q

"
0 0

−Ad3 −Ad4

#
Q−1. (8)

This together with (5) implies that

ρ(Ad4) < 1. (9)

Now set ξ(t) = Qx(t) and decompose

ξ(t) =
h
ξ1(t)

T ξ2(t)
T
iT

where ξ1(t) ∈ Rr and ξ2(t) ∈ Rn−r. Then, noting (6)
and (7), system (4) can be transformed to

ξ̇1(t) = A1ξ1(t) +Ad1ξ1(t− h) +Ad2ξ2(t− h)
ξ2(t) = −Ad3ξ1(t− h)−Ad4ξ2(t− h).



On the other hand, considering (5), it is easy to see

det
h
I − (sE −A)−1Ade−sτ

i
6= 0, ∀ s ∈ C+.

Using this and noting det (sE −A) 6= 0 for all s ∈ C+,
we have

det
¡
sE −A−Ade−sτ

¢
= det (sE −A) det

h
I − (sE −A)−1Ade−sτ

i
6= 0,∀ s ∈ C+.

(10)
That is,

det

"
sI −A1 −Ad1e−sτ −Ad2e−sτ
−Ad3e−sτ −I −Ad4e−sτ

#
6= 0, ∀ s ∈ C+.

From this and (9) and along the same lines as in the
proof of Theorems A and B (page 384) in [10] we can
show that

ξ1(t)→ 0, ξ2(t)→ 0, t→∞.
This implies

x(t)→ 0, t→∞.
Therefore, the descriptor delay system (4) is stable. ¤

The following lemmas will be used in the proof of our
main results.

Lemma 2 [7, 17] For any n×n matrices X, Y and Z
with |X|m ≤ Z, we have
(a) |XY |m ≤ |X|m |Y |m ≤ Z |Y |m
(b) |X + Y |m ≤ |X|m + |Y |m ≤ Z + |Y |m
(c) ρ(X) ≤ ρ(|X|m) ≤ ρ(Z)

(d) ρ(XY ) ≤ ρ(|X|m |Y |m) ≤ ρ(Z |Y |m)
(e) ρ(X +Y ) ≤ ρ(|X + Y |m) ≤ ρ(|X|m+ |Y |m) ≤ ρ(Z +

|Y |m).

Lemma 3 [12] For any n×n matrices X, if ρ(X) < 1,
then det(I −X) 6= 0.

Lemma 4 [1] A regular pair (E,A) is impulse-free if
and only if (sE −A)−1 is proper.

Lemma 5 [3] Let M(s) be a square rational matrix
and be decomposed uniquely as M(s) =Mp(s) +Msp(s),

where Mp(s) is a polynomial matrix and Msp(s) is a
strictly proper rational matrix. Then M−1(s) is proper
if and only if M−1p (s) exists and is proper.

Suppose the pair (E,A) is regular, impulse-free and
stable, then we can write

(sE −A)−1 = G(s) +H (11)

where G(s) is a strictly proper rational matrix which is
analytic in right-half s-plane and H is a constant matrix.

Lemma 6 [6] If the pair (E,A) is regular, impulse-free
and stable, then¯̄̄

(sE −A)−1
¯̄̄
m
≤ L+ |H|m (12)

where
L =

Z ∞
0

|G(t)|m dt. (13)

and G(t) is the impulse response of G(s) which is given
in (11).

Now we are in a position to present the robust stabil-
ity result for uncertain discrete descriptor delay systems.

Theorem 1 Suppose the pair (E,A) is regular, impulse-
free and stable, then the uncertain descriptor delay sys-
tem (Σ) is still regular, impulse-free and stable for all
admissible uncertainties ∆A and ∆Ad if

ρ [(L+ |H|m)MA] + ρ [(L+ |H|m) (|Ad|m +Md)] < 1

(14)
where H and L are given in (11) and (13), respectively.

Proof. From (14), it is easy to show that

ρ [(L+ |H|m)MA] < 1. (15)

Then, by Lemma 2 and (11) we have

ρ
h
(sE −A)−1∆A

i
≤ ρ

h¯̄̄
(sE −A)−1∆A

¯̄̄
m

i
≤ ρ

h¯̄̄
(sE −A)−1

¯̄̄
m
|∆A|m

i
≤ ρ [(L+ |H|m)MA] < 1 (16)

for all s ∈ C+. Therefore, it follows from Lemma 3 that

det
h
I − (sE −A)−1∆A

i
6= 0, ∀ s ∈ C+.

Thus, ∀ s ∈ C+,
det (sE −A−∆A)

= det (sE −A) det
h
I − (sE −A)−1∆A

i
6= 0.

This implies that the pair (E,A + ∆A) is regular for
all admissible uncertainties. Next, we shall show that,
for all admissible uncertainties, the pair (E,A+∆A) is
impulse-free. Applying Lemma 2 and noting (15), it can
be seen that

ρ (H∆A) ≤ ρ (|H∆A|m) ≤ ρ (|H|mMA)

≤ ρ [(L+ |H|m)MA] < 1.

By Lemma 3, we have that I −H∆A is invertible. Now,
considering (11) we can write

[sE − (A+∆A)]−1

=
h
I − (sE −A)−1∆A

i−1
(sE −A)−1

= [(I −H∆A)−G(s)∆A]−1 (sE −A)−1 . (17)
Taking into account G(s)∆A is strictly proper and I −
H∆A is invertible, it then follows from Lemma 5 that
[(I −H∆A)−G(s)∆A]−1 is proper. Noting this and re-
calling that (sE −A)−1 is proper, we have that

[sE − (A+∆A)]−1
is proper too. Therefore, it follows from Lemma 4 that
the pair (E,A + ∆A) is impulse-free. This together
with the regularity of the pair (E,A+∆A) implies that
the uncertain descriptor delay system (Σ) is regular and
impulse-free for all admissible uncertainties..



On the other hand, by Theorem 9.8.3 in [12] , it fol-
lows from (16) that for all s ∈ C+ we can writeh
I − (sE −A)−1∆A

i−1
= I + (sE −A)−1∆A

+
h
(sE −A)−1∆A

i2
+ · · · .

Using this and (15), we have

ρ

·¯̄̄̄³
I − (sE −A)−1∆A

´−1 ¯̄̄̄
m

¸
≤ ρ

h
I +

¯̄̄
(sE −A)−1∆A

¯̄̄
m

+

¯̄̄̄h
(sE −A)−1∆A

i2 ¯̄̄̄
m

+ · · ·
¸

≤ ρ
h
I +

¯̄̄
(sE −A)−1

¯̄̄
m
|∆A|m

+
h¯̄̄
(sE −A)−1

¯̄̄
m
|∆A|m

i2
+ · · ·

¸
≤ 1 + ρ [(L+ |H|m)MA]

+ρ
³
[(L+ |H|m)MA]

2
´
+ · · ·

= 1/ (1− ρ [(L+ |H|m)MA]) .

Hence,

ρ
h
(sE − (A+∆A))−1 (Ad +∆Ad)

i
= ρ

·³
I − (sE −A)−1∆A

´−1
(sE −A)−1 (Ad +∆Ad)

¸
≤ ρ

·¯̄̄̄³
I − (sE −A)−1∆A

´−1 ¯̄̄̄
m

¯̄̄
(sE −A)−1

¯̄̄
m

×|(Ad +∆Ad)|m
i

≤ ρ

·¯̄̄̄³
I − (sE −A)−1∆A

´−1 ¯̄̄̄
m

¸
×ρ
h¯̄̄
(sE −A)−1

¯̄̄
m
|(Ad +∆Ad)|m

i
≤ ρ [(L+ |H|m) (|Ad|m +Md)]

1− ρ [(L+ |H|m)MA]
. (18)

From (14), it can be easily shown that

ρ [(L+ |H|m) (|Ad|m +Md)]

1− ρ [(L+ |H|m)MA]
< 1.

This together with (18) gives

ρ
h
(sE − (A+∆A))−1 (Ad +∆Ad)

i
< 1. (19)

By recalling the pair (E,A+∆A) is regular and impulse-
free, noting (19) and using Lemma 1, we have the un-
certain descriptor delay system (Σ) regular, impulse-free
and stable for all admissible uncertainties. ¤

Remark 1 Theorem 1 provides a simple method to test
whether the uncertain descriptor delay system (Σ) is reg-
ular, impulse-free and stable for all admissible uncertain-

ties under the assumption that the pair (E,A) is regular,
impulse-free and stable. Note that in order to use Theo-
rem 1, the computation of the matrices L and H is neces-
sary. A simple method proposed in [6] can be resorted to
and the matrices L and H can thus be easily computed.

Remark 2 In the case when Ad = 0 and Md = 0,
that is, the time-delay system (Σ) reduces to a descriptor
system without delay, it is easy to verify that Theorem 1
coincides with Theorem 2.7 in [6] , therefore, Theorem
1 can be viewed as an extension of existing results on

robust stability for descriptor systems with delay-free to
descriptor delay systems.

4. Example

Consider the uncertain continuous descriptor delay sys-
tem (Σ) with parameters as follows:

E =


0 −1 0 0

1 −1 0 1

0 0 0 0

0.5 −0.5 0 0.5

 ,

A =


0 6 0 0

−5 5.5 0 −5
0 1 0 −2

−2.5 2.75 1 −2.5

 ,

Ad =


0 −0.6 0.1 0

−0.4 −0.1 0.2 0

0 0.1 −0.1 0.2

0.1 −0.1 0 −0.5



MA =


0.1 0.1 0.1 0

0.1 0.1 0 0.2

0 0.1 0.1 0.1

0.1 0 0.2 0.1

 ,

Md =


0.1 0.2 0.1 0.1

0.1 0 0.1 0.1

0.1 0.3 0 0.1

0.2 0 0.1 0

 .
The time delay is τ = 2. It can be verified that there
exist two invertible matrices

U =

"
Ua

Ub

#
=


−1 0 0 0

0.5 −1 0 0

0 0.5 0 −1
0 0 −1 0



V =
h
Va Vb

i
=


0 −1 0 −0.5
1 0 0 0

0 0 −1 0

0.5 0 0 0.5


such that

UEV =

"
I 0

0 0

#
=


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ,



UAV =

"
A1 0

0 I

#
=


−6 0 0 0

0 −5 0 0

0 0 1 0

0 0 0 1

 .
Therefore, the pair (E,A) is regular, impulse-free. Now
using the method in [7] , we obtain

L =

Z ∞
0

|G(t)|m dt =
Z ∞
0

¯̄
Vae

A1tUa
¯̄
m
dt

=


0.1 0.2 0 0

0.1667 0 0 0

0 0 0 0

0.0833 0 0 0



|H|m = |VbUb|m =


0 0 0.5 0

0 0 0 0

0 0.5 0 1

0 0 0.5 0

 .
Then, we can calculate

ρ [(L+ |H|m)MA] = 0.3043

ρ [(L+ |H|m) (|Ad|m +Md)] = 0.6315

and

ρ [(L+ |H|m)MA] + ρ [(L+ |H|m) (|Ad|m +Md)]

= 0.9358 < 1.

Hence, from Theorem 1 it is seen that the uncertain
descriptor delay system under consideration is regular,
impulse-free and stable for all admissible uncertainties.

5. Conclusions

In this paper, the problem of robust stability analysis
for continuous descriptor systems with state delay and
structured uncertainties has been studied. A sufficient
condition ensuring regularity, impulse immunity and sta-
bility for the perturbed descriptor delay system has been
presented. The proposed approach is computationally
simple to use. An example has been provided to demon-
strate the effectiveness of the proposed approach.
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1. INTRODUCTION 

 
Although in industrial control applications, the 
controlled variable usually has a specific set point. It 
is common that many of the controlled variables 
have range limits rather than set point. This kind of 
process variable is treated as zone variable in most 
industrial MPC controller such as RMPCT, 
DMCPlus and HIECON, which all provide zone and 
setpoint options for CVs to meet industrial need 
(Richalet, et al., 1978; Qin and Badgwell, 1997; 
Morari and Lee, 1999). 
 
Zone control is also necessary for over-specified 
processes, whose process model can be cast at steady 
state by the following form (Muske and Rawlings, 
1993) 
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where ija  is steady gain ， id  is disturbance. When 
the number of outputs exceeds the number of inputs, 
all the set points cannot be met at the same time. If 
one of the set points is changed into a zone 
specification, the outputs specifications are relaxed 
slightly. The probability that the process will meet all 
of its specifications increases. Moreover, because the 
output’s change within zone is ignored, the need to 
coordinate the movement of inputs is largely 
eliminated, which decreases its sensitivity to model 
mismatch and improves its robust performance, 
especially for the process whose outputs and inputs 
variables are interacted with each other strongly. 
 
*Address correspondence to this author 
E-mail: xuzh@iipc.zju.edu.cn. 

In conventional dynamic model control, zone control 
cannot be solved directly. But the receding 
optimization formulation of model predictive control 
provides the possibility to realize zone control. Zhou 
(2001) used setpoint approximation method to 
implement zone control, but the limit was that it still 
needed estimation of zone violation concomitant with 
the selection of the approximate setpoint value. 
 
In this paper, a zone model predictive control 
algorithm using the soft constraint method is 
proposed to achieve better control performance and 
to avoid the mentioned problem. To further improve 
control performance, zone trajectory method is 
proposed which provides a tuning parameter to trade 
off the response performance and model accuracy. 
The stability of the algorithm is analyzed finally. 
 
 

2.  ZONE  CONTROL  ALGORITHM 
 
Consider a stable multi-input multi-output system 
represented by the following model (Garcia, et al., 
1989) 
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where   
( )kjky + =Predicted output vector at time jk +  
( )ky =Actual output vector at time k  
( )ku =Actual input vector at time k  



( )kjkd + =Predicted disturbance vector at time jk +  
N = model horizon length 
r = number of inputs  
s = number of outputs 
 
For setpoint control, the optimization problem at 
every sampling time is solved (Cutler and Ramaker, 
1979; Garcia and Prett, 1986; Garcia, et al., 1989): 
Find the a optimal sequence of M future manipulated 
variable moves ( ) ( )1,, −+∆∆ Mkuku L  so that the 
prediction of the manipulated variables and 
controlled outputs satisfy the criteria which 
minimizes the sum of squared deviations of the 
predicted CV values from a time varying reference 
trajectory over P future time steps. The formulation 
of optimization problem is: 

( ) ( )
( ) ( )

( )

( )
( ) Mjujkuu
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j
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where  
( )kjkw + =reference trajectory value at time jk +  

 
A zone region is defined by the minimum and 
maximum values of a controlled variable’s desired 
range of values. One way to simply implement zone 
control is to use setpoint approximation method: 
when the CV is predicted to lie within its zone, its 
weight coefficient of matrix Q is set to zero so the 
controller will ignore it; when the CV is predicted to 
violate its zone limits, its weight is non-zero and a 
point within zone is defined as the approximate 
setpoint and is chose to drive the output back into the 
zone. The simple way to estimation the zone 
violation of output is by examining the initial 
predictive value of outputs.  
 
Even though the initial predictive value of outputs 
meets its zone limits, some of output predictive value 
still may violate its limits when correcting other 
outputs error during calculating the optimal inputs 
moves sequences. The controller will transiently 
move the output farther outside its zone limit, 
because the controller ignores the output’s error 
when the predictive initial value of outputs lie within 
its zone. The solution of set point approximation 
method is generally sub-optimal. Moreover, the 
selection of the approximate setpoint when the 
control variable violates its zone constraint lacks 
rigorous analysis rules, because distinct response 
performance can be achieved by selecting different 
approximate setpoint values. 
 
For zone control, the deviation between the output 
predictive value and zone limits [ ]     +−

cc yy is 
defined as 
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The optimization problem of zone control can be 
formulated as 
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Apparently, ( )kjke + is the optimal value ( )kjk +*ε  of 
following optimization problem 
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 Therefore, optimization problem (5) can be further 
transformed as 
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In the above problem formulation, the zone limits is 
treated as soft constraints by adding a slack variable. 
At the same time the slack variables are also included 
in the objective function to be minimized.  
 
Soft Constraints are used to prevent the controller 
from introducing transient errors by defining soft 
constraints on the controlled outputs at intervals from 
the current interval to predictive horizon. When the 
controlled variable has a set point instead of a zone 
region, both the upper and lower limits of the zone 
are set equal to the set point.Through soft constraint 
method, the estimation on the zone violation is 
avoided; as a consequence the selection of the 
approximate setpoint when the control variable 
violates its zone constraint is skipped. 
 
In order to drive the outputs back into its zone region 
more slowly to avoid overshoot consequently, zone 
trajectory is introduced for each controlled output as 
follows
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where ( ) ( )jkyjky rr ++ +−       is determined as follows: 
If ( )ky  within [ ]    +−

cc yy , then  
( ) −− =+ cr yjky    and ( ) ++ =+ cr yjky    

If ( ) +≥ cyky , then  
( ) −− =+ cr yjky    and  
( ) ( ) ( ) ++ −+=+ c

jj
r ykyjky αα 1    

If ( ) −≤ cyky , then  
( ) ++ =+ cr yjky   and
( ) ( ) ( ) −− −+=+ c

jj
r ykyjky αα 1    

where α is the time constant, which is determined 



by the trade-offs that inherently exist between speed 
of response and model accuracy or inputs movement. 
A smaller value gives faster response and 
consequently large MV movement, which requires a 
more accurate model for stable control. A larger 
value, on the contrary gives slower response with 
smaller MV movement and works well with a less 
accurate model. 
 
The controller is obliged to keep the CV within the 
constraints defined by the zone trajectory, but it is 
allowed to follow any figure within these constraints. 
The sensitivity to model error is decreased and the 
robustness is improved 
 
 

3. STABILITY ANALYSIS 
 

Alex Zheng and Manfred Morari(1995) analyzed the 
closed-loop stability for constrained MPC with 
setpoint control. Zone Control also has the similar 
property when using soft constraint method. 
Assume:  

a) There is no model mismatch 
b) Predictive horizon is infinite 
c) Steady-state gain matrix of the model has 

full row rank.  
then the closed-loop system is asymptotically stable 
if and only if the optimization problem (7) is feasible 
at the first sampling time. 
Proof: 
If the optimization problem is not feasible, then the 
controller is not defined. 
At sampling time k, the optimal solution is 
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At sampling time k+1,the solution (18) is a feasible 
solution but may not be the optimal solution. 
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Define ( ) ( )kkkkuu kk 1   ** +=∆=∆ εε  
The above feasible control input yields: 
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Therefore, the sequence { }*
kJ  is non-increasing, its 

low boundary is zero. Consequently, the sequence 
{ }*

kJ  converges. So 
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This together with 0>SQ、 implies that 
 0→kε and 0→∆ ku as ∞→k . Since the 

steady-state gain matrix of the model is bounded, 
( )ky approaches the steady-state value 

asymptotically. 
 
 

4. SIMULATION 
 

(1) Consider the two-input three-output system: 
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with the following input constraints 
03.0,         0.5,5.0 2121 ≤∆∆≤≤− uuuu  

and the following initial conditions 
 0         0 21321 ===== uuyyy  

Choose T=5s,N=100,M=4,P=30,Q=I,S=I,α= 0.95 
If all of the controlled outputs have set points 

67.0    64.0      59.0 321 === yyy
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Fig. 1. Responses of setpoint control 
 
Because the degree of freedom is insufficient, it is 
physically impossible to keep all output at setpoint or 
within range. When the set point for 3y is replaced by 
zone limit [ ]7.065.0 , all output specification would 
be met. 
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Fig.2. Responses of zone Control 
 
(2) Consider the system: 
     

( )

























+++

+++

+++

=
−−

−−−

−−−

133
38.4

119
2.7

144
42.4

150
39.5

140
9.6

160
72.5

150
05.4

150
88.5

160
77.1

2022

181514

272728

s
e

ss
e

s
e

s
e

s
e

s
e

s
e

s
e

sG
ss

sss

sss

 

with the following input constraints 
03.0,,          1,,1 321321 ≤∆∆∆≤≤− uuuuuu  

and the following output regulatory objective 
5.0,0.5-         2.0 321 ≤≤= yyy  

and the following initial conditions 
 0         0 321321 ====== uuuyyy  

Choose T=5,N=100,M=4,P=30,Q=I,S=I,α= 0.95 
When using set point approximation, the result is 
shown as follows: 
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Fig.3. Responses of set point approximation method 
 
When using soft constraint method, the result is 
shown as follows: 
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Fig. 4. Responses of soft constraint method 
 
From the simulation result, the soft constraint 
method prevent the controller from moving a CV 
farther outside zone while correcting other CV errors 
by defining constraints on the CVs that are imposed 
at intervals from the current interval out to the 
predictive horizon. In setpoint approximation method, 
the controller will ignore the CV when the CV is 
predicted to be within its zone, so its performance is 
worse than that with soft constraint method. 
 
 

5. CONCLUSION 
 

Estimating the violation of zone output limits in the 
setpoint approximation method is simply through 
examining its output predictive initial value, but it 
can not always keep zone output in its zone limit 
while correcting other outputs errors. Using the soft 
constraint method, zone specification is directly 
imposed as constraints in optimization formulation, 
while correcting other CV errors, it will not  violate 
zone output limits, but its computing burden is larger 
than the setpoint approximation method. The tuning 
parameter provided by zone trajectory method 
enables a flexible way to achieve better performance 
and reach a tradeoff between performance and model 
accuracy. 
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Abstract: The large number of various advanced control strategies (e.g. Model 
Predictive Control, Neural Networks or Fuzzy Control) and the lack of a practically 
usable selection methodology make it very difficult to choose an appropriate strategy 
for a given plant. In order to support the selection of proper control strategies and 
products a set of relevant evaluation criteria is developed. A flexible and expandable 
test environment (workbench) is created aiming at a controller evaluation 
considering these criteria. The evaluation approach and workbench are demonstrated 
for PID based and commercial Model Predictive Controllers at some typical process 
units and plants.  
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1. INTRODUCTION 

 
In the last decade, in the area of process control 
more sophisticated control strategies have been 
developed (e.g. Model Predictive Control, Neural 
Networks or Fuzzy Control). With the number of 
advanced control algorithms increasing a sound 
selection  of the control strategy and product 
became a challenging task. 
The main objective of this project was to develop a 
methodology and tools to evaluate / compare 
different control approaches from the viewpoint of 
industrial application.   
To obtain practical relevance all important aspects 
of the controller application should be considered. 
Therefore the standard criteria describing the 
controlled variable performance (i.e. set point and 
disturbance responses, IAE, ISE) are extended by 
such practical issues as: 

• Engineering and operational aspects  
• Robustness and integrity 
• Ability to explicitly consider constraints. 

Based on literature (Harris, 1996; Joshi, 1997; 
Le Page, 1998; Schuler, 1998; Seborg, 1999), inter-
views of control engineers and  personal experience 
a criteria catalogue was accomplished  (details in 
section 4.). 
A set of answers to all the criteria is thought as 
valued guideline for  the selection of most 
appropriate control strategies or products.  
Considering the diversity of  all  the criteria, the 
processes, the enterprises and the control tasks no 
attempt is undertaken to provide a single selection, 
instead the user is supported in his multiobjective 
decision.  
The initial idea of the project was to create only 
exemplary evaluations of  important control strate-
gies for typical process units which should 
represent entire classes of  equipment and to obtain 
generic evaluations. However, a retrospective result 
is the usefulness of the proposed approach for any 
specific process assumed its detailed dynamic 
model is available.  
While some of the criteria can be evaluated using 
documentation / literature others need  



     

measurements in a real plant or - as chosen in this 
project -  in a suitable simulation environment.  
This simulation environment (referred to as 
Workbench) is the platform for the detailed 
dynamic process simulation, for the basic control 
functions, and can be connected to commercial 
Advanced Control Algorithms. It is utilized to 
“experimentally”  obtain the controller design 
models as well as to implement and evaluate the 
controllers. 
To achieve an industrially relevant assessment of 
the above mentioned criteria a commercial 
distributed control system (DCS) is used and 
representative commercial advanced controller 
software packages can be included. The emulated 
controller of the DCS performs the basic controls of 
the simulated units or plants, and provides the 
interface between the emulated DCS controllers and 
the advanced 
controller (Figure 1).  
In addition it pro-
vides the function 
blocks for some con-
ventional advanced 
control strategies 
(e.g. PID based, and 
decoupling control).    
          Fig. 1 Workbench Structure 
 

2. TECHNICAL REQUIREMENTS FOR THE 
WORKBENCH 

 
A complete controller evaluation is not possible in a 
sole offline-simulation environment such as 
Matlab/Simulink since the actual commercial 
control products are available only as self-contained 
applications without source code. This and the 
intended use of the workbench lead to the following 
demands: 

• evaluation of strategies and products 
• evaluation of commercial and user  

programmed controller  
• fast simulation  
• high reproducibility 
• availability of appropriate interfaces 
• implementation on heterogeneous distributed 

computers / DCS systems 
• assessment of engineering effort 
• flexible choice of controller or process models, 

respectively.   
The selected workbench structure is depicted in 
figure 2 and contains the following levels: 
APC-Strategies / Products: Commercial as well as 
user-specified APC-strategies, which are relevant 
for the process industry and hence will be assessed. 
Distributed Control System (DCS): The DCS is 
utilized as Operator-Station, data transfer unit and 
watchdog. In addition, PID-controllers can be 
realized in the DCS. The control units (process 
connected devices) can be emulated on the PC.  
 

Fig.2 Client-Server-Concept of the Workbench  
 
Process simulation: The existing plant is replaced 
by a dynamic typically non-linear, first principles 
process model. The demand of a flexible and easily 
usable workbench requires a well-defined con-
nection from the APC to the simulation process via 
the DCS (Figure 2). The desired flexibility and 
short training period to get familiar with the 
workbench is attained by using Microsoft Windows 
NT operating system which provides several 
(industrial) standard interfaces like Dynamic Data 
Exchange (DDE) and OLE for process control 
(OPC). Because of the performance advantage of 
the OPC versus the DDE and its popularity in 
process automation the OPC-interface is selected as 
standard interface in the workbench.  
Most of the actual APC products provide an OPC-
interface, therefore they can easily be implemented 
in the workbench. However, the products of the 
simulation level (i.e. MatLab or Gproms ) do not 
provide this interface as standard feature. Therefore 
several simulation products were extended with  the 
OPC interface. OPC is based on the Client-Server-
Concept, and the APC-strategies usually provide 
the OPC-Client functionality only. Thus the  
selected DCS needs to have an OPC Server and an 
OPC Client in order to accomplish the depicted 
connections. The OPC code of  WinTECH 
Software Design was used to add these functions to 
Matlab/Simulink and stand-alone simulations 
(WinTECH, 2001). The different workbench levels 
can be implemented on a single PC or two / three 
PCs communicating via TCP/IP. 
Due to the real time character of some workbench 
components (e.g. DCS, MPC) their calculations are 
normally triggered by the computer’s real time 
clocks. The interactions of the process model and 
the controller must be synchronized. The 
achievement of a significant acceleration of the 
simulation time compared with real time (up to the 
factor of 100 on standard PC) was a challenge and 
at the same time a prerequisite to cope with the 
many simulations necessary for the evaluation. One 
simple option is to “shrink”  the controller’s time 
scale by the ratio “necessary computation time for 
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integrating the model about a given real time 
interval  / real time interval” . Another option is 
using the “external  trigger”  mode of the APC-
strategies. In this mode (often hidden for end user) 
the controller calculations can be triggered by an 
external program.  
 

 
3. PROCESS MODELLS AND CONTROLLERS 

IMPLEMENTED  
 
The four process models used in the workbench 
hitherto are:  
• A Binary distillation column: A simple 

distillation process, enabling initial experience 
in controller implementation and evaluation 

• A Distillation Operator Training simulator: A 
detailed rigorous dynamic plant model which 
can be used not only for normal operation but 
also for the simulation of start-up, shut down 
transients and several process / equipment 
malfunctions. 

• A Divided Wall Column (DWC): A DWC can 
efficiently be used for the separation of three 
products. Since a dynamic model was developed 
for a DWC pilot plant the evaluation approach 
could be accomplished on the model and on the 
pilot plant. This provided the opportunity to 
validate the simulation based evaluation 
approach by real process data.  

• The Tennessee Eastman process: A complex 
academically well acknowledged control 
benchmark process 

All models contain unit operations relevant and 
typical for process industry. With the exception of 
the first model they all comprise not only the main 
equipment components but also the auxiliary ones, 
e.g. separators, pumps heat exchangers.  
The commercial DCS and controllers which were 
offered to participate at the evaluation are: 
• DCS PlantScape, Honeywell 
• RMPCT, Honeywell  
• DMC, Aspen  
• INCA, Ipcos  
• 3dMPC, ABB . 
 

 
4. APPLICATION OF THE EVALUATION 

CRITERIA  
 
The evaluation approach is divided into five groups 
containing qualitative or numerical ratings. The 
tables 1 to 5 list the criteria concerning: 
• identification and tuning 
• implementation of the controller  
• control performance 
• control system robustness and integrity 
• usability 
The application of the evaluation criteria is 
exemplarily demonstrated here for the binary 
distillation column.  

The binary distillation column (Figure 3) comprises 
41 stages and separates a binary mixture. The 
model is based on the following assumptions: 
• Constant relative volatility  
• Constant hold-up 
• Perfect level control. 
The model of the distillation column considers the 
material balance and the phase equilibrium on each 
stage. 
As both the bottom and the top condenser levels are 
assumed as perfectly controlled, the remaining 
manipulated variables reflux flow and heating 
steam flow are utilized to adjust the concentrations 
of the light component xT and xB.  
The control objective is to ensure tight control of xT 
and xB during operating point transition and in the 
presence of disturbances (feed flow and 
composition changes). 

 
Fig.3 Distillation column 
 
The model of the column is a non-linear Multi 
Input Multi Output (MIMO) system. Although the 
process has only two manipulated and two 
controlled variables, it represents some typical 
features of distillation units.  
The comparative evaluation study includes the 
following controllers: 
• Decentralized PID controller 
• PID controller with steady state decoupling  
• Commercial Linear model predictive controllers 

(MPC #1, MPC #2). 
Both PID based control structures are implemented 
on the DCS, the MPCs are installed on top of the 
DCS. 
The evaluation method comprises the assessment of 
the controller design steps and of the controller 
performance: 
• Controller design: 
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 - Identification to obtain the controller design    
     model (e.g. step tests at the rigorous model) 

       - Tuning of the controller 
       - Offline simulation using the design model 
• Implementation of the controller on the non-

linear simulation model of the plant. 
• Investigation of controller performance  
         - Controlled variable performance  
     - Stability  
• Applicability 
 
Example: 
The first step of the controller design is the model 
identification to obtain a design model (figure 4). 
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Fig.4 Linear model of the column 
 
At the next step the controllers are to be configured 
and tuned. To achieve an equal performance 
specification for all controllers, the tuning 
parameters are adjusted to obtain the same closed 
loop settling time (figure 5) with minimum 
manipulated variables activity. 
This indirect “unification”  was necessary because 
the optimisation criteria of the commercial MPCs 
differ widely and are not documented in detail.  
 

Fig. 5 Closed loop settling time t95 specification 
 (linear model) 
 
For the PID controllers the IMC tuning was applied 
whereby the two 

�
 were determined by a non-linear  

optimisation according to the above objective. 
The evaluation criteria concerning identification are 
shown in (table 1). 

After being tuned the controllers can be 
implemented and used to control the non-linear 
simulation process. The assessment of the 
implementation procedure is given in table 2. 
The controlled variable performance can be 
evaluated analysing figure 6.  
 

Fig.6 Closed loop control (non-linear model) 
 
It shows the transients of the non-linear plant with 
the different controllers for a given change of the 
operating point (xT). 
Further quantitative evaluation criteria values are 
given in table 3 to assess the controlled variable 
performance. 
As analytical considerations of the stability margins 
are hardly possible many of the considered 
controllers they are determined here by an 
empirical simulation approach. To do this gain or 
dead time blocks are placed between model outputs 
and controller inputs. Either the gain or the dead 
time is increased until the closed loop stability 
threshold is reached. The obtained gain and delay 
represent some kind of of the phase and gain 
margins. The robustness is considered as criteria in 
the table 4 below, see also (Subawalla, 1996; Le 
Page, 1998).  
Last but not least some features describing the 
practical usability are investigated (table 5). 
From these evaluation criteria it gets evident that 
the selection of a control strategy and product for a 
given plant type and control objective is a multi- 
objective task. However, the  proposed criteria give 
a clear guideline, which allows to give the choice a 
reasonable foundation. Besides the proposed 
evaluation criteria, the final decision is also 
influenced by “external”  and partially soft factors 
as companies policy.  
For the given simple binary distillation with  
relatively “control-friendly”  steady state and 
dynamic behaviour and no explicit constraints on 
controlled and manipulated variables the best 
choice is obviously a pair of PID controllers with 
steady state decoupling. 
Similar investigations were performed also for the 
other processes mentioned above and for an 
additional commercial MPC. The evaluation results 
are published in (Mahn, 2003). 
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  5. SUMMARY 
 
The proposed approach to evaluate control 
strategies and products (incl. their tools) in a close-
to-reality simulation environment has been tested 
on several processes from a relatively simple binary 
distillation column up to the difficult to control 
Tennessee Eastman Challenge benchmark process. 
The approach was successfully validated applying 
the evaluation criteria for both a real pilot plant 
DWC with DCS and for a simulated DWC in the 
workbench. 
 Until now PID based control structures and several 
linear MPC controllers were analysed.  
The major findings for the time being are: 
• The evaluation of advanced control strategies 

using a simulation environment and rigorous  
models of typical units is feasible (and 
affordable). 

• While the evaluation results of the workbench 
regarding the controllers inspire confidence the 
assessment  methods / tools seems to be less 
significant due to the variety of disturbances and 
operating limitations in real plant experiments.  

• Practically relevant evaluations comprise more 
than just controlled variable performance only. 

• The evaluation results can be significantly 
biased / influenced by the evaluator’s 
experience. This issue is worsened due to the 
lack of good  product manuals / documentation. 

• The maturity of the evaluated APC products 
regarding the engineering by external users is 
still low. 

• Besides the use as evaluation tool the developed 
workbench turned out to be a useful medium to 
acquaint oneself with the identification / design 
and operation of control products and to try out 
control system designs.  

 
Tab. 1 Criteria concerning identification and tuning 

Criteria group  Criteria PID PID with 
decoupling 

MPC #1 MPC #2 

Identification Identification tool available No1 No1 Yes Yes 
Model accuracy  Normal Normal Normal High 

Number of tuning parameters  12 12 1 5 (many) 
Tuning rules available Yes Yes Yes No 

Off Line simulation possible No No Yes Yes 
Adaptation of parameters 

possible 
Yes Yes No No 

 
 
 

Tuning 

PV transformation possible Yes Yes Yes Yes  
1 several identification tools available       2due to IMC-tuning  
 
Tab. 2 Criteria concerning the implementation of the controller  

  DCS   
Criteria group Criteria PID PID with 

decoupling 
MPC #1 MPC #2 

Transfer of tuning parameters 
from offline to online possible 

No No No Yes 

Minimal execution period 50 ms 50 ms 5 sec 5 sec 
Connection controller to DCS  Browser Browser Manual Manual 

 
 

Implementation  

Special requirements for the tags No No Yes Yes 
 
Tab. 3 Criteria concerning the control variable performance  

  DCS   
Criteria group Criteria PID PID with 

decoupling 
MPC #1 MPC #2 

 
 
 

Controller 
Performance 
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Tab. 4 Criteria concerning the control system robustness  
  DCS   

Criteria group Criteria PID PID with 
decoupling 

MPC #1 MPC #2 

Robust design possible Yes Yes No No 

 
KP

PID

KP
RRI

KP

∆
=

∆
   (1) 

 

 
RPIKP (xT)=1 
RPIKP (xB)=1 

 
RPIKP (xT)=18 
RPIKP (xB)=4 

 
RPIKP (xT)=3.0 
RPIKP (xB)=1.2 

 
RPIKP (xT)=3.0 
RPIKP (xB)=1.5 

 
 
 

Stability 
margin* 

 
TP

PID

TP
RRI

TP

∆
=

∆
    (2) 

 
RPITP (xT)=1 
RPITP (xB)=1 

 
RPITP (xT)=4.5 
RPITP (xB)=1.2 

 
RPITP (xT)=5.0 
RPITP (xB)=2.4 
 

 
RPITP (xT)=5.0 
RPITP (xB)=3.2 

(*): Used as measure of the control system robustness 
(1): ∆KP is the minimal change of the process gain, which induces unstable operation for the controller. 
(2): ∆TP is the minimal change of the process dead time, which induces unstable operation of the system. 
∆KPPID, ∆KTPID are the values of the stability thresholds of the PID controllers used as reference. 
 
Tab. 5 Criteria concerning the usability  

  DCS   
Group of criteria Criteria PID PID with 

decoupling 
MPC #1 MPC #2 

Separately usable subsystems 
supported 

Yes No Yes Yes 

Anti-reset windup supported Yes 
 

No Yes Yes 

User interface available  
/ customized possible 

Yes / Yes  Yes / Yes Yes / No Yes / No 

Quality of human-machine-
interface 

(poor, normal, excellent) 

Normal Normal Normal 
 

Poor 
 

 
 
 
 

Usability 

Quality of user guide 
 (poor, normal, excellent) 

Normal Normal Poor Poor 
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Abstract: Based on an extension of the Hermite-Biehler Theorem to the quasipolynomial stability problem, 
this paper studies the problem of stabilizing a second-order plant with dead time via a PID controller. The 
region in PID parameters space for the closed-loop stability is given. For a feasible proportional gain ( pk ), 

the region of all the admissible integral gains ( ik ) and derivative gains ( dk ) is a convex polygon. The PID 
controller design is formulated as a convex optimization problem of load disturbance rejection with 
constraints on stability and non-fragility, which can be solved by using existing linear programming 
techniques. Copyright © 2003 IFAC 
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1.  INTRODUCTION 
 
In today’s process industry it is still PID controllers 
that are the most frequently used controllers. 
Estimates indicate that more than 90% of all 
controllers used are of the PID type. The main reason 
is its relatively simple structure, which can be easily 
understood and implemented in practice (Åström & 
Hägglund, 1995). In order to satisfy the increasing 
requirements for control systems performance, 
knowing all stabilizing PID controllers and using this 
information in controller design can be extremely 
useful. To this extent, Ho, Datta, and Bhattacharyya 
(1996) obtained a characterization of all stabilizing 
gains using a generalized Hermite-Biehler Theorem. 
They (1997a,b) have then extended this result to 
characterize stabilizing PID controllers. Recently, 
Silva et al (2001) solved the problem of stabilizing a 
first-order plant with time delay via a PI controller. 
On the other hand, in practice, controllers do have a 
certain degree of errors due to finite word length in 
any digital systems, the imprecise inherent in analog 
systems and need for additional tuning of parameters 
in the final controller implementation. It is shown 
that relatively small perturbations in controller 
parameters could even destabilize the close-loop 
system (Kell and Bhattacharyya 1997, Dorato 1998). 
This brings a new issue: how to design a controller 
for a given plant such that the controller is insensitive 
to some amount of errors with respect to its 
parameters, i.e., the controller is non-fragile. 
 
In this paper, the problem of designing a non- fragile 
PID controller is studied for a class of second-order 
systems with time delay. First the region in PID 
parameters space for the closed-loop stability is 
derived based on a suitable extension of the Hermite- 
Biehler Theorem. Then the primary goal of the 
design problem is to achieve good disturbance 
rejection, which in mathematical terms corresponds 

to minimizing the integrated error. According to 
Åström et al. (1998), this is equivalent to maximizing 
the integral gain ik for a step change in the load 
disturbance. Finally the PID controller design is to 
maximize the integral gain ik with constraints on 
stability and non-fragility. 
 
This paper is organized as follows. In Section 2, 
some preliminary results due to Pontryagin and 
others are presented for the stability of systems with 
time delay. These results are used in Section 3 to 
study the stabilization problem via a PID controller. 
The procedure for determining the PID parameters is 
presented in Section 4. The simulation and 
experiment examples are given in Section 5 and 
Section 6 to demonstrate the usefulness of the 
proposed results. 

 
 

2. PROBLEM STATEMENT AND 
PRELIMINARY RESULTS 

 
Consider the feedback control system shown in 
Fig.1, 
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  Fig.1.  Feedback control system. 

 
where the transfer function )(sG and the PID 
controller )(sC are in the form of 

 Lse
bsas

ksG −

++
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1
)( 2           (1) 

s
ksksk

sC ipd ++
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2

)(           (2)             

where Lbak ,,,  are known, ipd kkk ,,  are the PID 



parameters.  
 
When the time delay L of the plant model is zero, the 
characteristic equation of the closed-loop system is 
given by 

ipd kkskkskkbass +++++= )1()()( 23δ .    (3) 
It can be concluded from the Routh-Hurwitz stability 
criterion that the closed-loop system is stable if  

.0,1
,0,0

>−
+

>

>+>

i
d

i
p

d

kk
kkkb

akk

kkba
          (4) 

or  

  
.0,1

,0,0

<−
+

<

<+<

i
d

i
p

d

kk
kkkb

akk

kkba
          (5) 

When the delay of the model is nonzero, the 
closed-loop characteristic equation of the system is 
given by 

)1()()( 22 +++++= − bsassekskskks Ls
ipdδ   (6) 

that includes an exponent term. So the region of 
parameters ipd kkk ,,  can’t be determined directly 
by Routh-Hurwitz stability criterion for closed-loop 
stability. To overcome the difficulty, a new method is 
put forward based on the Hermite-Biehler Theorem 
and its extension. 
 
Consider the closed-loop characteristic equation of 
the system with time delay 

)()()()( 1
1 snesnesds m

sTsT m−− +++= mδ     (7) 

where ),,2,1()(),( misnsd i m= are polynomials with 
real coefficients. The characteristic equations of this 
form are known as quasipolynomials. To study the 
stability of certain classes of quasiplynomials, we 
first introduce the extension of the Hermite-Biehler 
Theorem, which was developed by Bhattacharyya et 
al (1995). In (7), assuming 
A1. nsd =)](deg[  and nsni <)](deg[ ,  

for mi ,,2,1 m= ; 
A2. mTTT <<<< m210 . 
Instead of (7), we consider 
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δδ

(8) 
Since msTe does not have any finite zeros, the 
Hurwitz stability of )(sδ is equivalent to that of )(* sδ . 
The following Lemma presents a necessary and 
sufficient condition for the Hurwitz stability of )(sδ . 

 
Lemma 1. (Extended Hermite-Biehler Theorem) 
Let )(* sδ be given by (8), and write 

)()()(* ωδωδωδ ir jj +=  
where )(ωδr and )(ωδi represent, respectively, the 
real and imaginary parts of )(* ωδ j . Under 
assumptions (A1) and (A2), )(* sδ  is Hurwitz stable 
if and only if 

(1) )(ωδr  and )(ωδi  have only single real roots 
and these interlace; 

(2) 0)()()()( 0
'

000
' >− ωδωδωδωδ riri , for some 0ω  in 

),( ∞−∞ . 
where )(ωδr′ and )(ωδi′ denote the first derivative with 
respect to ω of )(ωδr and )(ωδi , respectively.  
A crucial step in applying the above theorem to 
check stability is to ensure first that )(ωδr and )(ωδi  
have only real roots. Such a property can be ensured 
by using the following result (Bellman & Cooke, 
1963). 
 
Lemma 2. Let M and N denote the highest powers of 
s  and se , respectively, in )(* ωδ j , and η  be an 
appropriate constant such that the coefficients of 
terms of highest degree in )(ωδr and )(ωδ i do not 
vanish at ηω = . Then for the equations 0)( =ωδ r  
or 0)( =ωδi  to have only real roots, it is necessary 
and sufficient that in the interval [ ,2 ηπω +−∈ l  

]2 ηπ +l )(ωδr or )(ωδi  has exactly MlN +4  real 
roots starting with a sufficiently large number l. 
 
 

3.  STABILIZATION USING A PID 
CONTROLLER 

 
In this section, a stabilizing region in PID parameters 
space is given based on the extended Hermite- 
Biehler Theorem. Obviously, the equation (6) 
satisfies the assumptions (A1) and (A2). A 
quasipolynomial is constructed as follows: 

Ls
ipd
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22
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= δδ
 

Substituting ωjs =  in the above yields 
)()()(* ωδωδωδ ir jj += . 

where 
)]sin()cos()1([)( 2 ωωωωωωδ LbLakk pi −−−= ;  

).cos()sin()1()( 222 ωωωωωωωδ LbLakkkk dir −−+−=
The controller parameter pk only affects the 

imaginary part of )(* ωδ j . Whereas ik  and dk affect 
the real part )(* ωδ j . Let ωLz = , then  
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A general assumption on 0,0,0 >>> bak , 0>L  
is suitable for a second-order model with time delay. 
The following theorem gives a stabilizing region in 
PID parameters space. 
 



Theorem 1. Under the assumption on ,0,0 >> ak  
0>b and 0>L , the closed-loop system with transfer 

function G(s) as in (1) is stable if and only if  
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Where  
(1). plowk  and pupk  denote the upper bound of all 
minimum values and lower bound of all maximum 
values, respectively, for 
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(2). ),3,2,1(0 m=> jz j  denote the roots of )(ziδ  
associated with a given parameter pk ; 
(3). When j is an odd number, djk denote dk  in the 

joints of jjdi hLzkk =− )( 22  and 0=ik . Then e  
is the minimum odd number satisfying 1dde kk < ;  
(4). When j is an even number, djk  denotes dk  in 

the joints of jjdi hLzkk =− )( 22  and )( 22
1 Lzkk di −  

1h= . Then f is the minimum even number satisfying 
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Proof:  
Step 1: Check the condition 2 of Lemma 1. Let =0ω  

00 =z , thus  

Lkkkkzzzz piriri )1()()()()( 0
'

000
' +=− δδδδ .  

From the above assumption and (4), then )( 0ziδ ′  
0)()()( 000 >′− zzz rir δδδ  if 0>ik  and kk p 1−> .  

 
Step 2: Check the condition 1 of Lemma 1. From (10) 
the roots of the imaginary part can be computed, i.e.,  

0)sin()cos(1)( 2
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The solution are 0=z  and 
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For m,3,2,1=j ; the derivatives of pk versus z  
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From (14), (15) and the assumption on 

0,0,0 >>> bak , 0>L , it can be seen that pk is 
strictly monotonously increasing in π)12( −j , while 
it is strictly monotonously decreasing in πj2 . This 
means that pk versus z depicted by (13) is 
oscillatory and nonconvergent, and its oscillatory 
period is gradually to tend towards π2 . The curve 
of pk versus z  depicted by (13) is shown in figure 
2, where A, B, C and D represent extremums of the 
curve, respectively.  
 
Now check if )(ziδ  has only real roots using 
Lemma 2. Substituting Lss =1  in the expression for 

)(* sδ , it can be seen that for the new quasi- 
polynomial in 1s , 3=M  and 1=N . Select =η  

4π  to satisfied the requirements that 0)sin( ≠η  
and 0)cos( ≠η . Now from Figs 2(a) and 2(b), it is 
seen that for a given ),1(*

pap kkk −∈ , )(ziδ  has 
four real roots in the interval [ ,0]42,0[ =−ππ  

]47π , including a root at 0=z . Since )(ziδ  is an 
even function of z, it follows that in the interval 
[ ]47,47 ππ− , )(ziδ will have seven roots, whereas 

)(ziδ has no root in the interval [ ]49,47 ππ . Thus, 
)(ziδ has 74 =+ MN real roots in the interval [ π2−  

]42,4 πππ ++ . Moreover, it is clear that )(ziδ  
has two real roots in each of the intervals 

]4)1(2,42[ ππππ +++ ll and ,4)1(2[ ππ ++− l  
]42 ππ +− l  for m,2,1=l . Hence, it follows that 

)(ziδ  has exactly MlN +4 real roots in [ +− πl2  
]42,4 πππ +l starting from 1=l  for any given 

( )pap kkk ,1* −∈ . At the same time, starting from 
2=l , )(ziδ  has MlN +4  real roots in the 

interval [ ]42,42 ππππ ++− ll  for any given 
[ ]42,42 ππππ ++− ll  shown in Fig.2(c); while in 
Fig. 2(d), starting from 3=l , )(ziδ  has MlN +4  
real roots in the interval [ ]42,42 ππππ ++− ll . 
Hence from Lemma 2, it can be concluded that 

)(ziδ has MlN +4 roots in the interval [ ,42 ππ +− l  
]42 ππ +l  starting from a large enough value of l, 

for ( )( )pupplowp kkkk ,,1max −∈ . 
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Fig.2.  The curve of pk versus z  by equation (13) 

 
Let jz  denote roots of )(ziδ , then interlacing of 
the roots of )(ziδ  and )(zrδ  is equivalent to 

0)( 0 >zrδ  (since 0>ik  as derived in step 1), 
,0)(,0)( 21 >< zz rr δδ 0)( 3 <zrδ , 0)( 4 >zrδ , and so 

on. Using this fact and (9), (11) it is obtained  
0)( 0 >zrδ   ⇒   0>ik  
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22
1 hLzkk di <−  
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4 hLzkk di >−  

o                             
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where )( jj zhh =  for l,3,2,1=j .  

 
Eq. (16) should be simplified since it includes 
infinite inequalities. As shown in Fig.2, jz is 
approaching π)23( −j  as j  increases.  
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Using this fact, if 1dde kk <  ( e is an odd number), 
then 1ddj kk <  when ej > .  
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where 0≠jz . 
Using this fact, if 2ddf kk >  ( f is an even number), 
then 2ddj kk >  when fj > . 
 
In a word, for a controlled plant G(s) described by 
(1), the closed-loop system is stable if and only if (12) 
is satisfied.  □ 

 
 

4.  PID CONTROLLER DESIGN 
 
Using Theorem 1, a region in ),( di kk , which is a 
convex polygon, can be determined to stabilize a 
second-order system with time delay for a feasible 

pk . By linear programming, the extremum can be 

computed in this region with maximum ik , which is 
also a vertex of this convex polygon. Thus the 
closed-loop system will possibly be unstable if there 
are small perturbations in controller parameters, i.e., 
this controller is fragile. In order to overcome the 
drawback problem, a non-fragile PID controller will 
be presented. It is given by solving the following 
optimization problem 

Maximize ik   
        subject  to  

( )( )dkdkkk pupplowp −+−∈ ,,1max ; 
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Where d  denotes an acceptable perturbation size of 
pk . r denotes an acceptable perturbation size of ik  

and dk , also is the distance between both borders of 
the ),( di kk regions given by (12) and (17), for a 
feasible pk . Both regions are two similar convex 
polygons each other. As a result, the closed-loop 
system will be guaranteed to be stable as long as 
perturbations in the controller parameters are smaller 
than r and d . 

 
 

5.  SIMULATION EXAMPLE 
 
Consider a high-order and heavily oscillatory process  

se
sss

sG 1.0
22 )2)(1(

1)( −

+++
= . 

Its second-order model (Wang, 1999) is given by 

 se
ss

sG 837.0
2 1101.1256.1

222.0)(ˆ −

++
= . 

With the proposed PID controller design procedure, 
5045.4−=plowk , 0995.10=pupk , then when rd =  

4= , the PID controller designed is 

s
s

sC 3013.8107.54485.4)( ++= . 

Wang’s method (1999) gives rise to 

s
s

sC 715.1366.1503.1)( ++=′ . 

The closed–loop performances of the proposed PID 
controller (solid line) and Wang’s PID controller (dot 
line) are shown in Fig.3, where a step load 
disturbance is introduced to at 30=t sec. Both 
controllers parameters ip kk , and dk in Fig. 3(a) are 
not perturbed, and in Fig. 3(b)-(d) are perturbed, i. e., 
they are deviated 5.1,5.1,5.1−  in Fig. 3(b), 

,366.1,5.1 −  5.1 in Fig. 3(c), 5.1,5.1,5.1 −  in Fig. 
3(d) from their design values, respectively. It can be 
seen from the results of simulation that the proposed 
method is superior to Wang’s method in the rejection 
of load disturbances and non-fragility. 
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Fig 3. Step responses of the process 
 
 

6. EXPERIMENT EXAMPLE 
 
The above approach of PID controller design will be 
tested on a water level control plant with three tanks. 
The plant is described as  

  se
ss

sG 30
2 16.1373136

39.1)( −

++
= . 

With the proposed PID controller design procedure 
for this model, 7194.0−=plowk , 89.3=pupk , then 

when 05.0=r , the PID controller designed is  

          s
s

sC 6.1250513.0738.2)( ++= .  

Åström’s method (1984) gives  

s
s

sC 92012.009.2)( ++=′ . 

The step responses with the above two PID 
controllers: the proposed PID (up) and Åström’s PID 
(down) are shown in Fig.4, a step load disturbance is 
introduced to at 900=t sec. There is a higher 
overshoot in the step responses with the proposed 
method , but it is superior to Åström’s method in the 
rejection of load disturbances.  
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Fig 4. Step responses of the water level control plant 
 
The acceptable perturbation size (as 0513.0=r ) of 
the proposed PID parameters is larger than that (as 

012.0=r ) of Åström’s PID parameters. For instance, 
when the integral gains ( ik ) of both controllers are 
deviated 045.0− and 01.0− from their design values, 
respectively, the step responses with the proposed 
PID (up) and Åström’s PID (down) are shown in 
Fig.5. It is obvious that the proposed controller can 
tolerate a larger perturbation extent compare with 
Åström’s controller. 
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Fig 5. Step responses of the process for ik  is deviated 
from the its design value 

 
 

7.  CONCLUSIONS 
 
Based on an extension of the Hermite-Biehler 
Theorem to the quasipolynomial stability problem, a 
characterization of the complete set of stabilizing 
PID controller have been obtained for a given 
second-order plant with dead time. This result opens 
up the possibility of designing PID controller to 
optimize a given performance criteria. The main 
reason to optimize the load disturbance response 
instead of the set point response is that load 
disturbances are more likely to change during 
operation compared to set points, which are usually 
kept fixed. A good set point tracking can be achieved 
by using the feed forward term of two degrees of 

freedom PID controller (Panagopoulos, 1999). The 
non-fragile PID controller can tolerate a larger 
parameter perturbation extent. Consistent and 
satisfactory responses are obtained as shown in 
simulation and experiment example results.  
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Abstract: Based on an identified SOPDT model, a designed optimal sliding surface and 
the use of a delay-ahead predictor, a novel and systematic sliding mode control system 
design methodology is proposed for the regulation of chemical processes. The 
convergence property of the closed-loop system is guaranteed theoretically through 
satisfying a sliding condition and the control system performance is examined with some 
typical chemical processes. Besides, with the concept of delay equivalent, a simple 
technique is presented such that the proposed sliding mode control scheme can be utilized 
directly to handle with the regulation control of non-minimum phase processes. 
 
Keywords: sliding mode control, predictor, optimal sliding surface, non-minimum phase, 
SOPDT model. 

 
 
 
 

1. INTRODUCTION 
 
Due to its simplicity and the capability of 
representing the process dynamics more accurately 
than a first-order plus dead-time (FOPDT) model, the 
second-order plus dead-time (SOPDT) model is 
widely adopted for process modeling and is then 
enhanced for controller design. Up to date, many 
identification methods for estimating the SOPDT 
model parameters have been proposed in the 
literature, and based on SOPDT model various 
controller design methodologies have been presented 
(Hwang, 1993; Sung et al., 1996; Jahanmiri and 
Fallahi, 1997; Wang et al., 2001). Based on a single 
closed-loop test, Hwang (1993) presented an 
adaptive pole design method for PID controllers. 
Sung et al. (1996) presented a relay feedback test 
with combining a P controller to identify a SOPDT 
model, and then an automatic tuning rule for PID 
controller was proposed for on-line application. With 
an alternative identification method for SOPDT 
model, Jahanmiri snd Fallahi (1997) conveyed the 
concept of Internal Model Control (IMC) to improve 
the performance of a PID controller. Wang et al. 
(2001) proposed a simple closed-loop identification 
method for SOPDT and based on the model a PID 
auto-tuning strategy is applied. 
 
In general, for on-line control the identification of a 
SOPDT model is usually accomplished in a single 
test by using either a closed-loop or open-loop 
identification method and thereafter the identified 
model is directly used for the tuning of a linear 
controller, such as PID-type controllers. This kind of  
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approach is simple and straightforward. However, if 
uncertainties exist in the identification phase, an 
inaccurate SOPDT model may give rise to a poorly 
designed linear controller and therefore may lead to 
unsatisfactory control performance. The performance 
degradation is mainly due to that the uncertainties in 
a process are usually not explicitly considered when 
applying the identification-then-tune methods. 
 
Recently, there is increasing interest in the 
development of robust control system for processes 
having uncertainties. The sliding mode control 
strategy appears to be one of the most promising 
model-based approaches to the control of uncertain 
processes. To account for system’s input-delay, 
Camacho et al. (1999) and Camacho and Smith 
(2000) proposed the synthesis of a sliding mode 
controller based on an FOPDT model. Their 
approaches resulted in a fixed structure controller 
with a set of tuning equations being formulated as a 
function of the model’s characteristic parameters. Hu 
et al., (2000) adopted linear matrix inequality 
technique and a sliding mode control method to 
handle a class of uncertain time-delay systems. Based 
on the Lyapunov theorem, Chou and Cheng (2001) 
proposed an adaptive variable structure control 
strategy to stabilize a class of perturbed time-varying 
delay systems. Their method does not require the 
upper bound of perturbations and the performance of 
the system can be obtained by pre-specifying a set of 
suitable eigenvalues. Although these approaches 
have potential to deal with uncertainties and state 
delay, they do not consider the compensation for 
input-delay as a whole. For the issue of dealing with 
input-delay, Kojima et al. (1994) explored the ∞H   
stabilization problem of uncertain input-delay 
systems. More recently, Roh and Oh (1999; 2000) 
investigated the feasibility of the sliding surface with 



     

including a predictor to compensate for the input 
delay of the system. 
 
In this paper, we propose a simple and novel sliding 
mode control system for the regulation of chemical 
processes. Based on an identified SOPDT model, a 
delay-ahead predictor is developed for state 
estimation and a correction term from the measured 
process output is incorporated to enhance the 
prediction accuracy of the process states. With the 
help of state predictor and a designed optimal sliding 
surface, a sliding mode controller that is able to 
account for model uncertainties can be easily 
constructed and implemented. The robust stability as 
well as the system behavior of the closed-loop 
system is analyzed through guaranteeing the sliding 
condition. Besides, in this paper the presented 
scheme is further extended to one that is able to deal 
with the process having inverse response. The 
effectiveness and applicability of the proposed 
scheme is tested with some typical processes, 
including an underdamped process with long dead-
time, an overdamped high order process and a non-
minimum phase one. The performance comparisons 
with some existing SOPDT-based techniques are also 
included for evaluation.  
 
The remainder of this paper is organized as follows. 
In the next section, the predictor design, sliding 
mode controller design methodology as well as the 
optimal sliding surface design has been presented. 
Besides, for extension to non-minimum phase 
process, a simple strategy is introduced. The 
subsequent section performs extensive simulations to  
demonstrate and verify the proposed scheme. Finally 
conclusion remarks are made.  
 
 

2. A SLIDING MODE CONTROL TECHNIQUE  
 
In this section, we devote to develop a sliding mode 
control scheme for the regulation of chemical 
processes. In essence, the sliding mode control is a 
kind of model-based scheme, and the SOPDT model 
is the most widely used process model especially for 
the underdamped process and the high-order process 
which has the same multiple poles. Therefore, in 
what follows we shall present a systematic sliding 
mode controller design methodology based on an 
identified SOPDT model. 
 
 
2.1 Predictor design based on an identified SOPDT 

model. 
 
Consider an identified, stable SOPDT model as 
follows: 

se
asas

bsG θ−

++
=

12
2

1)(~  (1) 

In order to deal with the input delay and hence 
facilitate the design of a sliding mode control system, 
we shall first discuss the development of a delay-
ahead predictor based on the SOPDT model. To 
proceed, we convert the above model into an 
equivalent state space model as 

)(~)(~
21 txtx =&  (2a) 

)()(~)(~)(~
122112 θ−+−−= tubtxatxatx&  (2b) 

)(~)(~
1 txty =  (2c) 

where 1
~x  and 2

~x  are the states, and y~  and u  are, 
respectively, the model output and control input. By 
removing the time-delay from the above model, we 
can construct a delay-ahead prediction model as 
 

)()( 21 txtx ∗∗ =&  (3a) 
)()()()( 122112 tubtxatxatx +−−= ∗∗∗&  (3b) 

)()( 1 txty ∗∗ =  (3c) 
In order to improve the accuracy of the state 
prediction, especially in the face with modelling 
errors and unmeasured disturbance, the following 
correction from the measured process output can be 
used for practical implementation 
 

)(~)()()(ˆ 111 txtytxttx −+=+ ∗θ  (4a) 
and 

)()(ˆ 22 txttx ∗=+ θ  (4b) 
where )(ty  is the actual process output and 

)(ˆ1 ttx θ+  is the predicted output at time θ+t  based 
on the information available at time t . By the 
comparison of Eqs. (2) and (3), it follows that 

)(~)( θ+=∗ txtx  if the predictor is initialized as 
).(~)0( θxx =∗  This initialization can be achieved at 

steady state because in this case )0(~)(~ xx =θ . Hence, 
in the absence of plant/model mismatch the 
prediction model yields the plant state one time delay 
ahead, i.e. .)(~)(ˆ θθ +=+ txttx  The presented 
prediction model, which is delay free, can facilitate 
the design of a sliding controller for SOPDT model. 
 
2.2  Sliding mode controller design. 
 
Having characterized the prediction model, we shall 
discuss in this subsection the design of a delay-ahead 
sliding mode controller. To account for model 
uncertainties in the controller design, we consider the 
following uncertain model 
 

)()( 21 txtx ∗∗ =&   (5a) 
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where 1a∆ , 2a∆  and 1b∆  are the variations of model 
parameters. To begin with, we rewrite the uncertain 
model as 
 

)()( 21 txtx ∗∗ =&   (6a) 
),()()()()( 122112 thtubtxatxatx ∗∗∗∗ ++−−= x&  (6b) 

where  
)()()(),( 12211 tubtxatxath ∆+∆−∆−= ∗∗∗x  (7) 

is the term containing the uncertainties. Let the hard 
constraint of the control input be 
 

utu ≤)(  (8) 



     

and therefore the upper bound function, )(max ⋅h , of 
)(⋅h  can be estimated as 

),(),( max thth ∗∗ ≤ xx  (9) 
where 

ubtxatxath 12211max max)(sup)(sup),( ∆+∆+∆= ∗∗∗x

 (10) 
Next, let’s choose a sliding function as follows: 

)()( 2211 txctxc ∗∗ +=δ  (11) 
The following theorem presents a sliding mode 
controller for the considered uncertain model. 
 
Theorem 1: The following control law 
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admit the uncertain system of (5) to satisfy the 

sliding condition of δαδ −≤2

d
d

2
1

t
, where α  is the 

pre-specified positive constant regarding to the 
system performance and ),(),( max2 thcth ∗∗ = xx  
 
Proof: See Appendix A. 
 
The fundamental idea behind the use of the zero 
level set of the auxiliary output, denoted by 

{ }0==Σ ∗ δx , as a sliding surface (switching 
manifold) is to force the controlled motion to adopt 
Σ  as an integrated manifold. When the system 
trajectory is outside the manifold, the strategy forces 
the states toward the design sliding surface. Upon 
reaching Σ  fast switching takes place in the 
immediate vicinity of Σ , which tries to keep the 
trajectory constrained to Σ . To eliminate the 
undesirable switching (chattering phenomena) of the 
manipulated variable, it is practical to replace the 
sign function in (12) by a saturation function, 

)(sat βδ , which is defined by 
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where 0>β  represents the boundary layer thickness. 
Here, it should be noted that the selection of the 
sliding function may affect the control performance 
since it is involved in the controller. In general, the 
selection of β  represents the trade-off between the 
high performance and the extent of the chattering 
attenuation. To achieve optimal performance, we 
discuss in the following subsection the design of an 
optimal sliding function for practical application. 
 
2.3 Optimal sliding function design. 
 
Let’s introduce a performance index as follows: 
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where Ttxtxt ])()([)( 21
∗∗∗ ≡x , st  is the beginning 

time of the sliding motion, and 
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Q  is a 

positive define, symmetric matrix, i.e. 2112 qq =  and 
02

122211 >− qqq . Also, let an auxiliary variable, v , be 
given by 
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The performance function can thus be rewritten as 

ttvqtxqJ
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22
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where 22
2
121111 qqqq −=∗ . Then, with the definition of 

v , and from Eq. (15), we have 
vtxatx += ∗∗∗ )()( 111&  (17) 

where 22121 qqa −=∗ . The optimal control law for the 
above dynamic equation with the performance index 
of (16) is given by (Sage and White, 1977) 
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22
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q
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where p  is the positive root of the quadratic 

polynomial ,02 1122221
2 =−− ∗∗ qqpqap i.e. 

221112 qqqp +−= . By inserting Eq. (15) into the 
above optimal solution, we can conclude that a set of 
optimal sliding coefficients, 1c  and 2c , are given by 

22111 qqc =  and 222 qc = . 
 
2.4 Practical implementation. 
 
With the output correction of Eq. (4), the control law 
of (12) can be implemented with the replacement of 

)(* tx  by ).|(ˆ tt θ+x Thus, for practical 
implementation the control law is formulated as  
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where the sliding function δ̂  is given by 
)|(ˆ)|(ˆˆ

2211 ttxcttxc θθδ +++=  (20) 
The schematic diagram of the proposed sliding mode 
control system is depicted in Fig. 1. 
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Fig. 1. A schematic diagram of the sliding mode 

control system. 
 
 
2.5 Extension to non-minimum phase processes. 
 
If the process has inverse response, we can identify 
the process as a SOPDT model with a right-half-
plane (RHP) zero. For example, we can apply the 



     

identification method of Park et al. (1998) to give a 
model of the form  
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Then, by using the equivalent time-delay concept of 
Sung and Lee (1996) 

ss equivalentequivalent 1)exp( θθ −≅−  (22) 
the above non-minimum phase model can be 
transformed to a standard SOPDT model as 
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Therefore, based on the above equivalent SOPDT 
model, the proposed sliding mode control scheme 
can applied directly to non-minimum phase 
processes. 
 
 

3. SIMULATION STUDIES 
 
To verify the effectiveness and applicability of the 
proposed approach, we apply it to some typical 
chemical processes, including an underdamped 
process with long dead time, an overdamped high 
order process and a non-minimum phase system. The 
performance comparisons with the SOPDT model-
based techniques of Sung et al. (1996) and Jahanmiri 
and Fallahi (1997) are included for evaluation. For 
the later simulation studies, we assume that the hard 
input constraint is 1)( ≤tu , i.e., 1=u . Also, the 
parameters of the sliding mode controller are set to 
be 1.0=α  and 4.0=β . To demonstrate the ability 
of output regulation by the proposed approach, we 
further assume that the system outputs are perturbed 
to move away from their steady states with the 
magnitude of +1.0 initially in the Examples 3.1 and 
3.2, and -0.2 in the Example 3.3. 
 
Example 3.1 Underdamped second-order with long 

deadtime process. 
s

p e
ss

sG 5
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1)( −
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To apply the proposed scheme, we first convey a 
system identification technique to this system. With 
the closed-loop identification technique of Park et al. 
(1998), the SOPDT model parameters are given by 

1111.01 =a , 2667.02 =a , 1111.01 =b  and 5=θ . 
For sliding mode controller design, we assume that 
each of these model parameters has 25% variations 

from its estimated values. Also, let 







=

20
003.0

Q , 

then we arrive at a set of optimal sliding coefficients 
as 2449.01 =c  and 22 =c . Having previous 
information for design, one can easily implemented 
a sliding mode control system for this process. Fig. 2 
depicts the output regulation results and the 
produced control input. The performance of the 
proposed scheme with arbitrary sliding coefficients 
is also included for comparison. From this figure, it 
is shown clearly that the proposed scheme provides a 
smoother and faster control performance as 
compared with the ISE optimal PID (Sung et al., 

1996) and an IMC-PID scheme (Jahanmiri and 
Fallahi, 1997). The design of an optimal sliding 
surface for the sliding controller apparently results in 
a better performance than the arbitrary one does. 
Also observed is that the IMC-PID scheme of 
Jahanmiri and Fallahi (1997) produces more 
vigorous control input which violates the hard 
constraints and therefore results in a more oscillatory 
system output. On the contrary, there is no violation 
of the input hard constraint by applying the proposed 
technique since the input range can be pre-
considered in the design stage. To verify the ability 
of handling with process uncertainties, we assume 
that the identified model remains unchanged, while 
the dynamics of the actual plant vary to 

.
1211

1)( 6
2
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p e
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++
=  Fig. 3 depicts the system 

performance in the face with this plant/model 
mismatch. The simulation results show clearly that 
the proposed scheme is still very robust in response 
to the plant uncertainties, while the IMC-PID leads 
to undesirable oscillation. 
 

 
 
Fig. 2. Closed-loop system performance of Example 

3.1. the proposed approach with an optimal 
sliding surface; the proposed approach with 
arbitrary sliding coefficients ( 11 =c and 22 =c ) ; 

Jahanmiri and Fallahi (1997); Sung et 
al. (1996). 

 

 
 
Fig. 3. Closed-loop system performance of Example 

3.1 in the face with plant/model mismatch. 
 
 



     

Example 3.2 High-order with deadtime process. 
s

p e
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By using the technique of Park et al. (1998) to this 
process, the SOPDT model parameters are identified 
as 2291.01 =a , 8465.02 =a , 2291.01 =b  and 

3.3=θ . Similarly, we consider 25% parameter 
variations in the design of the sliding controller. Let 
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Q  for this process, we have the optimal 

sliding coefficients of 6.01 =c  and 2.12 =c . From 
Fig. 4, it is also observed that the closed-loop control 
performance by the proposed approach is smoother 
than both the methods of Sung et al. (1996) and 
Jahanmiri and Fallahi (1997). To evaluate the ability 
of handling process uncertainties, we further assume 
that the process dynamics change to 
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but the identified model remains unchanged. The 
simulation results shown in Fig. 5 again corroborate 
the effectiveness and robustness of the proposed 
scheme in the face with uncertainties. 
 

 
 
Fig. 4. Closed-loop system performance of Example 

3.2. 
 

 
 
Fig. 5. Closed-loop system performance of Example 

3.2 in the face with plant/model mismatch. 
 
Example 3.3 Non-minimum phase process. 
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To apply the proposed scheme to this non-minimum 
phase process, we first identify the process model as 
in the form of Eq. (21). By applying the 
identification technique of Park et al. (1998), we 
have the model parameters as 4417.01 =a , 

2915.12 =a , ,1473.01 =b  2249.02 =b  and 
.5387.2=θ Therefore an equivalent SOPDT model 

can be given by  
s
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1473.0)( −

++
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Now, by considering 25% parameter variations and 

choosing 
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Q , we can construct a sliding 

mode control system for this non-minimum phase 
system. From Fig. 6, it is evident that the proposed 
scheme rapidly forces the system output back to its 
set-point. In contrast, both the approaches of Sung et 
al. (1996) and Jahanmiri and Fallahi (1997) results in 
serious oscillation in the process output as well as 
the produced control input. For the case that the 
process dynamics vary to 
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the simulation results shown in Fig. 7 reveal that the 
proposed control strategy still gives to robust system 
performance, while both the linear techniques of 
Sung et al. (1996) and Jahanmiri and Fallahi (1997) 
become quite unstable by the influence of this 
significant plant/model mismatch. 

 
 

Fig. 6. Closed-loop system performance of Example 
3.3. 

 
Fig. 7. Closed-loop system performance of Example 

3.3 in the face with plant/model mismatch. 



     

4. CONCLUSIONS 
 
This paper has presented a systematic and novel 
model-based control system for the regulation of 
chemical processes. Based on an identified SOPDT 
model, a delay-ahead predictor and a designed 
optimal sliding surface, a sliding mode control 
scheme has been developed. The stability of the 
closed-loop system as well as the control 
performance is guaranteed with satisfying a sliding 
condition. Besides, with the concept of delay 
equivalent, the presented scheme can be easily 
extended to deal with the regulation problem of 
processes having inverse response. The effectiveness 
and applicability of the proposed sliding mode 
control technique has been tested with some typical 
plants. Moreover, performance comparisons with 
some existing SOPDT-based techniques are included 
for further evaluation. Extensive simulation results 
reveal that the proposed sliding mode control scheme 
appears to be a simple, robust and powerful approach 
to the regulation control of chemical processes.  
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Appendix A: Proof of the sliding condition 
 
By taking time derivative of the sliding function (11) 
and inserting the control law of (12), we have 
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Further, by checking 
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it is shown obviously that the sliding condition is 
satisfied. 
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NONLINEAR MIMO ADAPTIVE PREDICTIVE CONTROL BASED ON 
WAVELET NETWORK MODEL1 
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ABSTRACT: A MIMO nonlinear adaptive predictive control strategy is presented in 
which the wavelet neural network based on a set of orthogonal wavelet functions is 
adopted. A nonlinear mapping from the network-input space to the wavelons output 
space in the hidden layer is performed firstly. Then, the output layer uses a linear 
structure. Its weight coefficients can be estimated by a linear least-squares estimation 
method. The excellent statistic properties of the weight parameter estimation can be 
obtained. Based on developed recursive algorithm, a MIMO nonlinear adaptive 
predictive control strategy is implemented. A simulated MIMO nonlinear process 
example shows that the control scheme is effective. Copyright © 2002 IFAC 
Keywords: Non-linear MIMO adaptive control, predictive control, wavelet, neural 
network. 

  
1. INTRODUCTION1 

During the past twenty years, model-predictive control 
algorithms (MPC), based on linear process models, 
have been widely studied and applied in the chemical 
process industries. However, many processes are 
highly non-linear, uncertain and MPC algorithms 
based on linear process models may result in poor 
control performance and as a result, MPC techniques 
have recently been extended to these processes during 
the last decade( Keerthi,1990, Proll, 1994). However, 
generic nonlinear models is difficult to get and apply. 
Neural networks hold the promise of solving the 
problems. Feed forward neural networks provide a 
connectionist model that performs a mapping from an 
input space to an output space. Such networks can 
approximate any non-linear functions to an arbitrary 
accuracy. However, some network training problems, 
such as undesirable local minimum, of multi-layer 
perceptrons preclude their wide applications to on-line 
nonlinear system identification in adaptive control. 

Wavelet is a powerful tool for function approximation 
(Daubechies, 1988). Under some mild conditions, the 
universal approximation of wavelet networks is 
guaranteed (Zhang ,1995). Based on a set of 
orthogonal wavelet functions, a least-squares learning 
algorithm is adopted to train the wavelet network in 
contrast to the non-linear gradient optimization used 
in standard feed forward networks (Bakshi and 
Stephanopoulos, 1993). In addition, wavelet neural 
networks have advantages in their structure, which is 
easy to specify in model identification. SISO first-
order and high order non-linear dynamic processes 
have been successfully identified by wavelet neural 
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networks and SISO non-linear predictive controllers 
have been realized. The control performances superior 
to a standard PID controller were achieved (Huang, 
1997, 1999).  

In this paper, a nonlinear adaptive predictive control 
strategy based orthogonal wavelet network model is 
presented. Based on a set of orthogonal wavelet 
functions, wavelet neural network performs a 
nonlinear mapping from the network-input space to 
the wavelons output space in hidden layer firstly. 
Since almost all dynamic processes in the chemical 
industries are lowpass systems, they can be 
approximated only by scale function terms 
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, ( ), ,ϕ ϕ∑  at any accuracy. Therefore, we 

only use scale function in wavelons. This will 
simplifies wavelet network and decreases network 
size in online training obviously. Then, the output 
layer adopts linear structure. Its weight coefficients, 
i.e. nMf ,,ϕ , can be estimated by a linear least-

squares estimation algorithm.  

Because the solid theory basis and special structure of 
wavelet neural network, the wavelet neural network 
holds the advantages superior to other neural network. 
First, its network structure is easy to specify based on 
its theory analysis and intuition. Secondly, network 
training do not rely on stochastic gradient type 
techniques such as the “back propagation” and can 
avoids the problem of poor convergence or 
undesirable local minimum, which is more serious for 
other neural networks when training data is 
contaminated seriously by noise.  

The excellent statistic properties of the weight 
parameters of wavelet network as linear least-squares 
estimation algorithm in system identification can be 
proved. In intuition, it can been seen that the wavelet 
network is a ideal lowpass filter which passes true 
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dynamic signal of the system identified and sorts the 
noise out as excellent frequency property of wavelet. 
The theory results are showed by simulation results. 
Both the wavelet network and the usual feedforward 
neural network are compared in a simulated CSTR 
system with serious noise. The long-range predictions 
based on trained wavelet network for testing data have 
obviously better prediction accuracy than that of he 
usual feedforward neural network. The prediction is 
very close to true output without noise. Both theory 
analysis and simulation study show that the 
identification method based on wavelet network is a 
robust and reliable identification method for nonlinear 
system.  In addition, it is also generic method and is 
easy to use, instead of a method based on trial and 
error. 

For online application in adaptive predictive control 
strategy, a recursive algorithm is given. The properties 
similar to that of recursive linear least-squares 
algorithm can be obtained as the recursive algorithm 
is completely same as recursive linear least squares 
algorithm. In addition, the closed loop-identifiability 
can be guaranteed. This is because the different 
wavelon outputs in hidden layer are irrelevant each 
other as orthogonal wavelet functions are adopted.  

With developed recursive algorithm, a single input – 
single output nonlinear adaptive predictive control 
strategy is implemented. A same simulated CSTR 
process as above illustrates the application of the 
control scheme. Two methods to start adaptive 
controller are realized. Simulation results show two 
methods have good control results and expected 
performances are attained. When the parameter of 
controlled system is changed, online identification 
algorithm can track the parameter changing rapidly 
and then, still give good control results. The nonlinear 
adaptive predictive control strategy based on wavelet 
network is superior to the standard PID controller.  

2. APPROXIMATION PRINCIPLE OF 
WAVELET NEURAL NETWORKS 

According to approximate theory of wavelet 
network(Huang, 1997), two schemes for 
decomposing the function f(x) in L R2 ( )  can be 
obtained. They are: 
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where m 0

 is an arbitrary integer and represents the 
lowest resolution, i.e. scale, in the decomposition. 
Comparing equation (2) with equation (1), the former 
is more useful in dynamic process modeling. This is 
because most dynamic processes in the process 
industries are low-pass systems and, therefore, using 

scaling function can obviously decrease wavelet 
function terms. Furthermore, it is noted that f(x) can 
be closed arbitrarily only in VM  for some integer M. 
As long as the wavelet basis satisfies the Frame, there 
exists an M sufficiently large for any ε >0 (Zhang et 
al., 1995), such that 
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Therefore, it is realistic that a dynamic process can be 
approximated only by the scale function terms 
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in permitted approximating 

accuracy. This will decrease approximating function 
terms and therefore decrease network size. In addition, 
this will also simplify wavelet network application. 

The structure of a wavelet neural network is similar to 
that of an RBF network. However its structure can be 
decided by using wavelet frames. Because only scale 
function is used, then  
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For multi-input systems )x()x()X( n,Mn,Mn,M 21 21
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When the variation domains of the network inputs are 
defined, the neuron centers, i.e. bn, are fixed on grids 
that are divided equally between each input domain. 
Ra is an adjustable parameter that changes the width 
of the frequency band of VM .For the wavelet network 
studied in this paper, we use Shanonn wavelet 
function because it is an analytic function and is easy 

to use. Its scale function form is:
x

xx
π
πϕ sin)( = . It is 

an orthonormal wavelet function. Other wavelet 
functions including non-orthonormal wavelet function 
can also be used.  

                                    Y(k) 

    

Wavelet neural network 

 

            Y(k-1)        Y(K-ny) U(K-1-τ ) U(K-nu-τ ) 

Figure 2. Wavelet network structure for dynamic 
system modeling 

Consider a MIMO non-linear dynamic system 
denoted by the following equation: 
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where τ is the model input-output time delay, (Y,U) 
→ f(Y,U): Rl × Rr→Rl. The network structure 
proposed by Narendra is adopted (Narendra and 
Parthasarathy, 1990). It is shown in  Figure 2. 

The network input and output dimensions are 
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 and l  respectively. 

The network weights are identified by linear least 
squares algorithm as following. 

Firstly, we denote the optimum values of all nMf ,,ϕ
 as θ  and all )(, xnMϕ  values at time k as h(k). Then 

Y(k)= )()( knkhT +θ                                   (6) 

where both vector Y(k) and n(k) have dimension l×1 , 
the  dimension of h(k) is 1×N  and  the dimension of 
θ  is lN × . N is the number of neurons. 

For k=1,2,…, L, the above equation  constructs a 
linear equation group. It can be expressed in matrix 
form as following. 

LLL nHY += θ                                                      (7) 

where  

 [ ]TL LYYYY )(,),2(),1( L=  
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By linear least squares estimation, we can get the 
estimates of the weight parameters of the wavelet 
network as: 

L
T
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T
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The appropriate network structure was found through 
cross validation. The data for training neural network 
models were partitioned into the training set and 
validation set. A neural network was trained on the 
training set and tested on the validation set.  A 
number of network structures were tried and the one 
giving the least error on the validation data set is 
adopted. 

To select a proper network structure and network 
parameters Ra and bn, the following method is used: 

(1) Determine the variation domains of the network 
inputs, ximin and ximax, i=1,…,r; 

(2) Select neuron number and centres as following: 
divide each input domain equally by ni (start from 
a small value) and put neurons on grids. The 
number of neurons is: rnnnN ... 21 L= ; 

(3) Start with a small Ra initial value, estimate 
weight parameters with training set by linear least 

squares estimation and test the network with 
validation set. Increase Ra value until a satisfied 
result is obtained. Of cause, the knowledge about 
frequency property of process identified is 
helpful to estimate Ra.; 

(4) Increase ni and repeat steps (2) and (3) until the 
best network structure is obtained. 

As soon as we get the network structure parameters, 
we can train the wavelet network. Because network 
structure parameters have a wide adapted ability, we 
do not need to search network structure parameters 
again in general cases. Afterward, it is only a linear 
least squares estimation problem. This will simplify 
implementation of wavelet networks and decrease 
training time especially in on-line model identification. 

For online application in adaptive predictive control 
strategy, a recursive LS algorithm with exponential 
forgetting algorithm as following is adopted. 
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Because the solid theory basis and special structure of 
wavelet neural network, wavelet neural network holds 
some advantages superior to other types of neural 
networks. First, its network structure is easy to specify 
based on its theory analysis and intuition. Secondly, 
network training do not rely on stochastic gradient 
type techniques such as the “back propagation” and 
avoids the problem of poor convergence or 
undesirable local minimum, which is more serious for 
other types of neural networks when training data is 
seriously contaminated by noise.  

The properties similar to that of recursive linear least-
squares algorithm can be obtained as the recursive 
algorithm is completely same as recursive linear least 
squares algorithm. In addition, the closed loop-
identifiability can be guaranteed. This is because the 
different wavelon outputs in hidden layer are 
irrelevant each other as orthogonal wavelet functions 
are adopted 

As soon as we can select appropriate value for M, 
there exists nMf ,,ϕ

 
making ∑

n
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 approximating f(Yk, Uk ) with expected accuracy. Then, 
we can prove the statistic properties of the weight 
parameter estimation of wavelet network as linear LS. 
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3. WAVELET NETWORK MODELING OF A 
MIMO NONLINEAR PROCESS 

The wavelet neural network is used to model a MIMO 
nonlinear process as following.  
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The 1000 data point length’s simulation data are 
produced by the system described by equation 
(12),(13) and  (14).   They are split into two set. The 
first 500 data points were used as training data while 
the remaining 500 data points were used as testing 
data. 

Throughout the simulation experiment, we will 
follow the guidelines listed below: 
The trained neural network is evaluated only by long 
range prediction for both the training and ‘unseen’ 
testing data. This is because both have good 
accuracy for one-step-ahead predictions and the 
dynamic model for control purpose needs to have 
better long-rang prediction accuracy. 
We select τ = 0, ny = [1,1], nu = [1,1] and used 16 
hidden neurons according to the experiment. The 
simulation results are shown in Figure 5 and Figure 
6. Figure 5 is the prediction result of trained wavelet 
model for training data. Figure 6 is the prediction 
result of trained wavelet model for testing data. both 
prediction result  for training data. and testing data is 
are very good. It is able to satisfy the requirement 
for dynamic control completely. 
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Figure 5. Predictions on training data 

In the figures of output predictions, the true process 
output data is plotted as a solid line, the prediction 
output data is plotted as a dashed line.  

From the simulation result, we observe that, the long 
range predictions based on wavelet network for 
training data and testing data have obviously very 
high prediction accuracy and the curves of both are 
almost superposition. Both theoretical analysis and 
simulation studies show that the identification method 
based on wavelet network is a robust and reliable 
identification method for non-linear systems.  
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Figure 6. Predictions on testing data 

4. Adaptive predictive control based wavelet 
network 

Model predictive control is widely accepted, primarily 
due to its ability in real-time prediction, real-time 
optimisation and real-time feedback correction.  

In the non-linear adaptive predictive control scheme 
shown in Figure 7, a process model, i.e., a wavelet 
network , is explicitly used to predict future process 
behavior. The same process model is also implicitly 
adopted to calculate control actions in such a way as 
to optimise the controller specifications at each 
sampling step. Furthermore, the difference between 
the current-time predicted output and the measured 
current-time process output is used to correct the 
model error and disturbances so as to improve its 
robustness. While predictive control is processed, the 
process model is updated by on-line recursive 
identification algorithm to enhance its robustness 
ulteriorly. 

Consider MIMO non-linear dynamic system denoted 
by equation (5). 

The selection of the control law is based on a 
quadratic performance index with a finite time horizon, 
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resulting in the following  quadratic programming 
(QP) problem at time k 

)(min
)1(,),1(),(

kJ
Lkukuku −+∆+∆∆ L

                                  

(15) 

where J (k) is 

∑

∑

=

=

−+∆+

−−+−+−+=

L

j
R

P

i Q

S

kjku

PkkYkYkikYikYkJ

1

2

1

2

)1(

)1(ˆ)()(ˆ)()(
  (16) 

where P is the prediction horizon, L is the control 
horizon, Q and R are weighting matrices. 

The process model parameters, i.e. weight parameters 
of wavelet network, are updated by recursive 
identification algorithm with forgetting factor in 
Equation (9),(10) and (11). 
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                   Figure 7. Adaptive Predictive Control Scheme based 
on Wavelet Network 
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Figure 8. Adaptive Predictive Control based on 
Wavelet Network 

A same simulated MIMO nonlinear process as above 
illustrates the application of the control scheme. 
Firstly, the control system uses PID control strategy 
(in this case, PID control strategy is used in first 50 
steps) and then, the adaptive controller based on 
wavelet network model is closed after a crude model 
is obtained during PID control. The control result is 
shown in Figure 8. Simulation results show that 
expected performances are attained. The nonlinear 
adaptive predictive control strategy based on wavelet 
network is superior to the standard PID controller 
(The control result is shown in Figure 9. PID 
parameter is optimized by minimizing the integral 
squared error).  
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Figure 9. PID control 
5. Conclusions 

In this paper, a nonlinear MIMO adaptive predictive 
control strategy based orthogonal wavelet network 
model is realized. By both theory analysis and 
simulation study, The following conclusions can be 
educed. 
(1) Wavelet network model only by scale function 
simplified wavelet network and decreased network 
size in online training obviously. Its weight 
coefficients can be estimated by a linear least-squares 
estimation algorithm. It is different from RBF network 
and other feed-forward neural networks, because its 
structure parameters are determined according to 
wavelet network reconstructing theory, instead of trial 
and error. In addition, its weight coefficients are 
estimated by a linear least-squares estimation 
algorithm, instead of non-linear optimization search 
method.  Therefore, it can be proven that excellent 
statistic properties of its weight parameters as the 
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linear least-squares estimation algorithm in system 
identification has can be obtained (Huang, 2002).  The 
identification method based on wavelet network is a 
robust and reliable identification method for nonlinear 
system. In addition, it is also generic method and is 
easy to use, instead of a method based on trial and 
error. The long-range predictions based on trained 
wavelet network for testing data with serious noise 
have obviously better prediction accuracy than that of 
the usual feed-forward neural network. The prediction 
is very close to true output without noise.  
(2)For online application in adaptive predictive 
control strategy, a recursive algorithm is given. The 
properties similar to that of recursive linear least-
squares algorithm can be obtained as the recursive 
algorithm is completely same as recursive linear least 
squares algorithm. In addition, the closed-loop         
identifiability can be guaranteed. This is because the 
different wavelon outputs in hidden layer are 
irrelevant each other as orthogonal wavelet functions 
are adopted. With developed recursive algorithm, a 
nonlinear MIMO adaptive predictive control strategy 
is implemented.  A same simulated nonlinear process 
as above illustrates the application of the control 
scheme. The nonlinear MIMO adaptive predictive 
control strategy based on wavelet network is superior 
to the standard PID controller. Even if the optimal 
PID parameter is used, the control result for PID 
controller still has larger overshoot for controlled 
variable in high operation point and has week 
regulation action in low operation point as the 
simulated nonlinear system has a serious nonlinear 
character. In practice, it is difficult to get the optimal 
PID parameter for a large operation region. In contract, 
the nonlinear MIMO adaptive predictive controller 
can identify the control model on-line and achieve a 
satisfactory control effect by self.  Because the 
controller does not need to be trained before it starts 
running, it is able to handle the any operating region. 
The nonlinear MIMO adaptive predictive control 
strategy is superior to nonlinear controllers in that it 
does not need to build non-linear control model by 
user and superior to the nonlinear adaptive controllers 
based conventional feed-forward neural networks in 
that it only need finite fix time to on-line updating 
network model in each control period because it is a 
recursive linear least squares problem. Besides, it is 
generic method for both model identification 
algorithm and control algorithm.  
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Abstract:  Regardless of what predictive control strategy is used, the predictive horizon is the 
main design parameter. The stability, control performance and robustness of predictive control 
system are mainly depended on it. For multivariable predictive controller, selection of predictive 
horizon is an input-output pairing problem. In this paper, Response Index Array, Dynamic 
Interaction Index Array and Relative Steady-State Index Array are proposed as the criteria for 
the selection of predictive horizon and pairing. The design procedure for multivariable predictive 
controller is summed up. As an example, the pairing of a heavy oil fractionator is given. The 
design has been successfully implemented on several industrial fractionators. Copyright © 2002 
IFAC 
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1. INTRODUCTION 

 
During the last two decades, model predictive control 
(MPC) has become an attractive control strategy within 
the area of process industries. MPC is a successful 
strategy for handling multivariable and/or constrained 
control problems (Garcia and Morari, 1989). Generally, 
the multivariable controller does not need input-output 
pairing, which is a main design problem in the 
multi-loop control, such as conventional PID control. If 
the predictive horizon and control horizon of MPC are 
determined, there is no input-output pairing problem. 
But, pairing problem will rise during MPC design to 
determine predictive horizon.  
 
So far, the MPC presented in the literatures may be 
classified into two strategies: 

1. MPC based on the input(manipulated variable, 
MV)-output (controlled variable, CV) model, such as 
MAC (Richalet, J et.al. 1978; Rouhani,R. and R.K. 
Mehra 1982), DMC (Cutler, C.R. and B.L. Remaker, 
1980), GPC (Clarke, D.W. et.al. 1987,1989), IMC 
(Garcia and Morari ,1982,1985). Soeterboek (1992) 
proposed predictive control: a unified approach for such 
kind of MPC strategies. 

2. MPC based on the state space model and state 
variable feedback (Yuan, 1993). 
 
Sun and Yuan (1993, 1997) proposed Unified Predictive 
Control, which is based on Polynomial Matrix 
Description (PMD), for all kinds of the MPC strategies.  
Yu and Yuan (2002) proved theoretically that all kinds 
of MPC are equivalent, i.e., the same control 
performance, depends on prediction horizon P, will be 
achieved by different MPC strategies as long as there is 

no model mismatch and no disturbance. In real world, 
there are unknown disturbance and model mismatch. So 
different MPC are different in robustness and 
disturbance rejection. This topic will not be discussed in 
this paper. 
 
For multivariable process, RGA (Bristol, 1966) is 
usually used to measure the interaction and the design 
of multi-loop control. RGA, based on steady-state gain 
of controlled process, is not suitable for the MPC design, 
which is based on the dynamic response. In the 
literatures, contributions on the design of MPC are 
presented as well as the different MPC strategies 
mentioned above. The main design issue is how to 
determine the predictive horizon. MPC has been widely 
used on multivariable systems, yet, by the author�s 
knowledge, the discussion in literatures of how to 
determine the predictive horizon for multivariable 
systems is much less than that of SISO systems.  
 
In this paper, the relationship between predictive 
horizon and stability, control performance and 
robustness of MPC system, as the basis of system 
design, are reviewed in second section. The design of 
multivariable MPC is an input-output pairing problem 
and dynamic response index, interaction index and 
relative steady-state index are proposed as pairing 
criteria in third section. MPC system design procedure 
was summed up in section IV.  As an example, design 
of MPC for a heavy oil fractionator is illustrated. 
 
 

2. PREDICTIVE HORIZON 
 
For multivariable MPC, different CV has different 

 



control demand and different response to MV. A 
reasonable design is that every CV has its own 
predictive horizon pi. The predictive horizon of the 
system P is a vector: 

[ ]1 2
T

rp p p=P !    (2-1) 
where: pi is the predictive horizon (number of discrete 
interval) of ith controlled variable.  
 
For illustration and without loss of gernalization, MPC 
with single prediction algorithm (Yuan, 1992) is used in 
the following discussion. 
 
The optimal control move was deduced as: 
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  Y   Controlled variable (CV); rR∈

( ) ( ) ( 1)u k u k u k∆ = − −  

   (2-3) 
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     is i( )ij iS p th CV response at th
ip interval instant 

after jth MV unit step. 
 Set point of controlled variable; ( )SY k =

  1 1( ) ( ) ( ) ( ) ( ) ( )p X uY k Y k F z X k F z u k− −= + ∆ + ∆

(Prediction of CV while ∆ + ) ( ) 0,u k i i= ≥ 0
 nX R∈  Measurable state variable (include CV); 
  ∆ =  ( ) ( ) ( 1)X k X k X k− −
   1 1

0 1( ) q
qF z F F z F z− −= + + +! −

(Feedback polynomial matrix) 
 

Xi (1993), Yuan (1992, 1993, 1994, and 1997) and 
others proved some theoretical results (assuming no 
model mismatch and r=m) for stability and control 
performance of MPC system related to predictive 
horizon: 
 
Theorem 1:          (2-4) det[ ( )] 0≠S P
is a necessary stability condition for MPC system. 
 
Theorem 2: If the controlled process is stable and 
functionally controllable, then: 

        
det[ ] 0
det[ ]

>
∞

S(P)
S( )

       (2-5) 

is a necessary stability condition for MPC system, 
where:  is the steady-state gain matrix of 
controlled process. 

[ ∞S( )]

)

 
Theorem 3:  If the controlled process is stable and 

( 1, 2, ,ip i = ! r  is tuned sufficiently large, then the 
MPC system is stable.  
 
Theorem 4: If: 1;i ip δ= +  and Theorem1 and 

Theorem2 are satisfied, then: the ith CV reaches to 
perfect control. 
If  1; 1, 2, ,i ip i rδ= + = !    (2-6) 
And both Theorem 1 and Theorem 2 are satisfied; then: 
the MPC system reaches to perfect control (all CV 
reach to perfect control), where: , 1d n

i i iδ δ δ= − −
d
iδ and n

iδ  are the orders of denominator and 
nominator of ith row in impulse transfer function matrix, 
respectively. 
 
Perfect Control is defined as: if CV reaches to its 
set-point at every control (sampling) instant after 
minimum time delay of set-point or disturbance step 
change. It is obvious that perfect control is decoupled 
between CV and CV to disturbance.  
 
In real world, perfect control can be reached only for a 
class of controlled process with special dynamic 
property. In most cases, it is difficult to reach, not only 
limited by the above condition, but also limited by 
model mismatch and robustness. The control (MV) 
move is usually another limit. For same CV�s deviation, 
large control move usually lead to fast response and 
weaker robustness. If increasing prediction horizon pi 
makes smaller control move, then, the sluggish 
response and the better robustness; otherwise, if 
increasing predictive horizon leads to larger control 
move (may be constrained by limit), then, the contrary. 
 
According to above analysis, Yuan (1992) proposed to 
use Relative Predictive Horizon (RPH) β  for SISO 
system to select predictive horizon and trade-off the 
control performance and control move constraints. RPH 
is defined as: 

( )
( )

S p
S

β =
∞

      (2-7) 

Where: is the value of step response at 
predictive horizon; 

( )S p
( )S ∞ is the steady-state value of 

step response. 
 

0.3 0.8β = ∼  is recommended. Large β  leads to 
a stronger robustness, less control move and sluggish 
response. 
 
If β is specified, predictive horizon P can be calculated 
from eq.(2-7). Since β is a float variable and P is an 
integer, 

If ( ) 0S ∞ ≠ , 
( 1) ( )

( ) ( )
S n S n

S S
β

−
< ≤

∞ ∞
, then: p n= ; 

If ( ) 0S ∞ = , then: p = ∞ .    (2-8) 
 
This result is extended to multivariable system in this 
paper. 
 
 

3. INPUT-OUTPUT PAIRING CRITERIA 
 
For MIMO system, every CV is related to m 

 



manipulated variables, and different MV has different 
dynamic response. If β is specified, different MV has 
different predictive horizon. Which MV should be used 
to determine the corresponding predictive horizon? In 
this point, the input-output pairing is still a problem for 
multivariable predictive control system as well as 
multi-loop control system, but in different content. 
 
For MIMO system, better control performance is 
desired as well as SISO system and fast response MV 
should be selected.  The distinction is the interaction 
between CV and MV, and decoupling or less interaction 
is always required. More MV than CV or more CV than 
MV made the system more complicated.  
 
The starting point of MPC design is to satisfy the 
required control performance, which is related to the 
Relative Predictive Horizon RPH as mentioned above. 
For MIMO system, the required control performance of 
ith CV and corresponding RPH iβ can be specified 

previously. But, the predictive horizon ip  is different 

for different MV.  If iβ  is specified, to determine ip  
is a problem of input (MV)-output (CV) pairing. 
 
For input-output paring, three Index Arrays are defined. 
 
Definition 1: Response Index Array  (RIA) ijr
For ith CV, if iβ  is specified, corresponding predictive 

horizon for jth MV is ( 1, 2, ,ij )p j m= ! ,  

Let:  min
min { }, i

i ij ijj
ij

pp Min p
p

γ= = . 

11 12 1

21 22

1

{ }

m

ij

r r

RIA γ

m

γ γ γ
γ γ

γ γ

= =

 
 
 
 
 
  

!
$ "

" $ $ "
! !

 (3-1) 

is defined as Response Index Array (RIA). 
 
RIA is a criterion of response speed of different MV. 
The larger the pij , the faster the response of ith CV to jth 
MV.  In order to make ith CV has better control 
performance, by the knowledge of SISO system 
mentioned in Section 2, the prediction horizon Pi may 
be selected as { ( 1, 2, ,}iji )p Min p j m== !

1ijγ =

, and 

correspondingly . However, for multivariable 
system, the interaction must be taken into account. 
 

Definition 2: Dynamic Interaction Index Array µij 
(DIA) 
For ith CV, if βi is specified, it has m possible CV-MV 
pairing with corresponding predictive horizon pij. For 
every possible pairing, the corresponding Dynamic 
Interaction Index is defined as: 

1

( )

( )

ij ij
ij m

il ij
l

S p

S p
µ

=

=

∑
       (3-2) 

The larger the µij, the weaker the interaction for ith 
CV-jth MV pairing. It is a possible pairing candidate. 
If 1ijµ = , it implies that ith CV is affected only by the 
jth MV and has no interaction with other MV in 
dynamic. It is a prior pairing candidate. However, the 
steady-state property must be considered also. 
  
Definition 3: Steady-State Index Array ijλ  (SIA) 

 

1

( )

( )

ij
ij m

il
l

S

S
λ

=

∞
=

∞∑
                    (3-3) 

If 1ijλ = , it implies that ith CV is affected only by the 
jth MV and has no interaction with other MV in 
steady-state. 
 
Model predictive control, as showed in eq.(2-2), is a 
non-steady-state error control strategy for step input and 
decoupled in steady-state, but the control move may be 
too large, so, the main consideration of the SIA is the 
effectiveness and limit of MV.  
 
The larger the ijλ , the smaller the control move in 

steady-state. If ijλ  is near to zero, it means that this 
MV is ineffective. 
 
RIA, DIA and SIA should be considered in MIMO 
system design. In addition, the optimization, safety and 
other requirements of MV should be also considered. 
The following pairing index {aij} is suggested. 
 
Definition 4:  Pairing Index 

1
11 1

2

1

0 0
0{ } 0
0 0

m

ij

r rm
m

A a
δξ ξ δ

ξ ξ δ

   = =       

!! $ "" $ " " $ $! !
 

                                 (3-4) 
Where: ij ij i ij i ijq wξ γ µ λ= + +         (3-5) 
     qi = interaction weighting factor for ith CV. 

wj = control move weighting factor for ith CV. 

jδ =  weighting factor for jth MV. 
For ith CV, pairing MV is: 

( ) : { [ ], ( 1, 2, , )}ijMV j Max a j m= !   (3-6) 
 
 

4. MPC DESIGN PROCEDURE 
 
According to the above results, the design procedures 
for predictive horizon and input-output pairing are 
summed up as: 
 
1. Give the priority of each CV and corresponding iβ  
according to the requirement of control performance. 

 



iβ =0.3~0.8 is recommended. Large β  leads to a 
stronger robustness, less control move and sluggish 
response. Usually, higher priority CV may have 
smaller iβ . 

iβ ip

iβ

∆ =

∆ =

( )j
j∆ =

( 1j =

)j
iS 1(P

S P =

maxj iβ

 
2. If the controlled process has more MV than CV, give 
the control priority, optimum priority and target for each 
MV. If the controlled process has more CV than MV, 
give the weighting factor of each CV. These two cases, 
which are beyond the scope of this paper, will not be 
discussed in detail. 
 
3. Calculate ijp , , ijr ijµ , ijλ , ijξ . 
 
4. From higher to lower priority of CV, the MV who 
made least value in ijξ  should be selected as the 
pairing for control. If the selected MV has been used by 
higher priority CV, then in the remaining MVs, the one 
who made ijξ  the least value is recommended in order 
to have stronger robustness. This procedure results a 
predictive horizon for each CV and predictive horizon 
vector for MPC. 1 2[ ]T

rp pP p= !
 
4. Check stability by Theorem 1, 2. If unsatisfied, tune 

or and return to step 1. According to Theorem 3, 

larger or ip may usually lead to a stable MPC system. 
 
5. Check control move: MPC design should meet the 
requirement of control move limit. However, the control 
move depends on the set-point change, disturbance and 
status of controlled process. In order to evaluate the 
control move in design phase, assume all set-point has 
unit step and initial state equal to zero, check the 
control move at first sampling instant and steady-state.  
 
The control move at first sampling instant after 
set-point unit step is: 

1( )u S P−                        (4-1) 
The control move at steady-state after unit step is: 

1( )u S − ∞                        (4-2) 
So the maximum control move is: 

max 1 2max{ ( ), }( ), ,
i

j j
mu S P S P S P!    (4-2) 

 , 2, ,m!  )
Where:  

(P  is the ith element of jth row of or S)S − 1( )− ∞ ; 

( ) step response matrix [eq.(2-3)] 

If violates the limit, then tune u∆  or ip  and 

return to step 1.  Large iβ  or ip  usually lead to 
smaller control move. 
 
6. Simulation. If unsatisfied, choose P again and return 
to step 1. 
 
The design procedure may be extended to the case of 
more MV than CV or more CV than MV.  
 

 
5. EXAMPLE 

 
For illustration, consider the pairing of a heavy oil 
fractionator, shown in Fig.1. The fractionator has top 
and two side-draw products. In order to keep the 
product specification, top and two side-draw 
temperatures are main controlled variables, as CV1, 
CV2 and CV3 in Fig.1. Usually, it has three PID 
controllers TC to keep the temperatures at their 
set-points. 
 

 
Fig. 1  Heavy Oil Fractionator 

CV1 
MV2 MV1MV3TC FCFC

CV2 

MV4 MV5TC
FC Fractionator

MV6 MV7TC
FC CV3 

The fractionator may have seven manipulated variables: 
MV1: Top Reflux Flow rate (PID set point) 
MV2: Top Heat Remove Circulation Flow rate 

 (PID set point) 
MV3: Set Point of Top Temperature PID Controller 

(Three-way valve) 
MV4: First Heat Remove Circulation Flow rate 
       (PID set point) 
MV5: Set Point of first draw Temperature PID 

Controller (Three-way valve) 
MV6: Second Heat Remove Circulation Flow rate 
        (PID set point) 
MV7: Set Point of second draw Temperature PID 

Controller (Three-way valve) 
 
All of the MV has high and low limit as well as 
corresponding valve opening. If one MV is limited, the 
controller will select other unlimited MV. So, all of the 
possible CV-MV pairing and corresponding predictive 
horizon should be given. For the 3 CV and 7 MV of a 
fractionator, it has 21 possible pairings. But, if the 
pairing has too small value of pairing index , it is not 
suitable for control, which will be illustrated below. If a 
CV has more suitable MV, the priority of MV should be 

ija

 



specified according to the value of and optimization 
requirement.  

ija

 
Since fractionator has more MV than CV, it is able to 
push some MV to its optimum value while keep the 
control performance by other suitable MVs. Usually the 
optimization targets are minimum heat remove flowrate 
or minimum open of by-pass (three-way) valve of heat 
exchanger or steam generator. 
 
The step responses of CV1, CV2 and CV3 to the 7 MVs 
are given in Fig.2, Fig.3 and Fig.4 respectively. 
 
The priority of CV is specified as: CV1, CV2 and CV3 
from higher to lower. The relative predictive horizon is 
specified as: 

β β β β= [ 1 2 3 ]  = [0.6  0.6  0.6]  
 

  Fig. 2  CV1 Unit Step Response 
 

        Fig. 3  CV2 Unit Step Response 
 

        Fig. 4  CV3 Unit Step Response 
 

According to the unit step responses, the predictive 
horizon, RIA, DIA and SIA are calculated as: 
 

{ }ij

22 17 41 43 64 67 85
p 52 48 70 22 44 47 66

87 83 104 50 66 21 42

 
 =  
  

{ }ij

0.775 1.0 0.415 0.395 0.266 0.254 0.2
0.424 0.459 0.315 1.0 0.5 0.467 0.333
0.241 0.253 0.202 0.42 0.318 1.00 0.5

 
 γ = 
  

 

 

{ }ij

0.568 0.296 0.06 0.147 0.027 0.035 0.009
0.181 0.077 0.02 0.715 0.085 0.112 0.032
0.044 0.018 0.005 0.151 0.038 0.855 0.169

 
 µ = 
  

 

{ }ij

0.467 0.193 0.061 0.173 0.037 0.05 0.017
0.211 0.087 0.028 0.42 0.091 0.121 0.032
0.064 0.027 0.008 0.185 0.05 0.5 0.174

 
 λ = 
  

 
Assuming:  Q [1]W diag I= = =  

           1 0.3δ = , 2 7 1.0δ δ= = =!  

the pairing index  is: ija

{ }ij

0.548 1.489 0.637 0.712 0.33 0.339 0.226
a 0.288 0.623 0.363 2.135 0.676 0.7 0.407

0.105 0.298 0.316 0.856 0.406 2.355 0.843

 
 = 
  

 
According to the value of 1 jξ , pairing is determined. 
For CV1: MV1, MV2, MV3, MV4 are suitable pairings. 
MV5, MV6, MV7 have smaller pairing index, so they 
are not suitable pairings. But MV4 is a better pairing 
candidate to CV2, so the final pairings for CV1 are 
MV1, MV2 and MV3. The priority is: MV2, MV3, and 
MV1 from higher to lower. (MV1 has lower value of 
pairing index, however it is mainly required to reach its 
optimum value.) 
 
For CV2: MV4 and MV5 are suitable pairings, and the 
priority is MV4, MV5 from higher to lower.  
 
For CV3: MV6 and MV7 are suitable pairings, and the 
priority is MV4, MV5 from higher to lower. 
 
These results show that among the 21 possible pairings 
only seven pairings are suitable. Each CV has fewer 
pairings than whole MV. Nevertheless, the control 
system is multivariable according to the eq.(2-2). These 
pairings have been applied to several industrial heavy 
oil fractionators. 
 
For heavy oil fractionator, Final Boiling Point (FBP) of 
top product and 95% ASTM of first draw product are 
more important controlled variables. They are depended 
on the top temperature and first draw temperature 
respectively. They have the same step responses and use 
same manipulated variables of temperature control, and, 

 



the same predictive horizon as well as pairings.  
 
FBP and 95%ASTM should be keep on specified 
setpoint since they are designed as set point controlled 
variable. Top and first draw temperatures are designed 
as zone controlled variables. If the predicted 
temperatures do not violate their high or low limits, no 
control is required. The number of CV need to control 
and the number of available MV are depended on the 
operation situation. So, the structure of the fractionator 
as a controlled process is varied. A varied structure 
predictive coordinated control system based on above 
design and control requirements for the fractionator was 
implemented in several industrial plants.  
 
The application shows that the pairing design is suitable 
for the multivariable control. Fig.5 is a real-time trend 
acquired from the industrial plant. Set-point of 95% 
ASTM (D) has been decreased at 9:17 and first heat 
remove exchanger (steam generator) by-pass valve (F) 
has been gradually closed to its optimum value. FBP is 
nearly decoupled to the set-point change of 95% ASTM. 
Both FBP and 95% ASTM are running with less 
deviation to their setpoints. MV1 is kept at its optimum 
value (not showed in Fig.5). 
 

 
Fig.5  Real time trend of fractionatotr 

1,2,7: top temperature and its set-point(CV1) 
  3,4:  Final Boiling Point and its setpoint 
  5,6,9: first draw temperature and its set-point(CV2) 
  8,D:  95% ASTM of first draw its set-point 
  B: first heat remove flowrate(MV4) 

C: top heat remover exchanger by-pass valve(MV3) 
E: top heat remover circulation flowrate(MV2) 
F: first heat remover exchanger by-pass valve(MV5) 

       
 

6. CONCLUSION 
 
Input-output pairing is a basic problem for 
multivariable control system design as well as the 
model predictive control regardless of multivariable or 
multi-loop structure. Pairing based on dynamics of 
controlled process is better than that based on 
steady-state gain. Response index and interaction index 
proposed in this paper catch on the dynamics and main 
control system design problems. They are effective 
criteria for the design of multivariable predictive 
control systems. The pairing problem should be 
developed comprehensively.  
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Abstract: A new generalized predictive control algorithm for a kind of input-output 
bilinear system is proposed in the paper (BGPC). The algorithm combines bilinear and 
linear terms of I/O bilinear system, and constitutes an ARIMA model analogous to linear 
systems. Using optimization predictive information fully, the algorithm carries out 
multi-step predictions by recursive approximation. The heavy computation of generic 
nonlinear optimization is avoided with control law of analytical form being used to the 
non-minimum phase bilinear systems. Simulation results show the effectiveness of the 
algorithm and the performance of the algorithm is better than linear generalized 
predictive control (LGPC). 
 
Key words: bilinear systems; bilinear generalized predictive control (BGPC); recursive 
approaches; non-minimum phase systems; analytical control laws 
 
 
 

 
1. INTRODUCTION 

 
Most of practical production processes are nonlinear 
systems. Nonlinear systems are usually described as 
I/O form with the expression of polynomial and 
rational fraction (Korenberg, et al., 1988). Until now, 
the research of nonlinear system control is very 
effective. Bilinear system is a kind of nonlinear 
system with simple structure. The practical processes, 
such as project, social economy, zoology and biology 
etc, can be widely described by bilinear systems, and 
it can include a large class of dynamic characteristics 
of strong nonlinear system within a bigger area of a 
steady operating point. Its approximation precision is 
still higher than that of traditional linear model. 
Bilinearization provides an effective approach for the 
analysis and design of nonlinear systems. Therefore, 
the research for bilinear system (Svoronos, 
Stephanopoulos and Aris, 1981;Eaton and Rawlings, 
1990; Hua Xiangming, 1990; Akihiro and Toru, 2001) 
has been largely performed since the late of 1960s.  
 

 
As a new computer control algorithm, model 
predictive control originated directly from industrial 
process control in the anaphase of 1970s.It has made 
quite great progress in the past twenty years. More 
attention has been given to GPC, since GPC 
algorithm (Clarke, et al., 1987) was proposed by 
Clarke etc in 1987. Predictive control technology of 
linear models has been widely developed (Doyle III, 
1995) and predictive control research of nonlinear 
model has already made great progress. When a 
generic nonlinear model for model predictive control 
is adopted, nonlinear optimization will be involved, 
and on-line disposal is very difficult. While bigger 
error is brought using linear approximate model. 
Therefore predictive control with bilinear model 
describing original nonlinear system is meaningful to 
practical application and academic research. Model 
prediction is introduced to bilinear systems (Adhemar, 
et. al., 2002; Liu, 1996; Yao, 1997; Jiang, 1998,1999; 
He, 1999), and good effect is achieved. A new 
approach of bilinear generalized predictive control 
(Adhemar, et al., 2002) is presented. Bilinear model 



is handled, described as the time-step quasi-linearzed 
NARIMAX model and also improved, which 
overcomes the disadvantage that predictive error 
increases with the predictive horizon. Weighted 
adaptive predictive control is introduced to I/O 
discrete bilinear systems (Liu, 1996). The approach 
of point-by-point linearization approximation is 
introduced to I/O bilinear systems (Yao, et al., 1997). 
One-step and two-step predictive control (Jiang, 1998, 
1999) are introduced to generic bilinear systems. 
Predictive model of generalized bilinear system based 
on Volterra series (Hemet al., 1999) is presented, and 
solving high order equation with one step prediction 
gains the optimal control law. 
 
Apparently, the research on bilinear systems is 
inadequate by comparison to linear system predictive 
control. Even if there are some problems on the 
research mentioned above, such as it need try further 
to simplify Volterra series kernels identification. It 
needs the process’s variety isn’t very rapid in the 
approach of point-by-point linearization 
approximation. In conclusion, the existing result keep 
some distance with practicality and it need more 
perfect and develop. A multi-step GPC algorithm 
based on I/O discrete bilinear system is presented in 
this paper (BGPC). Bilinear and linear terms in the 
bilinear model are combined and the ARIMA model 
analogous to linear system is constituted. Making full 
use of optimal predictive control information, and 
carrying out multi-step prediction by recursive 
approximation, we obtain GPC algorithm with 
analytic form. The simulation results show the 
effectiveness of the algorithm. 
 
 

2. REPRESENTATION OF BILINEAR SYSTEM 
 

Consider a kind of SISO time-invariant bilinear 
systems 

∆+−−+

−=
−−

−−

/)()()1()1()(

)1()()()(
11

11

tezCtytuzD

tuzBtyzA
  1  

where i
n

i
i zazA

a
−

=

− ∑+=
1

1 1)( , 

i
n

i
i zbzB

b
−

=

− ∑=
0

1)( , 

i
n

i
i zczC

c
−

=

− ∑=
0

1 )( , 

ji
n

i

n

j
ij zzdzD

b a
−−

= =

− ⋅= ∑∑
0 0

1)( . 

bilinear term 

∑∑
= =

−−−−

=−−
b an

i

n

j
ij jtyitud

tytuzD

0 0

)1()1(

)1()1()(

       

for the sake of simplicity, this paper will mainly 
discuss under the condition of ji ≠ , 0=ijd , here 
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while the common condition of ji ≠ , 0≠ijd  may 

perform analogy. { })(tu and { })(ty are the input and 

output sequences respectively. 11 −−=∆ z  is the 
difference operator, { })(te  is a zero-mean white 
noise sequence. The equation (1) can be written as  

∆+−

−+=
−

−−−

/)()()1(

)]1()()([)()(
1

111

tezCtu

tyzDzBtyzA
     (2)         

 
 

3. GPC ALGORITHM OF BILINEAR SYSTEM 
 

The controlled object (2) is assumed to satisfy: 
     (i) an  bn   cn  and dn  are known. 

(ii) )( 1−zC  is stable polynomial. 
 

The cost function has the following form 
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Where N and uN are the prediction and control 
horizon, whereas λ  is a weighting constant. In 
order to make the future outputs of system to track 
the set value 0y  as smooth as possible, the 
reference trajectory is: 

)()( tytyr =  

0)1()1()( yjtyjty rr αα −+−+=+     (4) 
where α is a smoothing factor.  
To obtain j -step-ahead optimizing predictions, 
consider the following Diophantine equations: 
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also 1deg −= jE j , nF j =deg , 1deg 1 −= jG j

1deg −= jN j , 1deg mL j = , 2deg mR j = ,

),max( jnnn ca −= , )1,1max(1 −−= cb nnm
)1,1max(2 −−= cd nnm .For the purpose of 

simplicity, then )( 1−zA is written as A , and )( 1−zB is 
written as B . Others are the same. Furthermore, the 
lowercases express polynomial coefficients relative 
to their capital letters, for example: jin is the i th 

coefficient of jN .  
 
From equation 2 and equation 5 - 7 , the j -step 
model predictive output can be written as  
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In equation (10)and (11), 
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)1( −−= ityrp jiji                   (13) 
where )1( −+ jty in equation (12) is unknown, it is 
substituted by model predictive value )1( −+ jtym  
after time t . The value at time t  and before time 
t  can be substituted by its true value. The equation 
(9) can be written in the vector form 
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From the above definition, the cost function (3) can 
be written as  

  { }UUyYyY rmrm
TTEJ λ+−−= )()(      (17)                                  

Substituting equation (14) into equation (17), and 
minimize the cost function (17), we get  

    )()( 1 MyGIGGU r −+= − TT λ        (18)                                    
The real-time optimal control law is given by 

)()1()( Myg r −+−= Ttutu          (19) 

Where Tg is the first row of matrix 
TT GIGG 1)( −+ λ . 

 
 

4. SIMULATION RESEARCH 
  
Consider the following bilinear system of 
non-minimum phase  
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Where )(te is normal school white noise signal with 
covariance 0.1. The each parameter of the paper’s 
control algorithm (BGPC) is as follows: 
 
The parameters of model: 1=== dba nnn , 0=cn  
The parameters of controller: 5=N  5=uN  

8.0=α  1=λ . 
 
Using linear GPC (LGPC) control system, we can 
make linearization to work point of the object  

8)( =ty  

)2(3.5)1(4.3)1()( −+−=−− tututyty    (12)  
 

The parameters of controller are the same as the 
every parameter of BGPC. 
 
The simulation curve of the output and control are 
shown in the following figures. 
 
The output response and control curve using BGPC is 
shown in figure 1 and figure 2, where the solid line is 
system output, and the dashed line is set point.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The set point is changed by step amplitude 8. The 
output response and control curve using LGPC is 
shown in figure 3 and figure 4, comparing figure 1 
with figure 3. It is obvious that the BGPC describes 
its dynamic characteristic in a biggish scope of set 
point because of the BGPC using nonlinear model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
predictive, but the LGPC algorithm only makes 
linearization to nonlinear object’s one set point, it 
just is stable in a baby-size scope of set point. The 
performance of LGPC algorithm is worse than the 
paper’s BGPC algorithm, and the system’s output can 
quickly track the variety of set point, BGPC 
algorithm’s overflow in this paper is obviously more 
depressed than the LGPC algorithm’s, and it can 
reject the noise well. 
 
 

5. CONCLUSION 
 

A GPC algorithm is applied to a kind of I/O 
bilinear systems. The analytic control law, being 
analogous to linear GPC, is obtained. It makes full 
use of optimal predictive information, and avoids 
the difficulty brought by generic nonlinear 
optimization. The simulation result proves that this 
algorithm is effective. 
 
Acknowledgements---This research was supported by 
863 program of China under Grant No. 
2001AA413110. 
 
 

REFERENCES 
 
Akihiro S., and Toru Y (2001). A design of 

Generalized Minimum Variance Controllers 
Using a GMDH Network for Nonlinear Systems. 
IEICE TRANS. Fundamentals, Vol. 84, No. 11, 
pp.2901-2907 

Adhemar de B F,Andre L M and Andres O S. A 
(2002) New Bilinear Generalized Predictive 
Control Approach: Algorithm and Results. IFAC 
15th Tricnnial World Congress Barcclona, Spain 

Clarke DW. Mohtadic and Tuffs Ps (1987). 
Generalized Predictive Control-Part Ⅰ andⅡ
Automatica, Vol.23 No. 2, pp.137-160 

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

t

y,
 y

r

y Output response of LGPC
                         
yr Set point             
                         

Fig.3.Output response of LGPC 

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

t

y,
 y

r

y Output response of BGPC
                         
yr Set point             
                         

Fig. 1.Output response of the BGPC 

0 20 40 60 80 100 120 140 160 180 200
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t

u(
t)

u Control signal of BGPC
                        

Fig. 2. Control signal of the BGPC 

0 20 40 60 80 100 120 140 160 180 200
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

u(
t)

t

u Control signal of LGPC
                        

Fig.4. Control signal of LGPC 



Doyle III F, Ogunnaike B and Pearson R. (1995) 
Nonlinear Model-based Control Using Second 
Order Volterra Models. Automatica, Vol. 31, No. 
5,pp. 697- 714 

Eaton J and Rawlings J (1990). Feedback Control of 
Chemical Process Using On-line Optimization 
Techniques. Computing Chemical Engineering, 
Vol.14, No. 2, pp. 469-479 

He Jianchun, Yang Maying, Yu li and Chen Guoding 
(1999). Predictive Control for a Class of Generic 
Bilinear System. Mechanical & Electrical 
Engineering Magazine  Vol.16, No. 5, pp. 
225-226 

Hua Xiangming (1990). Modeling and Control of 
Bilinear System. Sanghai: Press of East China 
Institute of Chemical Technology 

Jiang Zong (1998). One-Step Predictive Control of 
Bilinear System.Journal of Anhui Institute of 
Architecture, Vol. 6, No. 2, pp. 54-56 

Jiang Zong (1999). Two-Step Predictive Control of 
Bilinear System. Journal of Anhui Institute of 
Architecture, Vol.7, No. 1, pp. 64-66 

Korenberg M, Billings S A, liu Y P and Mcilroy P J 
(1988). Orthogonal Parameter Estimation 
Algorithm for Non-linear Stochastic Systems. 
International Journal of Control, Vol. 48, No. 1, 
pp.193-210 

Liu Xiaohua (1996). Weighted Adaptive Predictive 
Control for a Class of Nonlinear Systems. 
Shandong Science, Vol.7, No. 3, pp. 5-8 

Svoronos S, Stephanopoulos G and Aris R(1981). On 
Bilinear Estimation and Control. International 
Journal of Control, Vol. 34, pp.651-684 

Yao Xinyuan and Qian Jixin (1997). Generalized 
Predictive Control Algorithm of Bilinear System. 
Journal of Zhejiang University, Vol. 31, No. 2, 
pp. 231-236 

 



 
 
 
 
 
 
 
 

NONLINEAR MODEL PREDICTIVE CONTROL USING A NEURAL 
NETWORK 

 
 

Ridong Zhang  Ping Li  
 
 

(School of Information Engineering, Liaoning University of Petroleum & 
Chemical Technology, Liaoning, Fushun 113001, P.R.China) 

 
 
 
 

Abstract A neural network model-based generalized predictive control for a class of 
nonlinear discrete-time systems is presented with the local linearization of nonlinear 
activation function. The method converts the nonlinear multi-step predictions into a 
series of local linear multi-step predictions and uses linear GPC method to gain the 
control law. The method avoids the shortcomings of some past predictive algorithms , it 
doesn’t need any assumptions and give a direct and effective multi-step predictive 
method. It also avoids the complicated nonlinear optimization and computation burden is 
not serious. A simulation result is presented in the article. 
 
Keywords: neural-network models; generalized predictive control; nonlinearity; 
linearization; adaptive control. 
 

 
 

1. INTRODUCTION 
 

Generalized Predictive Control (Clarke D W et 
al.,1987) has been greatly used in the control of many 
industrial processes because of its excellent control 
performance and robustness due to its three basic 
features: predictive model, feedback correction and 
rolling optimization. However, for a nonlinear system, 
it is not easy to apply GPC because of the difficulty 
of getting an accurate nonlinear model. Since the 
mid-1980s, neural networks have been internationally 
studied to model and control nonlinear systems, and 
there are more and more neural network based 
predictive control algorithms, too. K Chao-Chee and 
Y L Kang(1995) presented a diagonal recurrent 
neural network based control strategy for dynamic 
systems. Among the results of nonlinear predictive 
control, an analytical predictive control law was 
presented (Furong Gao et al., 2000). A control 
strategy based on two assumptions was presented 
(Jian Guo et al., 2001). Two neural networks with an 
algorithm using the reverse dynamic technique was 
given (Qibing Jin et al., 1999), it avoids the nonlinear 
optimization, however, both the two networks need  

 
 
training and therefore its algorithm is complicated. 
Saint Donat J et al (1991) presented a neural net 
based model predictive control algorithm. A neural 
network predictive control strategy assuming that the 
process can be described as a linear part plus a 
nonlinear part was given (Yupu Yang et al., 1999), it 
uses a dynamic recurrent network to model the two 
parts of the system.There is also an algorithm using a  
global linearized model (Jun Liu et al., 2000). 
 
The above results show that it needs to solve the 
following problems when applying neural networks 
based predictive control algorithms to nonlinear 
systems: (1) give a direct and effective method of 
multi-step prediction. (2) try to avoid the complicated  
nonlinear optimization. (3) reduce the sum of neural 
networks so as to cut down computation burden. 
 
In this paper, using the local linearization of 
nonlinear activation function, a new control strategy 
is presented. The method converts the nonlinear 
multi-step predictions into a series of local linear 
multi-step predictions and uses linear GPC method to 
gain the control law. A simulation result is also given 



in the paper, evidencing that the controller presents a 
fairly good performance. 
 
 

2. NONLINEAR SYSTEMS AND THEIR 
REPRESENTATION 

 
Consider the following SISO nonlinear discrete-time  
system described by the following model: 
 

))(),...,1(),(),...,1(()( mtutuntytyfty −−−−=                                     

 
where n , m  are the orders of its output and input 
respectively. 
 
The system can be described by a three-layer BP 
neural network as follows: 
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where ),...,1,...,1(),(2),(3 nmjIijiwiw +== are 
the linking weights, mn + is the sum of input 
nodes, I the sum of hidden nodes and there is one 
output node. And “g” is the activation function: 
 

xe
xg

−+
=

1
1)(                                                              

 
In order to get a multi-step predictor, the  following 
method is used: 
 
Let 
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where Ii ,...,1= .And then )]([)( 3 tsgty = ,and 
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where )(tθ refers to 

)](),...,1(),(),...,1([ mtutuntyty −−−− , 1F  is  a 
function symbol, and 31s is the center of the 
expansion . Also define )( it +θ as: 

)](),...,1(),(),...,1([ mituitunityity −+−+−+−+ . 
In general, let the center 31s =0. The same technique 
can also be employed on )(2 ts i , likewise , it derives:                     
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where ),...,1(2 Iis i =  are also the centers , also let  

is2 =0 ),...,1( Ii = ,and ),...,1(2 IiF i = are function 
symbols. Substitute eq.(7) into eq.(6) and combine 
the nonlinear parts ))((1 tF θ and 

),...,1())((2 IitF i =θ into one nonlinear part 
))((3 tF θ leads to the following:  
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where ))((3 tF θ is the nonlinear part:  
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For simplicity , let 
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'
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the second part in eq.(8) as N , substitute eq.(5) into 
eq.(8) and gives: 
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The discrete differential equation of )(ty  can be 
written as:  
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Compare eq.(10) with eq.(11) leads to: 
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Now the system model has been divided into two 
parts: a linear part and a nonlinear part. The 
coefficients of the linear part are calculated by 
eq.(12).  
 
 

   3. CONTROL SYSTEM DESIGN 
 

Note that N is a constant, eq.(11)can be written as 
follows: 
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where: 
 
  nniii aAniaaAaA −==−=+= +− 1111 ),,...,2(,1 , 

)1,...,0(,1 −== mibB ii , and ∆  is the differencing 

operator 11 −− q . 
 
Now, divide the optimal predictions into three parts, 
one is determined by past inputs and outputs, this is 
represented by pY , another is determined by present 
and future inputs, it is represented byGU , the other 
is the prediction error, it consists of the nonlinear 
error 1E and the error caused by external 
disturbances 2E , then it derives: 
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Here the control horizon and prediction horizon are 

both p , )(ty is the output of the system, )(ty
Λ

is the 
output of its neural network model. 
 
Since pY  is the “free response” of the system, it can 
be calculated by the neural network model. The 
elements in G are calculated as follows: 
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Moreover, let the reference trajectory be as follows: 
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where sy is the set-point , )1,0(∈α . 
 
Let the vector form of the reference trajectory and the 
cost function be the follows respectively: 
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where 2β is the weighting factor.  
 
Note that because the system is nonlinear and 1E is 
function of Θ , here Θ refers to 

Tptt ))](()),...,1(([ ++ θεθε , so 1E   is not known. 
So the control law cannot be calculated by eq.(14).  
 
However, the following method is used to get the 
control law: 
 
First, let 10E =0, where 10E  is the initial value of 1E , 

then, from 0=
∂
∂
U
J

, 0U  can be calculated:           
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And 0U is the initial value of U . Define the vector 
form of the multi-step predictions based on neural 
network model as mY : 

T
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And its value of step j  is mjY , the value of Y of 
step j is jY , the value of U of step j is jU , the value 
of 1E of step j is 1jE . Thus the optimal U can be 
gained by the following method: 
 
    j1EEGUYY 2jpj +++=  ,...2,1=j      (20) 
 
Substitute jU into its neural network model eq.(2) 
and mjY can be gained, then: 
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where 10E =0, )1,0(∈δ . Note that if the 
function )(•F  is compressed mapping, the above 
iterative process is convergent. And when Y equals 

mY , the control sequence U gained based on eq.(22) 

is the optimal one. However, if 1j11j EE −+ < a 

desired tolerance ,  1jU +  can be thought of as the 

optimal control law, define Tq as the first row of 
TGI)GG 1T −β+ 2( ,then  the control law is: 
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Hence, the algorithm for the nonlinear predictive 
control method can be summarized as follows: 
 
Step 1. Use BP algorithm to train the weights of the 

network and gain an initial estimate of their 
values. 

Step 2. Pick the output )(ty and give the network an 
on-line training so as to adjust the weights 
adaptively. 

Step 3. Divide eq.(2) into two parts using the method 
of the second section. 

Step 4. Compute the free response pY  of the system.  
Step 5. Get the reference trajectory using eq.(18). 
Step 6. Gain the optimal )(tu by using eq.(23). 
Step 7. Return to step 2. 
 
 

4. SIMULATION RESULT 
 
In this section, an example is given to illustrate the 
above method. The system is represented by the 
following model:  
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Also white noise was added to the output. Its 
amplitude is tenth of the set-point. The control 
parameters are selected as follows: 
p =5, 2β =1, 65.0=α , the system response can be 

seen in Fig.1. 
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Fig. 1. Output response                                                            

  
 

5. CONCLUDING REMARKS 
 
In this work, a new neural network based nonlinear 
predictive control algorithm is conducted and applied 
to a nonlinear system. It gives a direct and effective 
predictive method and avoids nonlinear optimization. 
In the algorithm, only one neural network is used, so 
the computation burden is not serious. 
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Abstract: We propose to use chance constrained programming for process optimization 
and control under uncertainty. The stochastic property of the uncertainties is included in 
the problem formulation. The output constraints are to be ensured with a predefined 
confidence level. The problem is then transformed to an equivalent deterministic NLP 
problem. The solution of the problem has the feature of prediction, robustness and being 
closed-loop. In this paper, the basic concepts and solution strategies are discussed to 
illustrate the potential for optimization and control under uncertainty. 
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1. INTRODUCTION 
 
It is a well-known fact that uncertainties exist in 
every chemical process. In most previous studies on 
process optimization and control, the stochastic 
properties of uncertainties have not been taken into 
account. In the industrial practice, uncertainties are 
compensated for by using conservative operating 
strategies, which may lead to considerably more 
costs than necessary. In addition, feedback control is 
used to compensate for uncertainties. However, 
compensation without considering the uncertainty 
properties is in fact the wait-and-see strategy and has 
several drawbacks. First, it is always a posteriori. 
Second, the system propagates the disturbances to 
connecting systems. Third, a feedback can not 
ensure constraints on open-loop variables. In many 
cases it is impossible to on-line measure some 
variables which describe product properties (e.g. 
composition, viscosity, density). These variables 
have to be open-loop under the uncertainties but 
they should be confined to a specified region 
corresponding to the product specifications.  
 
To overcome these drawbacks, we have recently 
proposed and studied a new framework for process 
optimization and control under uncertainty. The 
uncertainty properties are to be included in the 
problem formulation. These properties can be gained 
by statistical analysis of historical data. A stochastic 
programming problem under chance constraints is 

formulated for both optimization and control. It will 
be relaxed to an equivalent deterministic NLP 
problem. The essential challenge lies in the 
computation of the probabilities of holding the 
constraints as well as their gradients. Approaches of 
chance constrained programming to linear, nonlinear 
and dynamic problems have been developed and 
applied to different process engineering problems. 
The method of moving horizon is employed for 
solving dynamic optimization and control problems 
under uncertainty.  
 
While chance constrained programming has been 
applied in many disciplines like finance and 
management (Prekopa, 1995; Uryasev, 2000), few 
applications have been made in chemical process 
operations (Henrion et al., 2001). It has been used 
for batch process planning (Petkov and Maranas, 
1997). Several studies on model predictive control 
using chance constrained programming have been 
carried out for linear processes (Schwarm and 
Nikolaou, 1999; Li et al. 2000 and 2002a,b). 
Recently, a method to nonlinear chance constrained 
problems was introduced for process optimization 
under uncertainty (Wendt et al., 2002). It has been 
extended to nonlinear dynamic optimization 
problems under uncertainty (Arellano-Garcia et al., 
2003). In this paper, the basic principles of chance 
constrained programming and its applications to 
process optimization and control are discussed to 
illustrate its potential and limitation. 
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2. UNCERTAINTY ANALYSIS 
 

In process operation, there are two general types of 
uncertainties. External uncertainties are from 
outside but have impacts on the process. They can 
be the rate and/or composition of feed and recycle 
flows as well as flows of utilities, the temperature 
and pressure of the coupled operating units or 
market conditions. Internal uncertainties represent 
the unavailability of knowledge of the process. For a 
determined model structure, they are uncertain 
model parameters often regressed from a limited 
number of experimental data. We call both of these 
uncertain inputs. Due to these uncertainties, 
conservative or aggressive decisions may be made. 
While internal uncertainties have been well studied 
in the framework of robust control in the past 
(Morari and Zafiriou, 1989; Kothare et al., 1996; 
Bemporad et al. 2002), external uncertainties have not 
been much emphasized. 
 
As shown in Fig. 1, an uncertain input ξ  can be 

constant (e.g. model parameters) or time-dependent 
(e.g. atmospheric temperature) in the future horizon 

],[ 0 fttt ∈ . They are undetermined before their 

realization. The “realization” means either the 
measurable uncertain variables have been measured 
or parameters newly estimated. The distribution of 
the variables may have different forms. Very often 
normal (Gaussian) distribution is considered as an 
adequate assumption for many uncertain variables in 
the engineering practice. The basic justification of 
this statement is embodied in the central limit 
theorem (Maybeck, 1994). The values of mean and 
variance are usually available. The uncertain 
variables may be correlated or uncorrelated.  
 

t 0 t f       t0 tf  
 

Fig. 1: Two different uncertain variables 
 
These uncertain inputs will propagate through the 
process to output variables (e.g. temperature, 
composition). This makes the outputs also uncertain. 
A continuous process with constant uncertain inputs 
leads to a steady-state problem, while such a process 
with time-dependent uncertain inputs or a batch 
process is a dynamic problem under uncertainty. For 
a nonlinear process it is very difficult to analytically 
describe the distribution of the outputs. A scheme of 
simulation with sampling can address this problem. 
According to their distributions, random values are 
generated. After many runs of simulation with the 
sampled data, the probability distribution of the 
outputs can be gained. Besides Monte-Carlo, some 
efficient sampling strategies have been proposed 
(Diwekar and Kalagnanam, 1997). Obviously, the 
wait-and-see strategy can not result in satisfactory 

operations under these uncertainties. Thus we are 
confronted with making decisions a priori for the 
future operation (i.e. the here-and-now strategy). 
Under the uncertainties, a stochastic programming 
problem has to be defined and solved to answer 
these questions: 1) how to achieve an economically 
optimal operation? 2) how to ensure the constraints 
of the output variables? 3) how to prevent the 
propagation of the uncertainties to downstream 
processes? and 4) how to design a proper feedback 
control system?  
 

3. CHANCE CONSTRAINED PROBLEMS 
 
A general optimization or control problem under 
uncertainty can be formulated as 
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where f is the objective function, g and h are the 
vectors of equality and inequality constraints. x, u 
and ξ  are the vectors of state, control and uncertain 

inputs, respectively. 0x  is the known initial state. 

This dynamic nonlinear optimization problem has to 
be descretized with time intervals into a static 
problem so that it can be solved with the method of 
stochastic programming. Time-dependent uncertain 
inputs will be approximated as discretized uncertain 
variables in individual time intervals. In this work, 
they are assumed to have a correlated multivariate 
normal distribution.  
 
There have been two general stochastic approaches 
(Kall and Wallace, 1994) to solve such problems. 
The two-stage programming uses recourse to deal 
with inequality constraints. The first-stage decision 
variables are determined and fixed before the 
realization of the uncertain variables, while the 
second-stage variables are decided after their 
realization. The violation of constraints is 
compensated for by some penalty functions and 
leads to additional costs for the second stage 
decisions. Since a proper penalty function is usually 
not available, the application of this method to 
operation and control may be not appropriate.  
 
The other method is the chance constrained 
programming. Its unique feature is that the resulting 
solution ensures a predefined probability of 
satisfying the constraints. The solution will lead to 
an expected optimal value of the objective function 
by searching for the decision in a feasible region to 
hold a given confidence level, denoted as 

)10( ≤≤ αα . Since α  can be defined by the user, 

it is possible to select different levels and make a 
compromise between the function value and risk of 
constraint violation. It should be noted that with both 
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solution strategies there have been, until now, no 
suitable approaches to nonlinear problems.  
Recently, we have studied chance constrained 
programming for process optimization and control 
under uncertainty (Li et al. 2000 and 2002a,b; 
Henrion et al., 2001; Wendt et al., 2002). In 
engineering practice, a very popular form of 
inequality constraints is to specify or restrict some of 
output variables y (note y is part of x): 
 

Iiyyy iii ,,1),( maxmin L=≤≤ ξu           (2) 

 
maxmin , ii yy  are the required lower and upper bound of 

an output, such as a pressure or a temperature 
restriction of a plant. Holding these constraints is 
usually critical for the production and safety. For 

],[ 0 fttt ∈  a probabilistic form of (2) is  

 
         { } α≥=≤≤ Iiyyy iii ,,1,),(Pr maxmin Lξu        (3) 

 
With this representation, all inequalities are included 
in the probability computation. It means that they 
should be satisfied simultaneously with the given 
probability. This is called joint probabilistic (chance) 
constraint. Another form is single chance constraint, 
where individual probabilities of ensuring each 
inequality will be held: 
 
     { } Iiyyy iiii ,,1,),(Pr maxmin L=≥≤≤ αξu         (4) 

 
It should be noted that in deterministic approaches 
the expected values of the uncertain variables are 
usually employed. In reality, however, the uncertain 
variables will deviate from their expected values. 
Thus the implementation of the results from a 
deterministic approach will violate the inequality 
constraints with a probability of around 50%. The 
difference between (3) and (4) is that a joint chance 
constraint requires the reliability in the output 
feasible region as a whole, while single chance 
constraints demands the reliability in the individual 
output feasible region. If the constraints are related 
to the safety consideration of a process operation, a 
joint chance constraint may be preferred. Single 
chance constraints may be used when some output 
constraints are more critical than the other ones. The 
equalities in (1) are the model equations of the 
process. They have to be satisfied with any 
realization of the uncertain variables. In fact, the 
effect of the model equations is a projection of the 
space of the random variables ξ  as inputs to a space 

of state variables x, with given controls u. Thus the 
equalities will be eliminated if an integration of the 
equations in the space of the uncertain variables is 
made. It implies that a sequential approach is 
suitable for solving stochastic problems with 
equality constraints. To treat the objective function 
in (1), minimizing the expected value and the 
variance of the objective function has usually been 
adopted (Darlington et al. 1999): 

[ ] [ ]),(),(min ξux,ξux, fDf ω+Ε           (5) 

 
E and D are the operators of expectation and 
variation, respectively. ω  is a weighting factor 
between the two terms. In the sense of relaxation the 
objective function in (1) is now a deterministic 
function through these two operators. Now a general 
chance constrained problem is formulated with (5) 
as objective function and (3) or (4) with constraints.  
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Fig. 2: Classification of chance constrained 
problems 

 
As shown in Fig. 2, such problems can be classified 
based on the properties of processes, uncertainties 
and constraint forms. Thus there are 16 different 
formulations. We can use the initial letters to denote 
the problems. For example, a steady state process 
with constant uncertainties under single chance 
constraint is called an LSCS problem. It is 
interesting to note that LSTS and NSTS can be 
solved separately for each interval, while for LSTJ 
and NSTJ (a quasi-dynamic problem) the whole time 
horizon should be considered. To solve such 
problems with an existing optimization routine, the 
probability of holding the constraints has to be 
computed. Moreover, the gradients of the probability 
function to the controls are required. Different 
problems have different degrees of complexity for 
computing these values, which will be discussed in 
the following two sections. 
 

4. APPROACH TO LINEAR SYSTEMS 
 

Chance constrained linear problems can be relatively 
easily treated and have some nice properties. 
Theoretical results show that the feasible region of 
linear problems with quasi-concavely distributed 
uncertain variables is convex (Prekopa, 1995). 
Another merit property is that linear transformations 
of multivariate normally distributed variables have 
the same distribution. Optimization of linear steady 
state systems (LSCS and LSCJ) under constant 
uncertain variables has been well studied (see Kall 
and Wallace). It can be applied in process design 
and planning under uncertainty. 
 
We consider linear dynamic systems with time 
dependent uncertain inputs (LDTS and LDTJ). The 
outputs in the future horizon depend on the current 
state, the future and past controls as well as 
uncertain inputs. The uncertain inputs include both 
uncertain parameters (e.g. step response coefficients) 
and disturbances. The controls in the horizon will be 
decided to optimize some objective function and 
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ensure the chance constraints for the outputs. A 
quadratic objective function leads to a chance 
constrained model predictive control, as shown in 
Fig. 3. One can easily notice that the novelty of this 
controller, compared with the conventional MPC, is 
it includes the uncertainties explicitly in the problem 
formulation. Moreover, it is worth noting that the 
objective function may only include the quadratic 
terms of controls, since the outputs are confined in 
the chance constraints, e.g. 
 

        ∑∑ −+−+
j

ll

l

l jtujtu 2)]1()([min ω          (5) 

 
For linear MPC with single chance constraints 
(LDTS), the chance constraints can easily be 
transformed to linear deterministic inequalities. It 
leads to a QP problem and thus the solution can be 
derived analytically (Schwarm and Nikolaou, 1999).  
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Fig. 3: Chance constrained MPC 
 
In cases of problems with a joint chance constraint 
(LDTJ), an explicit solution cannot be obtained, 
since the calculation of a joint probability of 
multivariate uncertain variables is needed. Although 
one chance constraint for all outputs and all time 
points can be formulated, it is natural to constrain 
each output separately, i.e. for Ii ,,1 L=  
 
  { } iiii Njjtyjtyjty α≥=+≤+≤+ ,,1),()()(Pr maxmin L  

              (6) 
Note that even if the uncertain inputs are 
uncorrelated, the outputs are correlated through the 
linear propagation. With some linear transformation, 
(6) can be described as the following form 
 

iiii α≥+≤′ }Pr{ buAξ            (7) 

 

iξ′  is an N-dimensional uncertain vector. The joint 

probability makes (7) nonlinear constraints and the 
stochastic MPC becomes an NLP problem. 
Unfortunately, it is not possible to easily compute 
those probability values even numerically, if the 
dimension is larger than 3. A simulation scheme to 
estimate joint probabilities was proposed (Prekopa 
(1995). The first and second term of the inclusion-
exclusion formula are computed exactly and the rest 
terms are evaluated by sampling. Moreover, the 
gradient calculation is required to solve the problem 
with an NLP solver, which is more difficult. We 

used this simulation scheme for the probability 
computation and proposed a reduced gradient 
computation strategy (Li et al., 2000, 2002a). The 
efficient sampling by Diwekar and Kalagnanam 
(1997) is used. SQP is used for the optimization and 
the control proceeds by moving horizon. After the 
control of the first time interval is implemented, 
together with the realization of the uncertain inputs 
in this interval, the system moves to the new state, 
and the control policy in the new horizon will be 
computed. The tuning parameters of this algorithm 
are the length N of the time horizon and the 
confidence level α . As a kind of predictive 
controller a large N is desired, but the computation 
time will be greater. The major computation load is 
due to sampling of the uncertain variables to 
evaluate the probabilities and their gradients. A 
larger N means more uncertain variables are 
included in the problem formulation.  
 
Tuning the value of α  is an issue of the relation 
between feasibility and profitability. Of course a 
high confidence level to ensure the constraints is 
always preferred. The solution of a defined problem, 
however, is only able to arrive at a maximum value 

maxα  which is dependent on the properties of the 
uncertain inputs and the restriction of the controls 
and outputs. The knowledge of maxα  is crucial; if a 

value greater than maxα  is chosen, the feasible region 
will be empty. An easy-to-use method was proposed 
to compute this maximum value for SISO systems 
(Li et al., 2002b) which can be extended to MIMO 
systems. The basic idea is to map the stochastic 
inputs to outputs and analyze the property of the 
outputs. It can be proved that the joint probability 
has the maximum value if the mean values of the 
outputs are at the middle of their restricted region 

],[ maxmin yy . Thus maxα  can be obtained via a 

simulation run. The profitability of the stochastic 
MPC means the achievability of the objective 
function value, which is also a function of the 
confidence level. They have a monotone relation: 
the value of objective function will be degraded if α  
is increased. One can analyze the profile of the 
function value with changing α  and decide on a 
suitable trade-off between profitability and 
reliability.  
 

5. APPROACH TO NONLINEAR SYSTEMS 
 
The motivation to consider nonlinear chance 
constrained problems is to find systematic ways to 
compensate for uncertainties so as to avoid intuitive 
or empirical decisions. Recently we proposed a 
solution method to nonlinear steady state problems 
under single chance constraints (NSCS), in which 
direct computation of the probability of holding the 
output constraints is avoided (Wendt et al., 2002). 
The basic idea is to map the chance constrained 
region of the outputs back to a bounded region of the 
uncertain inputs. This can be done by a monotone 
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relationship between an input Sξ  (assuming there 

are S uncertain variables) and the constrained output 

iy . Thus the output probability can be computed by 

integration of the density function of the uncertain 
inputs, e.g. if ↑↑⇒ iS yξ , then 
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For the multivariate integration, collocation on finite 
elements is used to discretize the bounded region of 
the uncertain inputs. The input boundary max

Sξ  is 

computed inversely by the Newton-Raphson method 
based on the output value of max

iy . Since this 

boundary depends on the realization of the uncertain 
variables ( 11, −Sξξ L ), it has to be computed on each 

collocation point of these variables. In this way, the 
equality constraints (model equations) are eliminated 
by expressing the state variables in terms of decision 
and uncertain variables. Again, a sequential solution 
approach is used. It can principally be described 
with Fig. 4. Due to the uncertainty, three different 
controls will result in three different output 
distributions: 1) too conservative (e.g. resulting in 
great operation costs), 2) acceptable and 3) too 
aggressive (resulting a high probability of constraint 
violation). Due to the monotony, the bound values 

(
)3(max)2(max)1(max ,, iii ξξξ ) of the uncertain variable can 

be determined and thus the probabilities of holding 
the constraint can be computed.  
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Fig. 4: Approach to nonlinear constrained problems 
 

Principally, this approach can solve problems under 
uncertainties with any kind of distributions, provided 
the density function and a monotone relationship 
between the constrained variable and one of the 
uncertain inputs are available. A numerical 
integration scheme for problems with correlated 
Gaussian inputs is developed. It should be noted that 
for normal distributions the boundaries of the 
infinite integrals in (8) can be chosen as ]3,3[ σσ− . 

A nested computational scheme to the multivariate 
integration is proposed based on the fact that the S-
dimensional integration can be computed by an (S-
1)-dimensional integration. The gradients of the 
probabilities to the controls can be computed in the 
same way. To address the issue of feasibility, one 
can first define the objective function as 
maximization of the achievable probability. The 

problem is then solved for the value of maxα . For 
some practical processes, one may gain this value 
through simulation. For example, if the control is 
monotone with the constrained variable, then maxα  
corresponds to the confidence level with the lower 
or upper bound of this control variable. This 
approach can straightforwardly be extended to 
multiple single probabilistic constraints. For each 
constraint a probability computation will be made in 
the form of (8). In this case, different confidence 
levels can be selected for different output 
constraints. The extension of the approach to a joint 
chance constrained problem (NSCJ) is not a trivial 
task, since it may be difficult to find an uncertain 
variable which is monotone with the joint 
probability. It may be possible to find such a 
variable by carefully analyzing the relations between 
the uncertain inputs and constrained outputs. This 
can be done with process simulation by perturbing 
the uncertain variables.  
 
This approach has been extended to solve NDCS 
problems of nonlinear dynamic optimization under 
uncertainty (Arellano-Garcia et al., 2003). We 
consider dynamic problems with constrained outputs 
at selected time points and with constant uncertain 
inputs. The control policy u(t) for the entire 
operation time will be developed to optimize the 
objective function subject to single chance 
constraints of holding the point restrictions. This is a 
suitable formulation to optimize batch process 
operations under model parameter uncertainty. Two 
difficulties have to be overcome in solving such 
dynamic problems. First, since multiple time 
intervals are considered, the reverse projection of the 
output feasible region to a region of uncertain inputs 
is not trivial. The method of bisection through 
simulation seems to be efficient to address this 
problem. This is because it is a one-to-one 
projection. Second, since the controls have different 
impacts on the outputs in different time intervals, the 
gradients of the uncertain input to the controls in 
each interval have to be computed and passed to the 
time points from interval to interval in order to 
compute the gradients of the probability.  
 

6. OPEN-CLOSED FRAMEWORK 
 
A closed-loop control requires on-line measured 
values of controlled variables. However, many 
variables in the engineering practice can not be 
measured on-line (e.g. concentration, viscosity, 
density etc.). These variables represent the qualities 
of products and their control is desired. To address 
this problem, measurable variables (temperature, 
pressure) are chosen as controlled variables to 
indirectly control the product quality. This concept 
can be described with Fig. 5. y will be controlled at 
their setpoints SPy  by using controls u. Control of 

Cy  is desired, but due to the lack of on-line 

measurement it has to be open-loop. In these cases, 
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Cy  needs to be constrained but y is not constrained. 

To ensure the product quality, the present solution in 
the industrial practice is to choose an extremely 
conservative setpoint value. This leads to the fact 
that the product quality will unnecessarily be much 
higher than specified and, due to the greater flow 
rates of the controls, the operation costs will be 
much higher than necessary.  
 
Therefore, it is necessary to choose an optimal set of 
setpoints for the controllers. This can be gained by 
chance constrained optimization, i.e. the costs will 
be minimized and the constraints to Cy  satisfied 

with a desired confidence level. This leads to a new 
concept of control: to control open loop processes by 
closed-loop control. Unlike the above problem 
definitions where controls are decision variables, in 
the closed framework the setpoints of the 
measurable outputs should be defined as decision 
variables. Moreover, controller equations have to be 
included in the problem formulation. It is normally a 
complicated NDTS or NDTJ problem. In practice, 
many continuous processes have constant uncertain 
inputs, and their impact on the controlled variables y 
can easily be compensated for by the controllers. 
Then the problem is reduced to a NSCS or NSCJ 
problem which can be solved by the approach 
discussed in the last section. 
 

Process

ξ
yC

yControllers
uySP

-
 

 
Fig. 5: The open-closed framework 

 
The approach has been applied in a pilot distillation 
column to separate a methanol-water mixture with 
uncertain feed flow and composition as well as 
column pressure (Li et al. 2003). The operating 
energy is to be minimized subject to a rigorous 
model composed of component and energy balances, 
vapor-liquid equilibrium and tray hydraulics for 
each tray. The temperatures on the sensitive trays are 
selected as the controlled variables, while the bottom 
and top product purity are probabilistically 
constrained. The optimization results provide the 
profiles of the objective function value and the 
corresponding controller setpoints along with the 
confidence level to hold the product specification.  
 

7. CONCLUSIONS 
 

We have discussed the concepts, solution strategies 
and perspectives of chance constrained optimization 
and control. Since the uncertainty properties are 
taken into account, the solution of the problem is a 
decision a priori. A predefined probability to satisfy 
the constraints will be held under the uncertainty and 
thus the decision is robust. Moreover, the solution 
provides a comprehensive relationship between the 

performance criterion and the probability level of 
satisfying the constraints. Thus one can decide on 
proper actions which will result in a desired 
compromise between profitability and reliability. In 
this way, conservative or aggressive decisions, 
which may have been made so far, can be prevented. 
We have solved LDTJ, NSCS and NDCS problems 
and applied these approaches to several optimization 
and control applications. Development of more 
efficient methods to address high dimension NDTJ 
problems remains a challenge for future work.  
 

8. REFERENCES 
 
Arellano-Garcia, H., Martini, W., Wendt, M., Li, P., 

Wozny, G. (2003). Chance constrained batch 
distillation process optimization under uncertainty, 
FOCAPO2003 Proceedings, Florida, January 12-15, 
2003, 609. 

Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N. 
(2002). The explicit linear quadratic regulator for 
constrained systems. Automatica, 38, 3. 

Darlington J., Pantelides C.C., Rustem B., Tanyi, B.A. 
(1999). An algorithm for constrained nonlinear 
optimization under uncertainty. Automatica, 35, 217. 

Diwekar, U.M., Kalagnanam, J.R. (1997). Efficient 
sampling technique for optimization under 
uncertainty. AIChE J. 43, 440. 

Henrion, R., Li, P., Möller, A., Steinbach, M., Wendt, M., 
Wozny, G. (2001). Stochastic optimization for 
chemical processes under uncertainty, Online 
Optimization of Large Scale Systems, Grötschel et al. 
eds., Springer-Verlag, 455. 

Kall, P., Wallace, S.W. (1994). Stochastic programming. 
New York: Wiley.  

Kothare, M.V., Balakrishnan, V., Morari, M. (1996). 
Robust constrained model predictive control using 
linear matrix inequalities. Automatica, 32, 1361. 

Li, P., Wendt, M., Wozny, G. (2000). Robust model 
predictive control under chance constraints. Comput. 
& Chem. Eng., 24, 829. 

Li, P., Wendt, M., Arellano-Garcia, H., Wozny, G. 
(2002a). Optimal operation of distillation processes 
under uncertain inflows accumulated in a feed tank. 
AIChE Journal, 48, 1198. 

Li, P., Wendt, M., Wozny, G. (2002b). A probabilistically 
constrained model predictive controller, Automatica, 
38, 1171. 

Li, P., Wendt, M., Wozny, G. (2003). Optimal operations 
planning under uncertainty by using probabilistic 
programming. FOCAPO2003 Proceedings, Florida, 
January 12-15, 2003, 289. 

Maybeck, P.S. (1995). Stochastic models, estimation, and 
control. Arlington: Navtech.  

Morari, M., Zafiriou, E. (1989). Robust process control, 
Prentice Hall. 

Petkov, S.B., Maranas, C. (1997). Multiperiod planning 
and scheduling of multiproduct batch plants under 
demand uncertainty. Ind. Eng. Chem. Res., 36, 4864. 

Prékopa, A. (1995). Stochastic programming. Dordrecht: 
Kluwer. 

Schwarm, A.T., Nikolaou, M. (1999). Chance-constrained 
model predictive control, AIChE J., 45, 1743. 

Uryasev, S. (2000), Probabilistic constrained optimization: 
methodology and applications. Dordrecht: Kluwer. 

Wendt, M., Li, P., Wozny, G. (2002). Nonlinear chance 
constrained process optimization under uncertainty. 
Ind. Eng. Chem. Res., 41, 3621. 



ADAPTIVE EXTREMUM SEEKING CONTROL OF
NONISOTHERMAL CONTINUOUS STIRRED TANK

REACTORS 1

M. Guay ∗,2 D. Dochain ∗∗ M. Perrier ∗∗∗

∗ Department of Chemical Engineering, Queen’s University, Kingston,
Ontario, Canada K7L 3N6

∗∗ CESAME, Universié Catholique de Louvain, Belgium
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Abstract: In this paper, we present an adaptive extremum seeking control scheme for non-
isothermal continuous stirred tank reactors. We assume limited knowledge of the reaction
kinetics. An adaptive learning technique is introduced to construct an optimum seeking
algorithm that drives the system states to optimal equilibrium concentrations of the reaction
mixture. Lyapunov’s stability theorem is used in the design of the extremum seeking con-
troller structure and the development of the parameter learning laws. Under mild assumptions,
the resulting controller is an output-feedback controller. the performance of the technique is
demonstrated with the van de Vusse reaction.

Keywords: Extremum seeking, Lyapunov function, adaptive learning, persistence of
excitation

1. INTRODUCTION

The task of extremum seeking is to find the operating set-
points that maximize or minimize an objective function.
Since the early research work on extremum control in the
1920’s (Leblanc 1922), many successful applications of
extremum control approaches have been reported (e.g.,
(Vasu 1957), (Astrom and Wittenmark 1995), (Sternby
1980) and (Drkunov et al. 1995)). Recently, Krstic et.
al ((Krstic 2000), (Krstic and Deng 1998)) presented
several extremum control schemes and stability analysis
for extremum-seeking of linear unknown systems and a
class of general nonlinear systems ((Krstic 2000) and

1 Work support by the Natural Sciences and Engineering Council of
Canada
2 To whom correspondence should be addressed;
guaym@chee.queensu.ca

(Krstic and Deng 1998)). An alternative Lyapunov-based
adaptive extremum-seeking technique is developed in
(Guay and Zhang 2002) in which the function to be
optimized is not available for measurement.

In this study, we investigate an alternative extremum
seeking scheme for nonisothermal continuous stirred tank
reactors. Only limited knowledge of the reaction kinet-
ics are assumed. A Lyapunov-based adaptive learning
control technique is used to approximate the unknown
kinetics and to steer the system to its unknown extremum.
The technique ensures convergence of the system to an
adjustable neighbourhood of its unknown optimum that
depends on the approximation error. We also show that a
certain level of persistence of excitation (PE) condition is
necessary to guarantee the convergence of the extremum-
seeking mechanism. The paper is organized as follows.
Section 2 presents some notations and the problem for-



mulation. Section 3 presents the adaptive extremum seek-
ing controller and the stability and convergence of the
closed-loop extremum seeking system. A numerical sim-
ulation is shown in Section 4 followed by brief conclu-
sions in Section 5.

2. PROBLEM

We focus on a class of nonisothermal continuous stirred-
tank reactor models described by

ẋ =−Dx + KC(x, T ) + Uin (1)

Ṫ =−DT + λT C(x, T ) + u (2)

where x ∈ Sx ⊂ R
n denote the concentration of chem-

ical components in the reaction mixture taking value in
compact subset Sx of R

n. The temperature is denoted
by T , it takes values on a compact subset ST of R

+,
the positive reals. K ∈ Rn×r is the n × r matrix of
stoechiometric coefficients for each n components on r
chemical reactions. The vector C(x, T ) ∈ R

r summa-
rizes the temperature dependent chemical kinetics for r
chemical reactions of the reaction network under study.
D is the CSTR dilution rate. Uin ∈ Rn gives the rate
of addition of each n components. The vector λ ∈ R

r

provide the heats of reaction for each reaction. The con-
trol input u is assumed to be the rate of heating and
cooling. The control objective is to design a controller,
u, such that the function y = Hx, where H ∈ R

1×n,
achieves its maximum at steady-state. We consider the
extremum-seeking problem for the nonisothermal CSTR
with unknown chemical reaction kinetics, C(x, T ). It is
assumed that the stoechiometry of the reaction network
(summarized by the matrix K) and the heats of reaction,
λ, are known. The nonisothermal CSTR is initially as-
sumed to operate at constant flowrate.

The problem is solved by first expressing the equilibrium
concentrations in the reaction mixture as function of
temperature, T. We assume that there exists a vector-
valued function, π(T ), that solves the following equation

−Dπ(T ) + KC(π(T ), T ) + Uin = 0. (3)

The solution π(T ) is assumed to be continuous on ST .
More specifically, we require the following.

Assumption 2.1. The function Hπ(T ) is continuously
differentiable and it admits a maximum on ΨT =
{x ∈ Sx|x = π(T )}.

By Assumption 2.1, we consider only cases where
Hπ(T ) is a continuously differentiable convex function
of T .

We consider systems where the isothermal reaction kinet-
ics are stable. We state this requirement as follows.

Assumption 2.2. Consider the reaction kinetics dynamics
eq.(1). There exists a positive definite function V (x) ∈
C1 such that

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

and

V̇ ≤ −c3‖x − π(T )‖ + c4‖x‖‖π(T )‖

for positive nonzero constants c1, c2, c3 and c4.

Assumption 2.2 provides a minimum-phase property of
the reaction kinetics that guarantees converge of the com-
positions, x, to a neighbourhood of the equilibrium x =
π(T ).

The temperature dynamics eq.(2) subject to the equilib-
rium condition eq.(3) are written as

Ṫ =−DT + λT K+Dπ(T ) − λT K+Uin

+ u + λT (C(x, T ) − C(π(T ), T )) (4)

We assume that the following holds.

Assumption 2.3. ∀x ∈ Sx and ∀T ∈ ST , ∃ a positive
nonzero constant L1 such that

‖C(x, T ) − C(π(T ), T )‖ ≤ L1‖x − π(T )‖. (5)

The strategy developed in this paper consists in ap-
proximating the steady-state, or equilibrium, composi-
tion π(T ) using a linear approximation technique such
as neural networks. Radial basis function (RBF) neural
networks presented in (Sanner and Slotine 1992) and
(Seshagiri and Khalil 2000) shall be used to approximate
a continuous function φ : Rp → R as

φ(z) = W ∗T S(z) + µl(t) (6)

with NN approximation error µl(t), and basis function
vector

S(z) = [s1(z), s2(z), · · · , sl(z)]T

si(z) = exp

[−(z − ϕi)
T (z − ϕi)

σ2
i

]

, i = 1, 2, ..., l(7)

where ϕi is the center of the receptive field, and σi is the
width of the Gaussian function. The ideal weight W ∗ in
(6) is defined as



W ∗ := arg min
W∈Ωw

{

sup
z∈Ω

∣

∣

∣
WT S(z) − φ(z)

∣

∣

∣

}

(8)

where Ω is a compact subset of Rp and

Ωw =
{

W
∣

∣

∣
‖W‖ ≤ wm

}

with positive constant wm to be chosen at the de-
sign stage. Universal approximation results stated in
(Funahashi 1989) (Kosmatopoulos et al. 1995) indicate
that, if l is chosen sufficiently large, then W T S(z) can
approximate any continuous function to any desired ac-
curacy on a compact set.

We apply eq.(6) to develop an approximation of the
objective function y = Hπ(T ) given by

Hπ(T ) = W ∗

p
T S(T ) + µp(t) (9)

where W ∗

p and S are as defined in eqs.(7)-(8). Since it is
assumed that the reaction kinetics are unknown, we need
to approximate the term DλT K+π(T ). To allow for the
simultaneous approximation of the objective function and
the regulation of the system temperature, we breakdown
the heat of reaction term as follows,

λT K+π(T ) = λT K+HT W ∗

p
T S(T ) + W ∗

o
T S(T ) + µl(t).

We make the following assumption about the approxima-
tion error terms µp(t) and µl(t).

Assumption 2.4. The NN approximation errors satisfies
|µp(t)| ≤ µ̄p and |µl(t)| ≤ µ̄l with constants µ̄p > 0 and
µ̄l > 0 over the compact set Ωw × ST .

3. CONTROLLER DESIGN

In this section, we design a control strategy that tracts the
unknown optimum of y. We first develop the parameter
estimation algorithm for the unknown parameter vector
W ∗. Let Ŵ denote the estimate of the true parameter W ∗

and let T̂ the predictions of T . Using eqs.(9)-(10) and
eq.(4), the temperature dynamics are written as,

Ṫ =−DT + F (T )W ∗ + Dµl(t) − λT K+Uin + u

+ λ (C(x, T ) − C(π(T ), T )) (10)

where F (T ) = [DS(T )T , DλT K+HT S(T )T ] and
W ∗T = [W ∗

p
T ,W ∗

o
T ].

The predicted state T̂ is generated by

˙̂
T =−DT + F (T )Ŵ − λT K+Uin + u

+ kT (T − T̂ ) + c1(t)
˙̂

W (11)

with gain function kT > 0 and prediction error eT = T −
T̂ . The vector-valued time-varying function c1(t) is to be
assigned. It follows from (2)-(11) that

ėT = F (T )W̃ + Dµl(t) − kT eT

+ λT (C(x, T ) − C(π(T ), T )) − c1(t)
˙̂

W(12)

where W̃ = W ∗ − Ŵ .

The objective of the extremum-seeking control is sta-
bilize the closed-loop system around a point where the
gradient of y = Hπ(T ) with respect to T vanishes while
attenuating the effect of the modelling uncertainty µl(t).

Using the approximation eq.(9), the objective function
given by

y = Hπ(T ) = W ∗

p
T S(T ) + µp(t)

is approximated by

ye = ŴT
p S(T )

where Ŵp is an estimate of the optimal weight W ∗

p . The
estimated gradient of ye with respect to T is given by

z =
∂ye

∂T
= ŴT

p dS(T ) (13)

where dS(T ) = ∂S(T )
∂T

. The Hessian of ye with respect to
T is given by

∂2ye

∂T 2
= ŴT

p d2S(T ) = Γ2 (14)

where d2S(T ) = ∂2S(T )
∂T 2

Define

zs = ŴT
p dS(T ) − d(t) (15)

where d(t) ∈ C1 is an excitation signal to be assigned.
In the remainder, the dependence of the radial basis
functions S on the temperature is implied and we write
S, dS and d2S.

To address the controller design, we define the following
auxiliary signals

η1 = eT − c1(t)
T W̃ (16)

η2 = zs − c2(t)
T W̃ (17)

where c2(t) is a time-varying vector valued function to be
assigned in the design.

We propose the Lyapunov function candidate



V =
1

2
η2
1 +

1

2
η2
2 . (18)

The following dynamic controller is considered

ḋ(t) = c2(t)
T ˙̂
W − kzzs − kd|Γ2|d(t) − Γ2a(t) (19)

u = DT − F (T )Ŵ + λT K+Uin

− kdsgn(Γ2)d(t) − a(t) (20)

where kz > 0 and kd > 0 are gain function to be assigned
in the sequel, sgn is the sign function. The signal a(t)
acts as a secondary dither signal that is used to generate
information about the unknown nonlinearities associated
with the reaction kinetics. The dynamics of the time-
varying functions c1(t) and c2(t) are assigned as follows

ċ1(t)
T =−kT c1(t)

T + F (T ) (21)

ċ2(t)
T =−kzc2(t)

T + Γ2F (T ) (22)

Taking the time derivative of V and substitution of
eqs.(19)-(22) gives

V̇ =−kT η2
1 − kzη

2
2 + (η1 + Γ2η2)

×
[

Dµl(t) + λT (C(x, T ) − C(π(T ), T ))
]

(23)

From Assumption 2.2 it follows that

sup
x∈Sx,T∈ST

‖x − π(T )‖ = C1

exists and is finite. By Assumption 2.3, we get

V̇ ≤−kT η2
1 − kzη

2
2 + (η1 + Γ2η2)Dµl(t)

+ (|η1| + |Γ2|‖η2‖) ‖λ‖L1C1 (24)

Completing the squares and applying the gain functions

kT = kT0 +
k4

2
D2 +

k5

2
‖λ‖2, (25)

kz = kz0 +
k7

2
‖λ‖2Γ2

2, (26)

we obtain the following inequality

V̇ ≤−kT0η
2
1 − kz0η

2
2 +

(

1

2k4
+

1

2k5

)

µl(t)
2

+

(

1

2k6
+

1

2k7

)

L2
1C

2
1 (27)

where kT0 > 0, kz0 > 0, k4 > 0, k5 > 0, k6 > 0
and k7 > 0 are constants. Eq.(27) establishes that the
state, η, converges to a small neighborhood of the origin.
It remains to show that the original state variables, eT

and zs and the parameter estimation errors W̃ converge
to a small neighborhood of the origin. To this end, we de-
rive a persistency of excitation condition that guarantees

the convergence of the parameter estimates to the ideal
weights, W ∗.

Consider the following matrix,

Υ(t) =

[

c1(t)
T

c2(t)
T

]

By construction, this matrix solves the matrix differential
equation

Υ̇(t) = −K(t)Υ(t) + B(t) (28)

where

K(t) =

[

kT 0
0 kz

]

, B(t) =

[

F (T )
Γ2F (T )

]

.

A bound on the parameter estimates Ŵ can be ensured by
choosing the following parameter update law.

˙̂
W =



















γwΓ if ‖Ŵ‖ ≤ wm or
if‖Ŵ‖ = wm and ŴT Γ ≤ 0

γw

(

I − ŴŴT

ŴT Ŵ

)

Γ otherwise
(29)

where Γ = Υ(t)T e Eq.(29) is a projection algorithm
which ensures that ‖Ŵ‖ ≤ wm. The convergence of the
parameter estimation scheme is considered in the sequel.

By the property of the projection algorithm and for the
specific choice of basis function it is possible to show
that the norm of B(t) is bounded. Using the bound on
B(t), an explicit bound for the solution of eq.(28) can be
obtained as follows,

‖Υ(t)‖ ≤C2e
−λ2(t−t0) + C2

BM

λ2
. (30)

where C2 = ‖Υ(t0)‖ > 0 and λ2 > 0 is a positive
constant. Next, we want to show that the parameter es-
timation error W̃ converges to a neighborhood of the
origin.

Substituting for e = η + Υ(t)W̃ we obtain the perturbed
dynamics

˙̃W = −γwΥ(t)T Υ(t)W̃ − γwΥ(t)T η

+















0 if ‖Ŵ‖ ≤ wm or
if‖Ŵ‖ = wm and ŴT Υ(t)T e ≤ 0

γw

ŴŴT

ŴT Ŵ

(

Υ(t)T Υ(t)W̃ + Υ(t)T η
)

otherwise

(31)

To establish the convergence of the parameter estimation,
we make the following persistency of excitation assump-
tion.



Assumption 3.1. The solution of eq.(28) is such that there
exists positive constants T > 0 and kN > 0 such that

t+T
∫

t

Υ(τ)T Υ(τ)dτ ≥ kNIN (32)

where IN is the N-dimensional identity matrix.

By a standard adaptive control argument, the persistency
of excitation condition guarantees that the origin of the
differential equation

˙̃W = −γwΥ(t)T Υ(t)W̃ (33)

is an exponentially stable equilibrium. Since B(t) is a
bounded function, it is shown that the parameter estima-
tion error is guaranteed to decay exponentially as

‖W̃‖ ≤ α4e
−λ4(t−t0) +

|µ̄l| + L1C1√
2kmc3

(34)

Hence the parameter estimation error and the redefined
state variables, η, converge exponentially fast to an ad-
justable neighbourhood of the origin. By definition, con-
vergence of η and W̃ to a neighbourhood of the origin
implies that ‖e‖ ≤ ‖η‖ + ‖Υ(t)‖‖W̃‖. Substituting for
‖η‖, ‖Υ(t)‖ and W̃ , we obtain

‖e‖ ≤ α5e
−λ5(t−t0) + β5 (35)

where α5 > 0 and β5 > 0 are computable positive
constants. The convergence of the error vector, e, implies
that the convergence of the prediction error, eT and the
exponential convergence of the closed-loop system to an
adjustable neighbourhood of the unknown steady-state
optimum. We summarize the result of the above analysis
as follows.

Theorem 3.1. Consider the nonisothermal continuous stirred
tank reactor model eqs.(1)-(2) in closed-loop with the
state prediction eq.(11), the controller eq.(20), the dither
signal eq.(19) and the adaptive learning law eq.(29). As-
sume that the signal a(t) is such that

t+T
∫

t

Υ(τ)T Υ(τ)dτ ≥ kNIN (36)

for positive constants T > 0 and kN > 0 where Υ(t) is
the solution of eq.(28). Then

• the error dynamics eq.(12) converge exponentially
to a small neighbourhood of the origin

• the parameter estimation errors W̃ converge expo-
nentially to a small neighbourhood of the origin

Parameter Value
k10, E1 1.287 ×10

12, 9758.3

k20, E2 1.287 ×10
12, 9578.3

k30, E3 9.043 ×10
9, 8560.0

Table 4.1. Kinetic Parameters of the van de
Vusse reactor

• the tracking error from the unknown steady-state,
zs, converges exponentially to a small neighbour-
hood of the origin.

4. SIMULATION RESULTS

In this section, we demonstrate the effectiveness in simu-
lation of the proposed adaptive extremum-seeking con-
trol. We consider the standard van de Vusse chemical
reaction. The reaction scheme for this reactor is given by

A→B

2A→D

The reaction kinetics are summarized by

K =

[

−1 0 −1
1 −1 0

]

, C(x, T ) =







k10e
−(E1

T )x1

k20e
−(E2

T )x2

k30e
−(E3

T )x2
1







where x1 and x2 are the concentrations of components
A and B, respectively, T is the reactor temperature, k10,
k20 and k30 are the pre-exponential factors, E1, E2 and
E3 are the activation energies. The numerical values used
for simulation are listed in Table 4.1.

The dilution rate, D, is 14.19 hr−1. The latent heat of
reaction is given by λT = [−4.2, 11.0, − 41.85]/ρ/Cp

where ρ = 0.9342 and Cp = 3.01. The pseudo-inverse of
K is given by

K+ =





−0.333 0.333
−0.333 −0.667
−0.667 −0.333





The objective is to steer the system to the maximum
steady-state concentration of B, that is H = [0, 1].

We consider the initial conditions, x1(0) = 1, x2(0) = 0,
T (0) = 25. The centers of the linear approximation are
evenly spaced points on the interval [75,125], σ2

i = 10
for 1 ≤≤ l. The six(6) centers, ωi, are picked evenly at
spaced points on that interval. The dither signal was set
to

a(t) = exp(−0.1t)
6
∑

i=1

(sin((0.5i)t) + cos((0.5i)t) )



The simulation results are shown in Figures 1 to 3. The
concentration of component B is shown in Figure 1. Fig-
ure 2 shows the reactor temperature profile. The required
control action is given in Figure 3. The true optimum con-
centration of B is 1.09. As shown in Figure 1, the adaptive
controller recovers the unknown optimum is a relatively
short time. The control profile and the temperature profile
demonstrate that the control is physically realizable.

5. CONCLUSION

We have solved a class of extremum seeking control
problems for continuous stirred tank reactors represented
by an unknown growth kinetic model. It has been shown
that when the external dither signal is designed such that a
persistent of excitation condition is satisfied, the proposed
adaptive extremum seeking controller guarantees the ex-
ponential convergence to an adjustable neighborhood of
its optimum.
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1. INTRODUCTION

The impact that the design of a plant can have
on its ability to be satisfactorily controlled has
led to a significant research effort both in the de-
velopment of techniques for dynamic operability
assessment and in the incorporation of dynamic
operability criteria directly within plant design
calculations. Reviews of work in this area include
those of Walsh and Perkins [1996], van Schijndel
and Pistikopoulos [2000], and Pistikopoulos and
Sakizlis [2002].

Optimization-based approaches are particularly
effective both for the quantitative assessment of
dynamic operability, and for the design of plants
that are both economically optimal and dynami-
cally operable. This framework enables the plant-
inherent control performance limitations of non-
minimum phase characteristics, input constraints
and uncertainty [Morari, 1983] to be simultane-
ously accounted for, and offers considerable flex-
ibility in the problem formulation. Inclusion of
various controller types is possible, including no

control [Bahri et al., 1996], perfect control, and
controllers of specified type such as multi-loop PI
control [Mohideen et al., 1996; Bansal et al., 2002].
Swartz [1996] utilized Q–parametrization within
an optimization-based framework to provide a
controller-independent measure of operability for
alternative designs; its extension to plant design
formulations is described in Swartz et al. [2000].

In this paper, we outline the general optimization-
based approach to integrated plant and control
system design, focusing in particular on the use
of Q–parametrization and PI control as the reg-
ulatory control strategy. These strategies are im-
plemented on a comprehensive reactor case study,
and the results compared. We show that the con-
trol performance metric induced by the economic
objective function coupled with path constraints
explains much of the similarity in the results ob-
tained. This issue, along with other features of the
optimization-based formulation, are discussed.



2. PROBLEM FORMULATION

The optimal design formulation considered here is
as follows:

Maximize: objective function

subject to: • dynamic process model;

• operating constraints;

• and controller equations

for all disturbances within a

specified set

To provide: • an optimal design;

• an optimal operating point;

• and optimal controller tuning.

Each aspect of this formulation will now be briefly
described.

2.1 Objective function

The objectives in process design vary widely,
are multifaceted and are frequently conflicting.
A strategy that is widely adopted is to use an
economic–based objective function, as is typically
followed in steady-state design. This single mea-
sure is not likely to completely and accurately
encapsulate all features of interest, such as ease
of operation. These remaining features are incor-
porated as constraints.

The objective function in the case study that
follows is formulated in terms of a physical design
variable and steady-state values of certain oper-
ating variables. The optimal steady-state must be
such that the operation remains feasible over a
specified time horizon for all disturbances within
a specified set.

2.2 The dynamic process model equations

Continuous time processes with a differential and
algebraic equation (DAE) model description are
considered in this formulation. As a simultaneous
solution strategy is employed in this work, the dif-
ferential equation elements of the model are con-
verted to algebraic equations by using orthogonal
collocation on finite elements. The complete set of
algebraic, equality equations is then incorporated
into the problem as constraints.

Discrete time controllers are used in this study
and it is important to align their sampling time
with the finite element representation of the pro-
cess model. Many finite elements per sampling pe-
riod are used in the model discretization strategy
to capture the range of process dynamics that may
occur within one sampling interval.

2.3 Operating constraints

The process operating constraints define desirable
and feasible process behaviour. Collectively they
define the required dynamic operability and also
aide in the the solution of the optimization prob-
lem by limiting the search space.

2.4 Disturbances

Step–like disturbances will be used in this paper,
going from nominal to upper or lower bound val-
ues. Combinations of disturbances are handled by
using a set of parallel process models – one for
each disturbance combination. All these parallel
models are constrained to use the same physi-
cal design, operating point and controller tuning,
thereby increasing the problem’s size, but main-
taining the same degrees of freedom.

2.5 Controller equations

Two feedback controller types are considered here:
PI control and Q–parametrization.

2.5.1. PI control The velocity form of the digi-
tal PI controller is given by

∆uk = Kc

[

ek − ek−1 +
∆t

τI
ek

]

(1)

where: ∆uk = uk − uk−1

Two controller tuning variables, Kc and τI, are
introduced for every PI loop added to the process.

2.5.2. Q–parametrization is an established part
of control theory and provides a convenient mech-
anism for representing and parameterizing all sta-
ble closed-loop maps from a set of exogenous
inputs to regulated outputs in a linear feedback
system [Francis, 1987; Green and Limebeer, 1995].
The IMC controller [Garcia and Morari, 1982;
Morari and Zafiriou, 1989] shown in Figure 1
yields a parametrization of this type for stable
plants. The feedback system is stable ifQ is stable.

The significance of this representation in the
present operable design application is that by
including a finite dimensional approximation of
Q in the decision space, a design is obtained that
represents an optimum for linear control indepen-
dent of controller type or tuning.

A finite impulse representation is used for Q,
which for SISO systems takes the form,

Q(z−1) =
L
∑

i=0

qiz
−i L = (tf − t0) /∆t (2)

The controller decision variables are the coeffi-
cients qi, i = 0, 1, . . . , L.
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Fig. 1. The Q–parametrization structure used

Asymptotic tracking may be achieved by requiring
(

L
∑

i=0

qi

)

Gm = 1

where Gm is the model gain. In addition, this con-
dition yields an initial guess strategy for q(z−1) by
setting q0 = 1/Gm and qi = 0 for the remaining
coefficients.

In the case study that follows, the optimization is
carried out on the nonlinear dynamic model. The
linear model required for the Q–parametrization
is obtained by linearizing the nonlinear model
around the current iterate of the steady-state op-
erating variables. Upon convergence of the op-
timization, the Q–parametrization is consistent
with the optimal steady-state operating point.

2.6 Solution Strategy

Cervantes and Biegler [2001] review solution
methods for dynamic optimization problems and
divide them into two major classes, Direct and
Indirect methods. The Direct methods are widely
used and are again divided into two categories:
the sequential and simultaneous methods. In this
paper a simultaneous solution strategy is used and
since no integer variables are present, it results in
a nonlinear programming (NLP) problem.

3. CASE STUDY

The case study presented here considers the inte-
grated design and control of a stirred tank reactor
in which an irreversible, exothermic reaction takes
place. The study is based, in part, on the work of
Loeblein and Perkins [1998].

The objectives of this study are to:

• find a design that is dynamically operable
with respect to the given process constraints;

• determine the difference between designs us-
ing PI control and designs using a controller
described by Q–parametrization;

• analyze the design by investigating the as-
sumptions and constraints.

3.1 Process description

The process model is given by the equations in (3)
with parameter values in Table 1. Values in the

lower half of this table represent the values of the
variables at the steady–state economic optimum,
with the objective function given by Equation (3f)
and constraints in Equation (4).

The disturbances are taken to be step changes
from the nominal value, in parentheses, of the
following two variables to their upper and lower
bounds:

• 18 6 Cin(t) 6 22 kmol/m3 (20 kmol/m3)
• 290 6 Tin(t) 6 310 K (300 K)

dC

dt
=
Fin

V
(Cin − C) − k0e

−
E

RT C (3a)

dT

dt
=
Fin

V
(Tin − T ) +

(

−∆HR

ρCp

)

k0e
−

E

RT C

− Qcool

V
(3b)

Qcool = UA(T − Tmean) (3c)

Qcool = Fc(Tcool − Tcool,in) (3d)

Tmean = 0.5(Tcool + Tcool,in) (3e)

φecon = 10F in

(

Cin − C
)

− 0.01Qcool

− 0.1F in − 0.075V 0.7 (3f)

T (t) 6 350 K (4a)

0.05 6 Fin(t) 6 0.8 m3/s (4b)

Tcool(t) 6 330 K (4c)

Tcool(t) < T (t) (4d)

C(t) 6 0.1 kmol/m
3

(4e)

V 6 10 m3. (4f)

Table 1. Nomenclature and value for the
process model

Variable Nominal Units Lagrange

Name Values Multiplier

Cin 20 kmol/m3
−

Tin 300 K −

Tcool,in 300 K −

Fc 0.7 m3/s −

k0 2.7 × 108 s−1
−

E/R 6000 K −

UA 0.35 m3/s −

−∆HR

(ρCp)
5 m

3
.K/kmol −

C 0.1 kmol/m
3

4.6437

T 350 K 2.2603

Fin 0.2828 m
3
/s 0

V 5.808 m
3

0

Tcool 320 K 0

Tmean 310 K 0

Qcool 14 m
3
.K/s 0

φecon 55.86 $/hr −

3.2 Integrated design and control

The steady–state economic optimum presented in
Table 1 is not dynamically operable, even with
feedback control, since a disturbance could cause



Table 2. Steady–state values for open–
loop operation

Name Value Name Value

C 0.07146 kmol/m3 Qcool 11.65 m3.K/s

T 341.6 K Tmean 308.3 K

F in 0.2007 m
3
/s T cool 316.6 K

V 8.803 m
3 φecon 39.52 $/hr

C and/or T to violate their respective active
constraints. The process operating point must
be changed to achieve dynamic operability. An
analysis of the design degrees of freedom shows
that two independent variables may be selected
in order to fix the remaining variables. Of the
seven variables in the lower half of Table 1, one
is a design variable, V , while the remaining are
constrained operating variables, such as C, T , Fin

and Tcool.

3.2.1. No feedback control: An operating point
can be found for this particular example which
does not require feedback control. This operating
point is within the permanent feasible region,
so that no constraint violation occurs when the
given disturbances impact on the process either
separately or together. This operating point is
found by using the formulation described above
without controllers where the search variables are
then the tank volume and the steady state inlet
flowrate, F in.

The design summary is given in Table 2 which
shows that a sacrifice in the profit has to be
made in order to operate at this point – the price
to be paid to remain operable without feedback
control. This design has all variability appearing
in the process outputs, with the process inputs
remaining constant.

3.2.2. With feedback control: The sacrifice in
process profit can be reduced by implementing
feedback control, but the aim of this study is to
investigate how much improvement is to be had
by using either PI control or Q–parametrization.

The tank temperature with a 10 second measure-
ment delay is selected as the controlled variable;
the inlet flowrate is chosen to be the manipulated
variable in this study, as was done in the work
of Loeblein and Perkins [1998]. The search space
now consists of the process design and operating
variables from the lower half of Table 1 as well
as the controller tuning variables of the two con-
troller types.

Solving the design problem with PI control re-
sults in the operating point given in Table 3. An
improvement of $ 6.62 per hour is achieved com-
pared to the profit with open–loop operation. The
integral square error (ISE) values are computed
from Equation 5 with ψ = 0, the weighted ISE

(wISE) values have ψ = 30 000 for all possible
disturbance combinations, J , over a time horizon
with tf = 500 s.

wISE =

J
∑

j=1

L−1
∑

k=0

[

(

T − Tk,j

)2
+ ψ (∆Fin,k,j)

2
]

∆t

(5)

L = (tf − t0)/∆t J = 8 (6)

Table 3. Design with PI control

Name Value Name Value

C 0.06054 kmol/m3 Qcool 12.71 m3.K/s

T 345.4 K Tmean 309.1 K

F in 0.2341 m3/s T cool 318.2 K

V 10.00 m3 φecon 46.14 $/hr

Kc 0.01511 τI 28.50

ISE 1586 wISE 1885

Solving the same design problem using Q–para-
metrization yields an improvement of $ 7.26 per
hour when using 2 or more coefficients for q(z−1).
Table 4 shows the values at the nominal operating
point, which do not change after two coefficients
for Q(z−1). Only the integral squared error met-
rics are reduced by adding further coefficients, as
seen in Table 5.

Table 4. Design withQ–parametrization

Name Value Name Value

C 0.06034 kmol/m3 Qcool 12.80 m3.K/s

T 345.7 K Tmean 309.1 K

F in 0.2372 m3/s T cool 318.3 K

V 10.00 m3 φecon 46.78 $/hr

ISE 877 wISE 1571

Table 5. Varying the number of FIR
coefficients in Q(z−1)

Q(z−1
) φecon ($/hr) ISE wISE

0.009336 45.51 3236 3306

0.07148 − 0.06191z−1
46.78 1400 2184

q0 + . . . + q4z−1
46.78 878 1620

q0 + . . . + q9z−1 46.78 904 1584

q0 + . . . + q19z−1 46.78 877 1571

Figures 2 and 3 show trajectories for the de-
sign under PI control and for design with Q–
parametrization. These trajectories represent the
closed–loop response and manipulated variable
inputs respectively for the case when both dis-
turbances are stepped to their upper limits simul-
taneously at t = 20. These figures also serve to
illustrate the difference between using 2 and 20
coefficients for Q(z−1) and contrast to PI control.

3.3 Design Analysis

The above results indicate that there is not much
difference, in this case study, between using PI
control or the more advanced Q–parametrization
strategy to maintain dynamically operable pro-
cess behaviour while still remaining economically



Fig. 2. Controlled variable trajectories
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Fig. 3. Manipulated variable trajectories
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optimal. This occurs because the distance from
the constraints for both controller types is ap-
proximately the same. The integral squared error
is however less for the more advanced controller
and unless this has a significant economic benefit
the standard PI controller would be economically
acceptable.

Two aspects of the study require some further
analysis and discussion for completion. The first
aspect is the volume constraint that is active in
all of the above designs and the second is the
assumption of disturbance type and its dynamics.

3.3.1. The volume constraint: Table 6 shows
the result of using the formulation to relax the vol-
ume constraint in Equation 4. It is understandable
that a larger tank volume would attenuate the
initial deviation for the controlled variable when
the disturbance impacts the process. This allows
for T to be closer to the constraints of 350 K,
resulting in increased profit in φecon.

Note that if the volume constraint is completely
removed, the economically optimal tank volume
is calculated as 114 m3. Increasing the volume to
such a large value may be considered as down-
grading the process equipment, but it is necessary
to maintain an operable system at the calculated

Table 6. Effect of the volume constraint
on the process design and operation

Variable PI Control

V 6 10 V 6 20 V 6 80 V 6 ∞

T (K) 345.4 347.0 349.0 349.3

V (m3) 10.00 20.00 80.00 114.0

φecon ($/hr) 46.14 48.93 52.07 52.19

wISE 1885 1255 686 600

set point. A point to also note is that assumptions
of perfect mixing may not be valid at such high
tank residence times and the model may need to
be adjusted.

3.3.2. The disturbance dynamics: The PI con-
troller design of Table 3 was used, but the step
disturbance input was replaced with the following
disturbance model:

Cin(t) = 2 sin(0.01t) + 20 t ∈ [t0; tf]

Tin(t) = 10 sin(0.01t+ ϕ) + 300 ϕ ∈ [0; 2π]

Figure 4 shows the output of the two constrained
state variables at 10 equally spaced points in the
range of ϕ. This ball of process operation can
be seen to lie well within the constrained region,
indicating that the nominal operating point of the
current design could well be moved closer to the
upper temperature and concentration constraints
of 350 K and 0.1 kmol/m3 respectively.
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Fig. 4. The effect of sinusoidal disturbances on
process variability with PI control

In summary, the effect of varying the process
constraints can be understood and quantified us-
ing this formulation. It allows for more informed
economic and operability trade–off when process
parameters are to be investigated. Furthermore,
the assumption of step–like disturbance dynamics
was shown to lead to a conservative design and
improved profit could be had if the disturbance
dynamics were known more accurately.

4. CONCLUSIONS

An implementation of an integrated plant and
control system design formulation is described,



focusing in particular on the use of PI control
and a parametrization of all linear stabilizing con-
trollers. The integrated design strategy is illus-
trated through an application to a reactor case
study. Various scenarios are considered – steady-
state optimal design; dynamic optimization with-
out control; the inclusion of PI control; controller
parametrization; relaxation of the maximum vol-
ume constraint and the effect of disturbance dy-
namics.

The difference between PI control and the re-
sult using controller parametrization was found
to be slight. One reason for this is that the con-
trol performance metric induced by the objective
function and path constraints is the distance of
the steady-state operating point to active con-
straints, and PI control appears to be essentially
as good as the best linear controller in minimizing
the peak output variation in the direction of the
active constraints. While the difference between
the closed-loop performance as measured by the
integral square error is significant, this measure
is incorporated neither into the objective function
nor constraints. This illustrates the importance
of accurately capturing the desired design and
operational objectives.
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Abstract:  Robust model-predictive controllers use an estimate of model uncertainty in the 
on-line controller calculation and can be overly conservative for some uncertainty 
descriptions.  This paper discusses the various causes of conservative control with 
particular emphasis given to the concept of ‘closed-loop’ probabilistic predictions.  A 
multi-input-multi-output MPC is proposed in which an off-line, non-convex calculation is 
used to characterize the closed-loop uncertainty a priori.  This uncertainty information is 
incorporated into a convex, quadratic program resulting in a MPC formulation that can be 
efficiently solved on-line.  A distillation column case study demonstrates the benefits of 
the proposed robust MPC.  Copyright © 2003 IFAC 
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1. INTRODUCTION 
 

Model-predictive control (MPC) systems have found 
widespread success in the process industries.  The 
vast majority of these controllers rely upon nominal 
models, i.e. model uncertainty is not explicitly 
considered in the on-line controller calculation.  
Extensive simulation studies and tuning are often 
required to ensure that these nominal-MPC systems 
are appropriately robust (Qin and Badgwell, 1996).    
 
Since this situation is not desirable, techniques to 
create robust MPC systems have been investigated 
since the late 1980’s (see (Badgwell, 1997) for a 
review). Many of the initial robust MPC systems, 
such as min-max MPC (Zheng and Morari, 1993), 
achieved robust stability at the expense of dynamic 
performance.  There are several causes of overly 
conservative control in robust MPC: 
 

1) Min-max control strategy - Min-max 
controllers are inherently conservative, because 
they optimize the performance for only the 
worst-case plant/model mismatch (Bemporad 
and Morari, 1999). 

 
2) Time-varying descriptions of process 

uncertainty – Several robust MPC systems 
assume that the process is time-varying (Zheng 
and Morari, 1993).  However, in the process 
industries many of the processes can be 
assumed to be time-invariant within the 
prediction horizon.  A time-varying description 
will lead to control that is often too 

conservative if the actual process is time-
invariant. 

 
3) Open-loop predictions of future system 

behavior – An open-loop prediction is one in 
which the effect of future controller actions is 
not modeled.  An open-loop prediction often 
overestimates the uncertainty in future process 
outputs because it does not consider that future 
controller actions that will respond to 
plant/model mismatch.  This over-estimation of 
output uncertainty leads to conservative control 
when the system is near constraints (Mayne, 
2000; Kothare et al., 1996). 

 
The controller proposed in this paper addresses these 
issues by basing the MPC on a closed-loop, time-
invariant model of future system behavior.   The 
conservativeness inherent to min-max control is 
avoided by maintaining the nominal value of the 
process output near its setpoint while using 
probabilistic models to avoid output-constraint 
violations.  In addition, the proposed controller uses 
engineering knowledge of the structure of the process 
uncertainty to avoid overly conservative uncertainty 
descriptions.  As will be shown in case study, the 
resulting MPC is robust with respect to output-
constraints while avoiding excess conservativeness. 
 
In order to remain computationally feasible for on-
line use, the proposed controller is implemented in 
two stages.  In the first stage, the effect of 
plant/model mismatch on system behavior is 
captured in off-line studies involving non-convex 



 

optimizations.  In the second stage, an on-line, 
convex quadratic program uses the results calculated 
off-line to predict and to optimize the behavior of the 
uncertain, closed-loop system.  The proposed 
controller is intended for processes well modeled by 
multi-input-multi-output (MIMO) linear, time-
invariant (LTI) models with no input-constraints. 
 
The remainder of the paper is organized as follows.  
In Section 2, the rationale behind the various 
characteristics of the proposed controller will be 
discussed.  This section will outline the derivation of 
the proposed MPC.  Section 3 discusses a method for 
using Principal Component Analysis (PCA) to 
improve the uncertainty description of the closed-
loop system.  Finally, the performance of this new 
MPC system is explored via a distillation column 
case study in Section 4. 
 
 

2. ROBUST MPC UNDER CLOSED-LOOP 
UNCERTAINTY 

 
 
2.1 Open-loop vs. Closed-loop Prediction 
 
In unconstrained model-predictive control, the 
following optimization is solved at each controller 
execution (Garcia and Morshedi, 1986).   

 
( ) ( ){ }uQuyyWyy T

SP
T

SP
u

∆∆+−−
∆

min   (1) 

niNufyts i
�1)ˆ,(.. =∀∆=  (1a) 

 
Here n

spyy ℜ∈, , mu ℜ∈∆ , nxnW ℜ∈ and mxmQ ℜ∈ . 

The process setpoint is represented by ysp.  The 
matrices, W and Q, are positive definite matrices, 
typically with the tuning parameters, w and q, on 
their respective diagonals.  These tuning parameters 
are chosen to achieve the desired compromise 
between dynamic performance and robustness.  
Equation (1a) represents a deterministic model of the 
process with N̂  a vector of the predicted value of the 
process disturbances.  In this paper, a linear step-
weight model is used and the process is assumed to 
be open-loop stable or a pure integrator.     
 
The result of this optimization is a vector of input 
moves, ∆u, of which only the first is implemented.  
At the next controller execution, an updated estimate 
of the unmeasured disturbance, N̂ , is calculated, the 
output prediction is updated, and the procedure 
begins again. 
 
In an open-loop prediction of uncertainty, the entire 
vector of ∆u is assumed to be known in the 
prediction of future output uncertainty.  This is not 
an accurate description of a closed-loop, probabilistic 
system.  Through the controller, uncertainty in the 
future outputs leads to uncertainty in future inputs as 
the future control actions react to plant/model 
mismatch.  Because open-loop predictions neglect 
this characteristic of a closed-loop system, such 

predictions often overestimate the uncertainty in 
future process outputs and lead to robust MPC that 
are overly conservative. 
 
In order to perform the required closed-loop 
prediction, a robust MPC needs a model of the 
process and a model of the future controller actions.  
In general, the structure of the future control law 
need not be specified.  In this case, the robust MPC 
problem becomes a special case of the dynamic 
programming problem.  (See Rawlings (1994) for a 
complete discussion of the relationship between 
robust MPC and dynamic programming.) 
 
In this paper, the computational issues associated 
with dynamic programming problem are avoided by 
assuming that the future control actions are well 
modeled by the MPC shown in equation (1). 
 
 
2.2 Overview of Control Strategy 
 
Figure 1 illustrates the general control scheme 
proposed in this paper.   
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Conceptual Design for Robust MPC 
 
The controller block depicts the MPC using a closed-
loop model of the system to predict the future 
expected value and upper and lower uncertainty 
bounds for the inputs, u, and outputs, y.  These values 
are determined by an internal reference trajectory, r.  
The robust MPC does not directly calculate a vector 
of input moves as is done in nominal MPC.  Instead, 
it calculates the vector, r.  This internal reference 
trajectory is analogous to a setpoint and by changing 
this value the robust MPC predicts how a 
probabilistic closed-loop system will behave in 
response to a setpoint move. The internal reference 
trajectory is not a true system setpoint, but represents 
the desired movement in the future closed-loop 
system.  The term internal refers to the fact that it is a 
variable used internally by the controller. 
 
The proposed MPC will be implemented as an 
optimization of the following form. 
 

( ) ( ){ }uQuyyWyy T
SP

T
SP

uuyyuyr

∆∆+−−
∆
min

,,,,,,

 
(2) 

[ ] [ ] rAurAyts nominal
cl

unominal

cl
y =∆= ,..  (2a) 

r y 

u �����
���
	��


Robust MPC 

Plant u y ysp 
+ 
    - 

      +  
 
- 

Nominal 
Model 



 

( ) ( ) ∆∈∀≤≥ δδδ ,, rAyrAy cl
y

cl
y  (2b) 

( ) ( ) ∆∈∀≤≥ δδδ ,, rAurAu cl
u

cl
u  (2c) 

maxmin ,, yyyyy ≤≤  (2d) 

∆∈δ  (2e) 

 
Here Ay

cl(δ) and Au
 cl(δ) represent the closed-loop 

models of the system that relate r to y and u.  These 
matrices are functions of the model-mismatch, δ.  
The nominal inputs and outputs as predicted by a 
closed-loop model with no plant-model mismatch 
(i.e. δ=0) are calculated in equation (2a).  The upper 
and lower uncertainty bounds of y and u are 
represented by the vectors yy, and by uu , , 

respectively.  Equations (2b) and (2c) force these 
values to represent the uncertainty bounds for the 
worst-case mismatch, assuming δ∈∆ where ∆ 
represents the uncertainty set of δ.  Section 3 will 
discuss how this uncertainty set is defined.  Equation 
(2d) ensures that the nominal and uncertainty bounds 
for y do not violate the desired output constraints.  
The proposed controller assumes no input-
constraints. 
 
The rest of this section will discuss how the various 
aspects of this control strategy are implemented. 
 
 
2.3 Closed-loop Predictions 
 
The MPC shown in equation (1) is a natural choice 
for the model of future controller actions.  The 
Karush-Kuhn-Tucker (KKT) conditions for this 
unconstrained MPC are linear and can be written as: 
 

( ) ( ) 0ˆ =−−∆+ NyWAuQAWA SP
TTTTT  (3) 

 
Here the matrix, A, represents a step-weight model of 
the plant.  The linear process model is given by: 
 

NuAy ˆ+∆=  (4) 

 
To create a closed-loop model, equations (3) and (4) 
are written for each time step within the prediction 
horizon.  This linear set of equations can be 
combined to derive the closed-loop models, Ay

cl and 
Au

cl, shown in equations (2a) through (2c). 
 
Conceptually, these closed-loop models could be 
used to determine the predicted uncertainty limits of 
the future process inputs and outputs (equation (2b) 
and (2c)).  For example, the upper bound in the 
uncertainty of y for a given r vector could be 
calculated as: 
 

( )

∆∈

=∀=

δ

δ
δ

..

..11max
ts

nkrAy cl
ykk  (5) 

 
Here 1k is a matrix that selects the k th element in the 
vector .y  This maximization would find the amount 
of model-mismatch, δ, that results in the largest 
possible y at a given time period, k, in the future. 
 
If this optimization could be calculated on-line, the 
robust MPC could use the calculated uncertainty 
limit to determine how best to maintain the system at 
set point while avoiding output-constraints.  
However, the situation is complicated by the fact that 
Ay

cl(δ) and Au
cl(δ) are highly non-linear functions of 

the amount of plant/model mismatch, δ.  Therefore, 
the optimization shown in equation (5) is non-convex 
and impractical for on-line implementation.  As will 
be described in the next section, this situation can be 
avoided if this non-convex minimization is 
performed off-line a priori.   
 
 
2.4 Off-line Optimization 
 
The goal of the non-convex optimization is to 
determine the relationship between the predicted r 
and the closed-loop uncertainty limits in y and u.  
These relationships must be summarized so that an 
on-line, convex optimization can make decisions 
based on this information.   
 
Given an estimate of the model uncertainty, the off-
line optimization solves the non-convex optimization 
problems similar to the one shown in equation (5) 
and uses the resulting δ to calculate the ‘worst-case’ 
Ay

cl(δ) and Au
cl(δ).  Since local optima may be found, 

several starting points must be used and any results 
must be checked against Monte-Carlo simulations.   
 
For a MIMO system, the effect of a given δ on future 
system uncertainty is a function of the direction of r 
and the directionality of the process.  Therefore, the 
‘worst-case’ Ay

cl(δ) and Au
cl(δ) can be different for 

different r-directions.  Since an infinite number of r- 
directions exist for any MIMO system, the proposed 
method uses a representative sampling to estimate 
this set.  For example, for the 2x2 system considered 
in this paper, 60-different r-directions were 
considered, each six ‘degrees’ from another, if one 
visualizes the set of all possible r-directions as a unit-
circle in rl/r2 space. 
 
2.5 On-Line Optimization 
 
Naturally, the desired direction of the internal 
reference trajectory, r, is not known beforehand.  
Therefore, the on-line optimization must be able to 
determine the ‘worst-case’ Ay

cl(δ) and Au
cl(δ) for any 

possible r-direction.   
 
The information given in the sampled Ay

cl(δ) and 
Au

cl(δ) matrices can be included in the constraints of 



 

a convex optimization using the following technique.  
Assuming a single step change in r at time k=0, the 
minimization shown in equation (6) can be used to 
find the largest uncertainty bound for y at given time, 
regardless of the direction of r. 
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Here Ay

cl(δ)m relates r to the largest uncertainty 
bound of y for a given r-direction.  The constraints 
given in (6a) account for m different directions of r.  
Each direction could result in a different Ay

cl(δ)m.  
For a system with 60 different sampled r-directions, 
m could be as large as 60.  However, this is usually 
not the case, because the Ay

cl(δ)m are identical for 
many r-directions.  For example, it is very unlikely 
that the worst-case plant/model mismatch will be 
different for a change in r of [0 1] and a change of 
[0.03 0.99].  In case study discussed in Section 4, 
fewer than 20 different Ay

cl(δ)m captured the 
uncertainty limits for all of the tested r-directions. 
 
Within the prediction horizon, the desired direction 
of r may change several times.  Equation (6) can be 
used to calculate the upper uncertainty bound on y at 
a given time for a single change in r.  In order to 
calculate the uncertainty bounds for y for a sequence 
of r-moves, this type of equation must be repeated 
for each change in the direction of r and the resulting 
partial uncertainty bounds must be added to give the 
actual uncertainty bounds.  For a system with an 
input and output horizon of two, these equations 
would have the following form: 
 

 ( ) ( )

( ) ( )

( ) ( )

( ) ( )

10

1

11

0

10

1

1

0

0

yyy

rAy

rAy

rAy

rAy

m
cl

y

cl
y

m
cl

y

cl
y

+≥

≥

≥

≥

≥

δ

δ

δ

δ

�

�

 
(7) 

 
Here r(0) represents the change in r at time, t=0, 
and 0y is a vector representing the upper uncertainty 
bound for y due to the change in r(0).  The true upper 
limit on the uncertainty of y must be greater than the 
sum of 0y and 1y as is shown in the final inequality 
constraint. 
 

With these linear inequalities, equation (2) can be 
rewritten as a convex quadratic program. 
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(8) 

s.t. Equation (7) and similar equations for 
uuy  and,,  (8a) 

[ ] [ ] rAurAy nominal
cl

unominal

cl
y =∆= ,  (8b) 

maxmin ,, yyyyy ≤≤  (8c) 

 
All output constraints are ‘softened’ to avoid 
feasibility and stability issues (Zafiriou, 1990).  This 
quadratic program is solved at each controller 
execution.  The first input move is then applied in a 
rolling-horizon fashion. 
 
Implementation issues:  This optimization is convex, 
but the size of the problem can create some 
computational issues.  For the 2x2 case study 
discussed in Section 4, the problem has 1134 
decision variables and 3317 inequality constraints.   
 
The size of this QP poses a problem for active set 
method such as the quadprog program found in 
Matlab (Coleman et al., 1999).  Fortunately, recent 
progress in the field of interior-point (IP) methods 
provides a solution.  While the theoretical worst-case 
number of iterations for IP methods is bounded by 
O(n3) (Lobo et al., 1998), these methods have been 
shown to be much more efficient in practice 
(Andersen and Ye, 1999).  Using Andersen’s 
MOSEK interior-point algorithm, the average 
solution time for our quadratic program averaged 
only 1.35 seconds on a Pentium IV, 1.8 GHz. 
 
As the number of inputs, outputs, and length of the 
prediction horizon grows, the set of equations 
represented by constraint (8a) will reach a point 
where even interior-point methods will require 
excessive computing time.  Future work will explore 
how the dimensionality of this problem can be 
reduced. 
 
 

3. CLOSED-LOOP UNCERTIANTY 
DESCRIPTION 

 
The performance of the robust MPC described above 
depends strongly on the uncertainty description used 
by the controller.  A poor description of the system 
uncertainty may lead to conservative control. 
 
For example, consider a typical non-linear, binary 
distillation column from Marlin (2000).  This process 
can be modeled by the following linear system, 
where XD and XB represent the distillate and bottoms 
compositions of the light key.  These variables are 



 

controlled by the reflux rate, FR, and the amount 
vaporized in the reboiler, FV. 
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Assume that this linear model is used to represent a 
non-linear distillation column in which the feed rate, 
Ff, is unmeasured and not constant.  Changes in the 
feed rate will affect the model parameters and 
uncertainty in the feed rate leads to uncertainty in 
these parameters.  The feed rate has a nominal value 
of 10 kmol/min and varies very slowly (with respect 
to the closed-loop settling time) between 8.5 and 11 
kmol/min.  Table 1 summarizes the coefficients of 
the linear model fit at various feed rates with a 
sampling rate of 2 min-1. 
 
Table 1: Effect of Feed Rate Changes on Model 
 

Ff 
(kmol/min) 

Kp 
(%/kmol min-1) 

τ  
(min) 

θ  
(min) 

8.5 ���	
�
−

−

15.014.0
079.0088.0  �����

2.216.21

0.228.20  ������
34.210.3
76.360.2  

10.0 ������
−

−

13.012.0
067.0075.0  �� !"#

0.183.18

7.187.17  ������
33.297.2
49.350.2  

11.5 ������
−

−

11.010.0
058.0065.0  �� !"#

6.159.15

1.163.15  ������
32.289.2
33.342.2  

13.0 $%&'()
−

−

10.009.0
051.0057.0

 �� !"#
7.130.14

2.145.13  *+,-./
31.283.2
18.335.2  

 
One possible uncertainty description for this process 
is a set of equation such as: 
 

34.231.2,...,60.235.2

0.222.14,...,8.205.13

10.015.0,...,088.0057.0

2211

2211

2211

≤≤≤≤

≤≤≤≤

−≤≤−≤≤

θθ

ττ

KpKp
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However, these box-type uncertainty descriptions are 
inappropriate.  No linear controller will be able to 
stabilize all of the plants described by equations (10) 
because the systems do not meet the integral 
stabilizability test of Grosdidier et al. (1985).   
 
Even if integral stabilizability is not an issue for a 
given system, the box-type description is 
unsatisfactory because it ignores the steady-state and 
dynamic relationships set by the physics of the 
system.  For example, a process uncertainty that 
affects the process dead-time often also affects the 
process time-constant and gain.  Likewise, there 
usually exists a relationship between steady-state 
gains of a MIMO system. 
 
 
3.1 PCA Uncertainty Description 
 
These structured uncertainty relationships can be 
captured using the Principal Component Analysis 
(PCA) technique.  PCA is a multivariate statistical 
method that summarizes the variation within a data 
set, X, in the fewest possible dimensions, d (Wold, 

1987).  A score vector, t, a loading vector, p, and a 
residual matrix, ε, summarize the data as shown in 
equation (11), where Xmean is the column-wise mean 
of the data. 
 

ε++= 0
−

d

imean tpXX
1

'  (11) 

 
If the information in Table 1 is summarized using 
PCA where each row of the data matrix represents a 
different flow rate and each column one of the 12 
model coefficients, the majority of the variability can 
be summarized using a single t-variable.  This 
illustrates the fact that there is one main source of 
variability within the data set (i.e. the column feed 
rate.)  Using this PCA description, the uncertainty in 
the process can be summarized as: 
 

X = tp’+Xmean,        1313 ≤≤− t  (12) 

 
Here p is a 12x1 constant loading vector and the 
inequality represents a component-wise 95%-
confidence interval for t.  The uncertainty in this 
example is summarized in a single score space, but 
higher dimensional descriptions are possible.  In such 
cases, the inequality constraint shown in equation 
(12) expands to a multi-dimensional ellipsoid. 
 
This PCA description of uncertainty has several 
advantages.  The dimensionality of the non-convex 
optimization discussed in section 2.4 is greatly 
reduced.  In addition, the loading and score vectors 
can be helpful in deciding which sources of 
uncertainty are important and which can be 
eliminated from the model. 
 
 

4. CASE STUDY 
 
The following case study illustrates the ability of the 
proposed MPC to robustly avoid output-constraint 
violations while maintaining acceptable dynamic 
performance.  The distillation column discussed 
above is to be controlled by the proposed robust 
MPC found in equations (8).  The case studies 
assume that uncertainty is caused by plant/model 
mismatch only and no disturbances are affecting the 
plant.  This assumption can be relaxed by applying 
the techniques discussed in Warren (2003).  
 
Figure 2 below shows the performance of the 
unconstrained system responding to a setpoint 
change of [1 0] mole percent at time, t=1, from an 
initial condition of [98 2].   The nominal plant model 
is given by Ff of 10 kmol/min in Table 1 and the 
MPC shown in equation (1) is used in the closed-
loop model with the following tuning parameters; 
n=20, m=5, w=[1 1], q=[0.02 0.02].  
 
The thick solid lines in Figure 2 represent the 
uncertainty limits of the inputs and outputs predicted 
from time, t=0, using equations similar to equation 
(7).  The dashed lines in Figure 1 represent the 
closed-loop response of the distillation column at 



 

feed rates of 7, 8, 9, 11, 12, 13, and 14 kmol/min.  
Even though some of these feed flow rates fall 
outside of the original range for which the robust 
MPC was designed, the predicted uncertainty bounds 
are quite accurate.  Notice that the closed-loop 
uncertainty predictions accurately predict that the 
uncertainty in y will approach zero due to the integral 
action of the controller and the fact that the closed-
loop system is stable.   
 

 
Fig. 2.  Closed-Loop Uncertainty Prediction  
 
The proposed robust MPC is able to use these 
uncertainty predictions to avoid output-constraints.  
For example, consider the case where the bottoms 
composition must remain below 2.5 mole percent 
light key.  Figure 3 compares the performance of 
proposed robust MPC to that of a nominal MPC with 
softened output-constraints.   In this example, the 
process model used by the controllers is given by Ff 
of 10 kmol/min in Table 1 while the true process is 
operating at Ff  of 8.5 kmol/min.  The robust system 
successfully avoids the output constraint without 
becoming overly conservative. 
 

 
Fig 3. Comparison of Robust and Nominal MPC 
 
 

5. CONCLUSIONS 
 
This paper has discussed the importance of using an 
accurate closed-loop description of system 
uncertainty in robust MPC.  A robust MPC system 
based on a closed-loop system description has been 
proposed and shown to outperform nominal MPC 
systems when plant/model mismatch is present. 
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Abstract: An adaptive extremum seeking controller is presented for the optimiza-
tion of the production rate of a continuous stirred tank bioreactor. This controller
is saturated outside a domain of interest and a reduced-order high-gain observer
is designed to estimate the substrate concentration of the bioreactor. Semiglobal
asymptotic stability is proved and recovery of the performance achieved under
state feedback is shown when the speed of the high gain observer is sufficiently
high. Simulation experiment is given to illustrate the proposed approach.
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1. INTRODUCTION

Adaptive extremum seeking control of nonlin-
ear systems has received the attention of many
researchers. The potential benefits of extremum
seeking techniques in the maximization of the pro-
duction rate in a continuous stirred tank bioreac-
tor has been demonstrated by (Wang et al., 1999)
and (Zhang et al., 2001). Practical implementa-
tion of the controller scheme designed in (Zhang
et al., 2001) requires the measurement of sub-
strate concentration and production rate. How-
ever, knowledge of the substrate concentration is
not always possible. The extension of these results
to the output feedback requires the construction
of an observer to estimate the unmeasured state
of the system from its output.
Owing to nonlinearity (Lee and Khalil, 1997), a
separation principle cannot be applied in the de-
sign of output feedback control as in linear control
theory, but a certain degree of separation can be
achieved by designing high-gain observers. High-

1
Supported by Ontario Graduate Scholarships (OGS).

gain observers, however, exhibit peaking in their
transient behavior (Esfandiari and Khalil, 1992).
Fortunately, this peaking phenomenon in certain
classes of systems.
In this work, an adaptive extremum-seeking out-
put feedback controller is designed by the applica-
tion of a similar separation principle. The design
is achieved in two steps. First, we saturate the
controller scheme and the right hand side of the
adaptation rules designed in (Zhang et al., 2001)
for the continuous stirred tank bioreactor. Second,
we use an high-gain observer to estimate the sub-
strate concentration, based on the measurement of
the production rate. Using Lyapunov theory, we
prove that the output feedback controller recovers
the performance achieved under state feedback
when the gain of the observer is large enough. The
rest of the paper is organized as follows. Section
2 presents some notation and the problem formu-
lation for the state feedback case. In Section 3,
the reduced order high gain observer is designed.
The performance recovery is shown in Section 4,



followed by simulation results in Section 5 and a
brief conclusion in Section 6.

2. STATE FEEDBACK CONTROL

We consider the following microbial growth mod-
els for a continuous stirred tank bioreactor (Zhang
et al., 2001)

ẏ =−uy +
θµs

2y − θky
2 + (s0 − s)uy

s(1 + θss)
(1)

ṡ=−θky + u(s0 − s) (2)

where the states s > 0 and y > 0 denote the
substrate concentration, and the production rate
of the reaction product, respectively. The input
of the system is the dilution rate u ≥ 0, and s0
denotes the concentration of the substrate in the
feed.
The constant parameter θk is known, while the
constant parameters θs, θµ are unknown. How-
ever, the vector θ = [θs θµ]T belongs to Ω, a

known compact convex subset of R2. Let Ω̂ be
a convex subset of R2 which contains Ω in its
interior.
The adaptive extremum seeking controller and the
adaptation rules for the parameters of the system
are designed in (Zhang et al., 2001) for the state
feedback case. The state feedback controller is

u=
1

(s0 − s)
(θky − a(t) + d− kzzs) (3)

where a(t) and zs corresponds to the dither signal
(to be designed later) and the error in the set-
point s∗, respectively

zs = s− s∗ + d, s∗ =
1

θ̂s

(

√

1 + s0θ̂s − 1
)

(4)

Let θ̂ denote the estimate of the true parameter
θ and let ŷ be the prediction of the state y by
using the estimated parameters θ̂s and θ̂µ. The
predicted state ŷ and d are generated by

˙̂y =−uy +
θ̂µs

2y − θky
2 + (s0 − s)uy

s(1 + θ̂ss)
+ kyey(5)

ḋ=− ˙̂
θsβ(θ̂s) + a(t) − d (6)

where ey = y − ŷ.
We suppose Ωs and Ωµ are convex hypercubes,
(see (Khalil, 1996)) Omegai = {θ | ai ≤ θi ≤ bi}
for i = s, µ. Let

Ωδ−i = {θ | ai − δi ≤ θi ≤ bi + δi} for i = s µ

where δs > 0 and δµ > 0 are chosen such that

Ωδ−s ⊂ Ω̂s and Ωδ−µ ⊂ Ω̂µ.

The parameter adaptation rule for θ̂i with i =
s, µ, is taken as

˙̂
θi =



































Γi if ai ≤ θ̂i ≤ bi or

if θ̂i > bi and Γi ≤ 0 or

if θ̂i < ai and Γi ≥ 0

(1 − ci(θ̂i))Γi if θ̂i > bi and Γi > 0 or

if θ̂i < ai and Γi < 0

(7)

for θ̂i > bi and Γi > 0

ci(θ̂i) =
( θ̂i − bi

δi

)

sign(Γi) (8)

and for θ̂i < ai and Γi < 0

ci(θ̂i) =
( θ̂i − ai

δi

)

sign(Γi) (9)

Equation (7) is a smooth projection algorithm
(Pomet and Praly, 1992).

The nominal value for
˙̂
θi is Γi where

Γs =
γsφsyey

(1 + θ̂ss)
, Γµ =

γµφµyey

(1 + θ̂ss)
(10)

with φs = −u(s0 − s)− θ̂µs
2 + θky and φµ = (1 +

θ̂ss)s. It can be seen from equations (8) and (9)

that 0 ≤ ci(θ̂i) ≤ 1 and ci(θ̂i) = 0 for
˙̂
θi = Γi.

Equations (1)-(10) represent the system under

state feedback. Let the vector ψ = [s y d ŷ θ̂s θ̂µ]T

represent the trajectories of the closed loop sys-
tem. Then considering χ = [zs θ̃s θ̃µ ey]T , we
have

χ̇=











żs

˙̃
θs

˙̃
θµ

ėy











=











ṡ− ṡ∗ + ḋ

− ˙̂
θs

− ˙̂
θµ

ẏ − ˙̂y











=









f1(ψ)
f2(ψ)
f3(ψ)
f4(ψ)









(11)

For simplicity, we can define

fr(ψ) = [f1(ψ) f2(ψ) f3(ψ) f4(ψ)]T

and express equation (11) as

χ̇= fr(ψ) (12)

For the system (12) we consider the following
Lyapunov function

V (χ, t) =
1

2

[

z2
s +

θ̃2s
γs

+
θ̃2µ
γµ

+ (1 + θss)e
2
y

]

(13)

The rate of change of the Lyapunov function (13)
is

V̇ =
∂V

∂χ
fr(ψ) +

∂V

∂s
ṡ ≤ −U3(χ) (14)

where U3(χ) = kzz
2
s + ky0e

2
y.



Remark 1. The functions f1(ψ), f2(ψ), f3(ψ), and
f4(ψ) are locally Lipschitz in their arguments over
the domain of interest.

Remark 2. Assuming that the persistency of exci-
tation condition developed in (Zhang et al., 2001)
is met, the origin (z = 0, θ̃s = 0, θ̃µ = 0, ey = 0)
is an equilibrium point of the closed loop system.
The asymptotic stability of the origin for the state
feedback system (12) was proved in (Zhang et

al., 2001).

3. OUTPUT FEEDBACK CONTROL

We consider the case where only y is measurable,
the substrate concentration s is not available for
feedback control. By the locally observability con-
dition (Marino and Tomei, 1995), the system is
observable for y > 0. To implement the state
feedback adaptive controller (3), we need to es-
timate the unmeasured state s. The estimation
of the states y and s are given by ŷobs and ŝobs.
We use the reduced-order high-gain observer x̂ =
[ŷobs ŝobs]

T

˙̂yobs =−uy +
θ̂µŝ

2
obsy − θky

2 + (s0 − ŝobs)uy

ŝobs(1 + θ̂sŝobs)

+
αy

ε
ỹ (15)

˙̂sobs =−θky + u(s0 − ŝobs) +
αs

ε2
ỹ (16)

where ỹ, s̃ are defined as ỹ = y− ŷobs and s̃ = s−
ŝobs and αs, αy, ε are positive constants.
For the output feedback, the dynamics for the pro-
duction rate is represented by (1) and the dynam-
ics of the substrate concentration is represented by
(2). The controller for the output feedback system
is

u=
1

(s0 − ŝobs)
(θky − a(t) + d− kzzs) (17)

In order to avoid the singularity that may hap-
pen in the controller when the estimation of the
substrate concentration increases, we bound the
state ŝobs below and above by the positive bounds
ŝobs−min and 0.99s0 respectively.
To overcome the peaking phenomenon associated
with the high gain observer, we saturate the con-
troller and the rate of change of ŷ, d, θ̂s, and θ̂µ

outside the domain of interest. The rate of change
of ŷ and d are

ḋ=− ˙̂
θsβ(θ̂s) + a(t) − d (18)

˙̂y =−uy +
θ̂µŝ

2
obsy − θky

2 + (s0 − ŝobs)uy

ŝobs(1 + θ̂sŝobs)

+kyey (19)

The parameter adaptation rule for the output
feedback case is the same as that for the state
feedback case. However, the nominal updating

laws for
˙̂
θs and

˙̂
θµ are

Γs =
γsφsyey

(1 + θ̂sŝobs)
,Γµ =

γµφµyey

(1 + θ̂µŝobs)
(20)

with

φs =−u(s0 − ŝobs) − θ̂µŝ
2
obs + θky (21)

φµ = (1 + θ̂sŝobs)ŝobs (22)

The error dynamics for the observer are

˙̃e=

[

˙̃y
˙̃s

]

=





−αy

ε
F1

−αs

ε2
−u





[

ỹ
s̃

]

+

[

1
0

]

G (23)

where F1 = y

(1+θss)(1+θ̂sŝobs)
θµ and G is de-

fined as G = y

(1+θss)(1+θ̂sŝobs)
[θµθ̂sŝobss+ θ̃µŝobs −

θ̂µθsŝobss] + −θky2+(s0−s)uy

s(1+θss) − −θky2+(s0−ŝobs)uy

ŝobs(1+θ̂sŝobs)
.

We scale the observer dynamics as ỹ = ξ1 and
s̃ = ξ2

ε
. Replacing equation (23) by its scaled

equivalent, we get

εξ̇ =A(t)ξ + εBG (24)

where ξ = [ξ1 ξ2]
T , A(t) =

[

−αy F1

−αs −uε

]

and

B = [1 0]T .

4. PERFORMANCE RECOVERY

In this section, we follow the procedure used
in (Atassi and Khalil, 1999) and (Khalil, 1996)
to show semi-global asymptotic stability of the
origin.
1. BOUNDEDNESS

Considering the equations (1), (2), (18), (19) and
the parameter updating laws (7) with nominal
updating laws (20), the rate of change of the
vector χ for the output feedback becomes

χ̇=











żs

˙̃
θs

˙̃
θµ

ėy











=











ṡ− ṡ∗ + ḋ

− ˙̂
θs

− ˙̂
θµ

ẏ − ˙̂y











= fr(ψ,D(ε))(25)

and also

ṡ= hr(ψ,D(ε)) (26)

The initial conditions for equation (25) are χ(0) =
(zs(0), θ̃s(0), θ̃µ(0), ey(0)) = (zs0, θ̃s0, θ̃µ0, ey0) ∈
U. Related to the set U there is U′ which is the
set of initial conditions for the states ψ. In other



words, ψ(0) = (s(0), y(0), d(0), ŷ(0), θ̂s(0), θ̂µ(0)) ∈
U′. The initial states for the estimated parameters
are x̂(0) = (ŷobs(0), ŝobs(0)) = x̂0 ∈ Q.
The system (24), (25) and (26) is a standard
singularly perturbed one. It can be noticed that
ξ = 0 is the unique solution of (24) when ε = 0. If
we substitute ε = 0 in (25) we get the closed-loop
system under state feedback, equation (12). Then,
the reduced system is given by

χ̇= fr(ψ, 0) (27)

The boundary-layer system obtained by applying
to (24) the change of time variable τ = t/ε then
setting ε = 0, is given by

dξ

dτ
=A(t)ξ (28)

We denote (χ(t, ε), ξ(t, ε)) the trajectory of sys-
tem (24) and (25) starting from (χ(0), ξ(0)). The
recovery of the boundedness of trajectories is sum-
marized in the following theorem.

Theorem 3. Let Remark 1 and Remark 2 hold,
then there exists ε∗1 > 0 such that, for every
0 < ε ≤ ε∗1, the trajectories (χ, ξ) of system (25)
and (24), starting in U × Q are bounded for all
t ≥ 0.

PROOF. The origin of (12) is asymptotically
stable with a region of attraction R. Based on
equations (13), and (14) there are three positive
functions U1(χ), U2(χ) and U3(χ), all defined and
continuous on R such that

U1(χ) ≤ V (χ, t)≤U2(χ) (29)

lim
χ→∂R

U1(χ) =∞ (30)

V̇ =
∂V

∂χ
fr(ψ) +

∂V

∂s
ṡ≤−U3(χ) (31)

where U3(χ) is defined above. The functions U1(χ)
and U2(χ) are

U1(χ) = ku1

[

z2
s +

θ̃2s
γs

+
θ̃2µ
γµ

+ e2y

]

U2(χ) = ku2

[

z2
s +

θ̃2s
γs

+
θ̃2µ
γµ

+ (1 + θss0)e
2
y

]

with 0 < ku1 < 1/2 and 1/2 < ku2. Equations
(29), (30) and (31) are satisfied for all χ ∈ R.
The properness of V (χ, t) in R guarantees that
with any finite c > maxχ∈U, s∈U′V (χ, t), the set
Σ = {χ ∈ R : V (χ, t) ≤ c} is a compact subset of
R and U is in the interior of Σ. Similarly, we can
prove that there exists a compact set Σ′ which is
a subset of R and U′ is in the interior of Σ′.

For the boundary layer system we define the
Lyapunov function

W (ξ) = ξTP0ξ (32)

where P0 = PT
0 is the positive definite solution

of the Lyapunov equation P0A(t) + A(t)TP0 =
−Q(t). The matrix Q(t) is symmetric and positive
definite. This function satisfies

λmin(P0)‖ξ‖2 ≤W (ξ) ≤ λmax(P0)‖ξ‖2 (33)

∂W

∂τ
= −ξQ(t)ξ ≤−λmin(Q(t))‖ξ‖2 (34)

Let Λ = Σ × {W (ξ) ≤ ρε2}. Due to Remarks 1-2
we have, for all χ ∈ Σ, all ψ ∈ Σ′ and all ξ ∈ R2

‖fr(ψ,D(ε)ξ)‖ ≤ k1 (35)

‖G(ψ,D(ε)ξ)‖ ≤ k2 (36)

‖hr(ψ,D(ε)ξ)‖ ≤ k3 (37)

where k1, k2 and k3 are positive constants inde-
pendent of ε. Moreover, for any 0 < ε̃ < 1, there
is L1, independent of ε, such that, for all (χ, ξ) ∈ Λ
and every 0 < ε ≤ ε̃, we have

‖fr(ψ,D(ε)ξ) − fr(ψ, 0)‖ ≤ L1‖ξ‖ (38)

‖hr(ψ,D(ε)ξ) − hr(ψ, 0)‖ ≤ L2‖ξ‖ (39)

Proceeding as in (Atassi and Khalil, 1999), we
show that there exists 0 ≤ ε ≤ ε∗1 such that
the trajectory (χ(t, ε), ξ(t, ε)) enters Λ during the
interval [0, T (ε)] and remains there for all t ≥ T (ε)
where

T (ε) =
ε

σ1
ln

( σ2

ρε4

)

≤ T0. (40)

Thus the trajectory is bounded for all t ≥ T (ε).
On the other hand, for t ∈ [0, T (ε)], the trajectory
(χ(t, ε), ξ(t, ε)) is bounded.
2. ULTIMATE BOUNDEDNESS

Next, we show that the trajectories of system (25)
and (24), starting in U×Q, come arbitrarily close
to the origin as time progresses. This is summa-
rized in the following theorem.

Theorem 4. Under the conditions of Theorem 1,
given any η > 0, there exists ε∗2 = ε∗2(η) > 0 and
T1 = T1(η) such that, for every 0 < ε ≤ ε∗2, we
have

‖χ(t, ε)‖ + ‖ξ(t, ε)‖ ≤ η, ∀ t ≥ T1. (41)

PROOF. Due to space restrictions we omit the
proof which proceeds as in (Atassi and Khalil,
1999).
3. TRAJECTORY CONVERGENCE



Let χr(t) be the solution of (27) starting from
χ(0). In this section we follow the procedure used
in (Atassi and Khalil, 1999) to prove that χ(t, ε)
converges to χr(t) as ε→ 0 uniformly in t, for all
t ≥ 0. As in (Atassi and Khalil, 1999), we divide
the interval [0,∞] into three intervals [0, T (ε)],
[T (ε), T2] and [T2,∞], and based on Theorem 1

and Theorem 2, we show ‖χ(t, ε) − χr(t)‖ ≤ η for
each interval.
4. ASYMPTOTIC STABILITY

We define F T
2 =

[

ΦT (ŝobs,y,θ̂)y

(1+θss)(1+θ̂sŝobs)

]

where where

ΦT = [φs φµ], θ̃ = [θ̃s θ̃µ] and F3 is a function
ψ. From equations (1) and (19),

ėy =−kyey + FT
2eθ̃ + (F2 − F2e)

T θ̃ + F3s̃ (42)

The subscript e indicates that the function is
evaluated at steady state. From the projection
algorithms (7) with the nominal updating laws
(20) we define new state variables

∂(FT
2eθ̃)

∂t
=−FT

2eReNeey − FT
2e(RN −ReNe)ey +

(∂F2e

∂t

)T

θ̃ (43)

with R = y

(1+θ̂sŝobs)
and N =

[

γsφs(1 − cs(θ̂))

γµφµ(1 − cµ(θ̂))

]

Re-arranging equations (42) and (43) in a matrix
form, we get

ẇ=C(t)w + E(t) + F6s̃ (44)

where w = [ey FT
2eθ̃]

T , C(t) =

[

−ky 1

−FT
2eReNe 0

]

,

E(t) =





(F2 − F2e)
T θ̃

−FT
2e(RN −ReNe)ey +

(∂F2e

∂t

)T

θ̃





and F6 = [1 0]TF3 Equation (44) is a linear
time variant system. It can be noticed that when
time→ ∞, E(t) → 0. Matrix C(t) is Hurwitz if
and only if F T

2eReNe > 0.
In equation (24), the function G can be written
as G = F4θ̃+ F5s̃, where F4 and F5 are functions
of ψ. Then equation (24) becomes

ξ̇ =
1

ε
A(t)ξ +BF4θ̃ +BF5s̃ (45)

For the system (44) and (45), we define a new
Lyapunov function

VT = V
1

2

w +W
1

2 (46)

where Vw = wTM0w, and W corresponds to
the Lyapunov function for the boundary layer
system,equation (32). The constant matrix M0

is positive definite and symmetric. We select the
matrix L(t), a positive definite and symmetric

matrix such that C(t)TM0 + M0C(t) = −L(t).
It can be verified that the rate of change of the
Lyapunov function VT is

V̇ ≤−K3‖w‖ −K4‖ξ‖ +K2‖2E(t)TM0‖(47)

where K3 and K4 are positive bounds for the
states over the domain of interest. Let K5 =
min(K3,K4), and let

K6 = K5(max(
√

λmax(M0),
√

λmax(P0)))

then equation (47) becomes

V̇T ≤ −K6VT +K2‖2E(t)TM0‖ (48)

Integration of equation (48), yields

VT (t)≤ VT (t0)e
−K6(t−t0) + (49)

∫ t

t0

e−K6(t−τ)K2‖2E(τ)TM0‖dτ

When time→ ∞, E(τ) → 0. Then inequality (49)
vanishes as time→ ∞. This means that VT =
V

1

2 +W
1

2 → 0 or

‖w‖= ‖[ey FT
2eθ̃]

T ‖ → 0 (50)

‖ξ‖=D(ε)−1‖[ỹ s̃]T ‖ → 0 (51)

where D(ε) is a two dimensional diagonal matrix
with the first element D(ε)11 = 1 and the second
element D(ε)22 = 1/ε.

Remark 5. Equation (50) implies that ey → 0 and

FT
2eθ̃ → 0 when time→ ∞. Under a Persistence of

Excitation condition for the output feedback case,
θ̃ = 0 when time → ∞.

Remark 6. It can be easily proved from equations
(50), and (51), that zs under output feedback
approaches zs under state feedback as time → ∞.
From the asymptotic stability of the origin under
state feedback, zs → 0 as time → ∞. As a result,
zs under output feedback converges to zero as time
→ ∞.

From equations (50), (51) and Remarks 7 and
8, the origin of (χ(t, ε), ξ(t, ε)) is asymptotically
stable.

5. SIMULATION RESULTS

A simulation study is performed using the experi-
mental conditions provided in (Wang et al., 1999).
The following parameters and initial states are
used in the simulation experiment.
ε = 0.01, αs = 1, αy = 50, Ks = 0.2, µm = 1,
k1 = 2, k2 = 1, s0 = 10, s(0) = 1, y(0) = 0.3,

ŝobs(0) = 5, ŷobs(0) = 0.1, ŷ(0) = 1.5, θ̂µ(0) = 3,



θ̂s(0) = 5.5.
The dither signal is chosen as a(t) = 0.01(sin(0.01t)+
sin(0.05t)). Figure 1 represents the simulation
result of the substrate concentration (s), the esti-
mation of the substrate concentration (ŝobs), the
production rate (y) and the estimation of the
production rate (ŷobs). Figure 2 shows that both

θ̂s and θ̂µ converge to their true value θs = θµ = 5.
From Figure 3, the trajectories under output feed-
back recover the trajectories under state feedback
for the high gain observer with sufficiently large
gain (ε = 0.01). Furthermore, the maximum value
for the production rate y = 3.77 is achieved
under output and state feedback which confirms
the effectiveness of the adaptive extremum seeking
scheme.

6. CONCLUSION

An adaptive output-feedback extremum-seeking
control was developed for a class of stirred tank
bioreactors governed by Monod growth kinetics.
The controller allows the stabilization of the sys-
tem to its unknown optimal production rate.
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Fig. 1. Substrate concentration s(“..”) and its
estimate ŝobs(“–”), production rate y and its
estimate ŷobs (“- -”)
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Fig. 3. y under state feedback (“–”) and y un-
der output feedback (“- -”), s under output
feedback(“- .”) and s under state feedback (“-
-”)
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HYBRID CONTROL: IMPLEMENTING OUTPUT FEEDBACK
MPC WITH GUARANTEED STABILITY REGION 1

Prashant Mhaskar, Nael H. El-Farra and
Panagiotis D. Christo�des

Department of Chemical Engineering
University of California, Los Angeles, CA 90095-1592

Abstract: In this work, a hybrid control scheme that employs switching between bounded
control and model predictive control (MPC) is proposed for the output feedback stabilization
of linear time-invariant systems with input constraints. Initially, we design a bounded output
feedback controller for which the region of constrained closed-loop stability is explicitly
characterized and an MPC controller that minimizes a given performance objective subject
to constraints. Switching laws are derived to orchestrate the transition between the two
controllers in a way that reconciles their respective stability and optimality properties, and
guarantees asymptotic closed-loop stability for all initial conditions within the stability region
of the bounded controller. The hybrid scheme is shown to provide a safety net for the practical
implementation of output feedback MPC by providing a priori knowledge, through off-line
computations, of a large set of initial conditions for which closed-loop stability is guaranteed.
The proposed hybrid control approach is illustrated through a simulation example.

Keywords: Hybrid control, Bounded control, MPC, State observers, Input constraints.

1. INTRODUCTION

1.1 Classical vs. hybrid control

The conventional, or �classical", approach to control
has been that of modelling the process (up�to the req-
uisite level of detail) and then designing an appropriate
controller to achieve the desired control objective. The
salient feature of the classical approach is the absence
of a discrete component in the control structure.

In contrast, a hybrid control structure (Figure 1) in-
volves, by design, a blend of continuous (i.e., the
classical controllers) and discrete components (i.e.,
the logic�based supervisor that switches between the
controllers). The controllers within the control block
could be of similar structure (but with different gains
or parameters), or could be structurally different (for
example, an analytic and a model predictive con-
troller). The switching between multiple classical con-

1 Financial support from NSF, CTS-0129571, is gratefully ac-
knowledged

trollers is orchestrated by the supervisor for the pur-
pose of either meeting an objective that cannot be
achieved by the individual controllers or to reconcile
the different (complementary) strengths and capabili-
ties of different control approaches.

Information
Process

logic

+

-

spy u y
Process

Controller NController 2Controller 1

Supervisor Switching 

Fig. 1. A schematic representation of a hybrid control
structure.

The general idea of hybrid control, manifested through
switching between different controllers, has been used
in the literature in a variety of contexts. Examples in-
clude gain�scheduling (e.g., see (Rugh and Shamma,
2000)) as a tool for control of nonlinear systems,
multiple linear models for transition control (e.g., see



(Banerjee and Arkun, 1998; Sun and Hoo, 1999)) and
scheduled predictive control (e.g., see (Aufderheide et
al., 2001)) of nonlinear processes. A recurrent theme
in most of the work on hybrid control has been that of
switching between different models (which results in
an implicit switching between different controllers), or
that of using multiple structurally similar controllers.

In (El-Farra et al., 2002), we proposed a hybrid control
structure, that employs switching between two struc-
turally different controllers � an MPC controller and
a bounded analytical controller � for the state feed-
back stabilization of linear systems with input con-
straints. The bounded controller was used to provide
a safety net for the implementation of MPC within a
well�defined region of guaranteed stability. The pro-
posed hybrid control structure was extended to ad-
dress the problems of robust control of linear systems
with uncertainties (El-Farra et al., 2003b) and con-
strained stabilization of nonlinear systems (El-Farra
et al., 2003a). In this work, a hybrid control scheme,
uniting bounded control with MPC, is proposed for the
output feedback stabilization of linear time-invariant
systems with input constraints.

1.2 Background
Input constraints arise as a manifestation of the physi-
cal limitations inherent in the capacity of control actu-
ators (e.g., bounds on the magnitude of valve open-
ing). Input constraints automatically impose limita-
tions on our ability to steer the dynamics of the closed-
loop system at will, and can cause severe deterioration
in the nominal closed-loop performance and may even
lead to closed-loop instability if not explicitly taken
into account at the stage of controller design.

One of the key limitations imposed by input con-
straints is the restriction on the set of initial states
of the closed-loop system that can be steered to the
origin with the available control action. The absence
of an a priori explicit characterization of this set (or
an appropriate estimate thereof) can have an impact
on the practical implementation of the given control
policy by requiring extensive closed-loop simulations
over the whole set of possible initial conditions, to
check for closed-loop stability, or by limiting oper-
ation within an unnecessarily small and conservative
neighborhood of the desired equilibrium point. These
considerations have motivated signi�cant work on the
design of stabilizing bounded control laws that pro-
vide explicitly-de�ned, large regions of attraction for
the closed-loop system (e.g., see (Lin and Sontag,
1991; Teel, 1992; El-Farra and Christofides, 2001; El-
Farra and Christo�des, 2003)).

Currently, MPC, also known as receding horizon con-
trol, is a widely used control method for handling
constraints within an optimal control setting. Within
MPC, the control action is obtained by solving re-
peatedly, on-line, a �nite-horizon constrained open-
loop optimal control problem. The industrial success
of MPC has spurred numerous research investigations

into the stability properties of MPC controllers and
led to a plethora of MPC formulations that focus on
closed-loop stability (e.g., see (Rawlings and Muske,
1993; Allgower and Chen, 1998; Mayne et al., 2000)
for extensive surveys of these developments). The sig-
ni�cant progress in characterizing the stability proper-
ties of MPC notwithstanding, the issue of obtaining,
a priori (i.e. before controller implementation), an
analytic characterization of the region of constrained
closed-loop stability for MPC controllers remains to
be adequately addressed. This dif�culty can have an
impact on the practical implementation of MPC by
requiring extensive closed-loop simulations over the
whole set of possible initial conditions to check for
closed-loop stability, or by potentially limiting oper-
ation within an unnecessarily small neighborhood of
the nominal equilibrium point.

In addition to the problem of input constraints, the
problem of output feedback stabilization of con-
strained systems has been the subject of numer-
ous research studies. Examples include scalar out-
put feedback control of linear systems (Shamma and
Tu, 1998), stability analysis of a composite system
comprising of a moving horizon regulator and a mov-
ing horizon observer for control of nonlinear systems
(Michalska and Mayne, 1995) and moving horizon
estimation as an extension of Kalman �ltering, for
constrained and nonlinear processes (Rao and Rawl-
ings, 2002). In these works, however, the stability
region of the constrained closed�loop system is not
explicitly characterized.

Motivated by the above considerations, we propose in
this paper a controller switching strategy that extends
the hybrid control structure in (El-Farra et al., 2002)
to the case of output feedback. The guiding principle
in realizing this strategy is that of using a suitable
state observer design which, in conjunction with the
bounded controller, yields an explicitly characterized
stability region within which the operation of the
MPC controller can be embedded by devising suit-
able switching rules (see (Mhaskar et al., 2003) for
a detailed analysis of the theoretical issues involved
and the mathematical proofs of the results). The rest
of the paper is organized as follows: in section 2, we
present some preliminaries that describe the class of
systems considered and review brie�y the methodol-
ogy of designing the state observer, and how the con-
strained control problem is addressed in both bounded
control and model predictive control. In section 3,
we formulate the controller switching problem un-
der output feedback and propose a switching scheme
that addresses the problem. Finally, in section 4, nu-
merical simulations are presented to demonstrate the
implementation of the switching scheme and test the
robustness of the proposed approach with respect to
measurement noise.

2. PRELIMINARIES
In this work, we consider the problem of output
feedback stabilization of continuous-time linear time-



invariant (LTI) systems with input constraints, with the
following state-space description:

ẋ = Ax + Bu
y = Cx

u(t) ∈ U ½ IRm
(1)

where x = [x1, ¢ ¢ ¢ , xn]′ ∈ IRn denotes the vector
of state variables, y = [y1, ¢ ¢ ¢ , yk]′ ∈ IRk denotes
the vector of output variables, u = [u1, ¢ ¢ ¢ , um]′ is
the vector of manipulated inputs, taking values in a
compact and convex subset, U , of IRm that contains
the origin in its interior. The matrices A, B and C are
constant n £ n, n £ m and k £ n matrices, respec-
tively. The pairs (A,B) and (C,A) are assumed to be
controllable and observable, respectively. Throughout
the paper, the notation x′ denotes the transpose of x.

2.1 State observer design

For the system of Eq.1, we use a standard Luenberger
observer described by

˙̂x = Ax̂ + Bu + L(y ¡ Cx̂) (2)

where x̂ = [x̂1, ¢ ¢ ¢ , x̂n]′ ∈ IRn denotes the vector of
estimates of the state variables, L is a constant n £ k
matrix chosen such that the eigenvalues of A¡LC are
placed at ¡¯a1, ¡¯a2...¡¯an with ¯ ¸ 1 and ai 6=
aj ¸ 1. In the closed�loop system, the estimation
error, de�ned as e = x ¡ x̂, evolves independently
of the controller according to ė = (A ¡ LC)e

Note that the dynamics of the error equation can be
manipulated at will by appropriate choice of the de-
sign parameters ai and ¯. This state estimator design
guarantees convergence of the error in a way that for
larger values of the parameter ¯, the error decreases
faster (i.e., given any em > 0, one can �nd a Td

such that ‖e(t)‖ · em ∀ t ¸ Td). However, for
larger values of ¯, the error could possibly increase to
large values before eventually decaying. The design,
therefore, includes the possibility of �peaking� of state
estimates, where the observer generates incorrect esti-
mates for short times. This, however, does not pose a
problem in our design because the physical constraints
on the manipulated input prevent transmission of the
incorrect estimates to the plant.

2.2 Model predictive control

For the sake of illustration, we consider here the
following nominally-stabilizing �nite-horizon MPC
formulation with terminal equality constraints:

Js(x, t, u(¢)) =

t+T
∫

t

(x′(s)Qx(s) + u′(s)Ru(s))ds

u(¢) = argmin{Js(x, t, u(¢))|u(¢) ∈ S}
s.t. ẋ(t) = Ax(t) + Bu(t), x(0) = x0

u(¢) ∈ S, x(t + T ) = 0

(3)

where S = S(t, T ) is the family of piecewise contin-
uous functions, with period ¢, mapping [t, t + T ] into

the set of admissible controls, where T is the horizon
length. A control u(¢) in S is characterized by the
sequence {u[k]} where u[k] := u(k¢). A control u(¢)
in S satisfies u(t) = u[k] for all t ∈ [k¢, (k + 1)¢).
Js is the performance index and R and Q are strictly
positive de�nite, symmetric matrices. Feasibility of
the formulation in Eq.3 can be ensured by relaxing
the terminal equality constraint; however, closed loop
stability then cannot be guaranteed.

One of the issues that arise in the implementation of
MPC formulations of the form of Eq.3 is the dif�-
culty in obtaining an explicit characterization of the
stability region, which depends on a complex interplay
between several factors, including the constraints, the
initial condition, and the horizon length. Faced with
these dif�culties, the current industrial implementa-
tion of MPC relies heavily on extensive simulations
to test the stability of MPC controllers.

2.3 Bounded Lyapunov-based control
Consider the Lyapunov function candidate V = x′Px,
where P is a positive-de�nite symmetric matrix that
satis�es the Riccati equation

A′P + PA ¡ PBB′P = ¡ ¹Q (4)

for some positive-de�nite matrix ¹Q. Using this Lya-
punov function, we can construct, using a modi�cation
of Sontag’s formula for bounded controls proposed
in (Lin and Sontag, 1991) (see also (El-Farra and
Christo�des, 2003)), the following bounded nonlinear
controller

u(x) = ¡2k(x)B′Px := b(x) (5)

where k(x) =
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with L¤

fV = x′(A′P + PA)x + ½x′Px, (LgV )′ =
2B′Px, ½ > 0. One can show that whenever the
closed-loop state trajectory evolves within the state�
space region described by the set:

©(umax) = {x ∈ IRn : L¤

fV · umax‖(LgV )′‖}(6)

the resulting control action respects the constraints
(i.e., ‖u‖ · umax) and asymptotically stabilizes the
origin of the closed-loop system. Note that the size of
the set © depends on the magnitude of the constraints
in a way such that the tighter the constraints, the
smaller the region described by this set. Using this set,
an estimate of the stability region of the controller of
Eqs.5�6 can be obtained by considering an invariant
subset of ©, preferably the largest, which we denote
by (umax). A common way of doing this is using
the level sets of V .

Using Lyapunov arguments, one can derive bounds
on the estimation errors (em), with respect to which



the state feedback bounded controller ensures that the
closed�loop state trajectory does not escape the state
feedback stability region (see Figure 3). By initializing
the states and the state estimates suf�ciently inside
(umax) and choosing a consistent observer gain ma-
trix L, one can ensure that the norm of the estimation
error decays to a value less than the tolerable measure-
ment error before the states have a chance to reach the
boundary of the state feedback stability region. For a
given choice of b ½ (umax), therefore, one can
choose a value ¯ for the observer gain parameter that
guarantees stability for all initial conditions within b

under output feedback control.

3. IMPLEMENTING OUTPUT FEEDBACK MPC
WITH GUARANTEED STABILITY REGION

While the bounded controller possesses a well-de�ned
region of initial conditions that guarantee closed-loop
stability in the presence of constraints, the perfor-
mance of this controller is not guaranteed to be opti-
mal with respect to an arbitrary performance criterion.
On the other hand, the MPC controller is well-suited
for handling constraints within an optimal control set-
ting; however, the analytical characterization of its set
of initial conditions, for which closed�loop stability is
guaranteed, is a more dif�cult task than it is through
bounded control. The lack of state measurements in-
troduces another level of complexity in implementing
the controllers designed with the assumption of state
feedback. In this section, we show how to reconcile
the two control approaches by means of a switching
scheme that combines the desirable properties of both
approaches.

3.1 Problem formulation and overview of solution

Consider the linear time-invariant system of Eq.1, sub-
ject to input constraints ‖u‖ · umax, and for which
the observer of Eq.2, the bounded controller of Eqs.5-
6 and the MPC controller of Eq.3 have been designed.
We formulate the control problem as that of designing
a set of switching laws that orchestrate the transition
between the MPC controller and the bounded con-
troller under output feedback in a way that guaran-
tees asymptotic stability of the origin of the closed-
loop system starting from any initial condition in an
explicitly characterized set b ½ (umax), respects
input constraints, and accommodates the optimality
requirements whenever possible. In the remainder of
this section, we present a switching scheme that ad-
dresses the problem.

3.2 Controller switching scheme

The four main components of the hybrid control struc-
ture include the observer, the bounded controller, the
MPC controller, and a higher-level supervisor that or-
chestrates the switching between the two controllers.
A schematic representation of this structure is shown
in Figure 2. The design procedure for the hybrid con-
trol structure and the implementation of the controller
switching scheme is as follows:

i
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x(t) = Ax(t) + Bu (t)

u
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|u| <  umax

Pl
an

t
+

Su
pe

rv
iso

ry
 la

ye
r

Co
nt

ol
 le

ve
l

O
bs

er
ve

r

"Optimality"

controller
MPC

objectives
Perofrmance 

x(t)

Switching logic

i = ?

i=1 i=2

y(t) = Cx(t)
|u| < u

x(t) = Ax(t) + Bu (t)
+ L(y-y)

"Constraints"

controller
Bounded 

Stability region

i

max

Ω ( )max

Fig. 2. A schematic representation of the hierarchical
hybrid control structure merging the bounded and
MPC controllers under output feedback

(1) Given the system of Eq.1 and the performance
objective, design the bounded controller and the
MPC controller.

(2) Compute the stability region estimate for the
bounded controller under state feedback, (umax),
using Eq.6 and, for the state observer design,
choose a ¯ consistent with the choice of the out-
put feedback stability region b.

(3) Compute the region s ½ b and Td such that
if the norm of the error is less than a given
tolerance, then x̂ ∈ s ⇒ x ∈ b for all times
greater than Td.

(4) Initialize the closed�loop system at an initial
condition, x(0) within b, under the bounded
controller using an initial guess for the state x̂(0)
within b.

(5) After a time Td, once x̂ ∈ s, test the feasibility
of the MPC controller using values of the esti-
mates generated by the state observer.

(6) If the MPC controller is feasible, implement it
for as long as x̂ ∈ s and V (x̂) keeps decaying,
else switch to the bounded controller.

x (0)

umaxΩ(       )

Ωb

Ωs

x (0)
Switch to MPC

State estimates trajectory
State trajectory

Switching surface

|e| < e
m

MPC feasible

Fig. 3. A schematic representation of the implementa-
tion of the proposed controller switching scheme.

Remark 1: Figure 3 shows a representative sketch of
the closed�loop system under the controller switch-



ing scheme. The states are initialized at x0 while the
state estimates are initialized at x̂0. The state estimator
design ensures that the norm of the error is under
the allowable error before (and if) the state trajectory
reaches the boundary of the state feedback stability
region, (umax). After a time Td (by which time,
the state estimator design ensures that the estimation
error has gone down to a small value), the supervisor
implements MPC in closed�loop only if it is feasible
and the state estimates are in s, while monitoring
the evolution of the Lyapunov function value. If the
switching rules are satis�ed, MPC is implemented in
closed�loop for the remaining time, else the supervi-
sor switches back to the bounded controller to stabilize
the closed�loop system.

Remark 2: For a given choice of the output feedback
stability region, an estimate of the necessary observer
gain can be obtained; however, this estimate is typi-
cally conservative. In practice, having chosen s, one
can choose a ‘suf�ciently’ large gain based on simula-
tions or experience. The stability region under output
feedback b can be made as close to the one under
state feedback,  as desired by increasing the gain
parameter ¯.

4. A NUMERICAL EXAMPLE

In this section, we demonstrate an application of the
proposed hybrid control structure to a three dimen-
sional linear system where only two of the states are
measured. Speci�cally, we consider an exponentially
unstable linear system of the form of Eq.1 with A =




0.55 0.15 0.05
0.15 0.40 0.20
0.10 0.15 0.45



, B =





1 0
0 1
1 1



 and C =

·

1 0 0
0 0 1

¸

,

where both inputs u1, u2 are constrained in the interval
[¡1, 1]. We initially used Eqs.5 to design a bounded
controller and construct its stability region via Eq.6.
The matrix P was chosen as:

P =





6.5843 4.2398 ¡3.830
4.2398 3.6091 ¡2.667
¡3.830 ¡2.667 2.8033



 (7)

and the observer gain parameter was chosen to be
¯ = 500 to ensure closed�loop stability for all initial
conditions within b ½ . For the MPC controller,
the parameters in the objective function of Eq.3 were
chosen as Q = qI , with q = 1 and R = rI ,
with r = 0.1. We also chose a horizon length of
T = 1.5 in implementing the MPC controller of Eq.3.
The resulting quadratic program was solved using the
MATLAB subroutine QuadProg, and the set of ODEs
integrated using the MATLAB solver ODE45.

In the �rst simulation run (solid lines in Figs.4�5),
the states were initialized at x0 = [0.75 ¡ 0.5 1.0]′

while the observer states were initialized at x̂0 =
[0 0 0]′ (which belong to the stability region of
the bounded controller, b). The supervisor employs
the bounded controller, while continuously checking

MPC feasibility. At t = 5.45, the MPC becomes
feasible and is implemented in the closed-loop to
stabilize the system. Note that feasibility of MPC
can be achieved by increasing the horizon length to
T = 3.5 (dashed lines in Figs.4�5). However, this
conclusion could not be reached a priori, i.e. before
running the closed-loop simulation in its entirety to
check whether the choice T = 3.5 is appropriate. In
contrast, closed�loop stability starting from the given
initial condition under the proposed hybrid control
structure is guaranteed.

In the second set of simulation results, we demonstrate
the need for a choice of observer gain consistent with
the choice of b. To this end, we consider now an
observer design with a low gain (¯ = 0.5). With
the low observer gain, the estimates take a long time
to converge to the true state values, resulting in the
implementation of ‘incorrect’ control action, by which
time, even though the states and state estimates are
initiated within b, the states have escaped (umax),
thereby resulting in closed�loop instability (dotted
lines in Figs.4�5).

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

x
1

0 5 10 15 20 25
−1

−0.5

0

0.5

x
2

0 5 10 15 20 25
−1

0

1

2

x
3

Time

Fig. 4. Closed-loop state trajectory with T = 1.5
(solid line), T = 3.5 (dashed line), with the low
observer gain (dotted line) and using observer
switching (dash-dotted lines).

To recover, as closely as possible, the state feedback
stability region, large values of the observer gain are
needed. However, it is well known that high observer
gains can amplify measurement noise and induce poor
performance. This points to a fundamental tradeoff
that cannot be resolved by simply changing the es-
timation scheme. For example, if the observer gain
consistent with the choice of the output feedback sta-
bility region is abandoned, the noise problem may
disappear, but then stability cannot be guaranteed. One
approach to avoid this scenario in practice is to ini-
tially use an observer gain to ensure quick decay of the
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Fig. 5. Manipulated input trajectory with T = 1.5
(solid line), T = 3.5 (dashed line), with the low
observer gain (dotted line) and using observer
switching (dash-dotted lines).

initial estimation error, and then to switch to a �low"
observer gain. In the following simulation, we show
how switching between an observer with a high gain
and a low gain in conjunction with switching between
controllers can be used to mitigate the undesirable ef-
fects of measurement noise. To illustrate the point, we
use switching between the high and low observer gains
used in the �rst two simulation runs and demonstrate
the attenuation of noise.

Speci�cally, we consider the nominal system de-
scribed by Eq.1, together with model uncertainty and
measurement noise. The model matrix Am is assumed
to be within �ve percent error of the process matrix
A and the sensors are assumed to introduce noise in
the measured outputs as y(t) = Cx(t) + ±(t) where
±(t) is a random gaussian noise with zero mean and a
variance of 0.01. As seen by the dash-dotted lines in
Fig.4, starting from the initial condition, x0 = [0.75¡
0.5 1.0]′, using a high observer gain followed by a
switch to the low gain observer at t = 1.0, and a
switch from bounded control to MPC at t = 3.5,
the supervisor is still able to preserve closed�loop
stability, while at the same time resulting in a smooth
enough control action (see Fig.5).
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Abstract. The max-plus-linear (MPL) system is a state-space description for a cer-
tain class of discrete-event-systems, and it has remarkable analogous features to the
conventional linear state-space description in the modern control theory. Hence, sev-
eral control techniques in the modern control theory have been extended so that they
could be applied to MPL systems. In the research context, the internal model control
(IMC) for MPL systems has been proposed by Boimond et al. and it succeeds to real-
ize feedback control techniques for discrete-event-systems described in MPL systems.
In this paper, the IMC control for MPL systems is extended to the case where the
controlled systems are given as MPL systems with linear parameter varying structure,
which is called LPV-MPL systems. In the LPV-MPL systems, the systems parame-
ters are explicitly represented in the systems description. Hence, the obtained IMC
control law can utilize the additive information on the parameters variations effec-
tively when the parameters are measured on-line, or the variation of the parameters
are scheduled beforehand. The effectiveness of the proposed IMC is shown through a
numerical example where it is applied to a two-inputs, two-outpus production system
with four machines.

Keywords. max-plus-linear systems, linear parameter varying, internal model
control, discrete-event-systems

1. INTRODUCTION

The researches on modeling and control of discrete-
event-systems using max-plus algebra have been
reported recently(Cohen et al., 1989; Baccelli
et al., 1992). The basic operations of max-plus
algebra are maximization and addition, which
have a remarkable analogy with ones of conven-
tional algebra. Especially, state-space descriptions
in the max-plus algebra for a certain class of
discrete-event-systems become linear representa-
tions which are similar to state-space equations
in the traditional modern control theory (van den
Boom and Schutter, 2001a). Hence, the several re-
searches on control design for the max-plus-linear

(MPL) systems have been reported from the view-
point of the analogy (Boimond and Ferrier, 1996;
van den Boom and Schutter, 2001a; van den Boom
and Schutter, 2001b).

The internal model control (IMC) for MPL sys-
tems has been proposed by (Boimond and Fer-
rier, 1996) in the research context. It succeeds to
realize feedback control techniques for discrete-
event-systems described in MPL systems. In the
IMC control, however, it takes much time to re-
cover from the output delays because the input
signals are modified just after the output errors
are observed. Hence, it would be desirable that the
information on the parameters variation would be



collected beforehand, and it could be utilized ef-
fectively.

On the other hand, the MPL systems with lin-
ear parameter varying structure, which is called
LPV-MPL systems was proposed, and the design
method for inverse systems of LPV-MPL systems
was developed (Masuda et al., 2002). In the LPV-
MPL systems, the systems parameters are explic-
itly represented. Hence, the obtained control law
can utilize the additive information on the param-
eters variations effectively when the parameters
are measured on-line, or the variation of the pa-
rameters are scheduled beforehand.

Therefore, in this paper, the IMC control is ex-
tended so that it can be applied to the LPV-
MPL systems. In the proposed control law, the
information on the parameters variations in addi-
tion to the feedback signals are effectively utilized
for recovery from the output delays due to large
parameters variation. Furthermore, owing to the
IMC control law, the proposed method has ro-
bust property even when the the information on
the parameters variations has some errors.

The effectiveness of the proposed IMC is shown
through a numerical example where it is applied to
a two-inputs, two-outpus production system with
four machines.

2. MATHEMATICAL PRELIMINARIES

The basic operations of max-plus algebra are ad-
dition denoted by ⊕ and mulitiplication denoted
by ⊗, which are defined as follows.

x ⊕ y = max(x, y), x ⊗ y = x+ y, x, y ∈ Rε

where Rε = R∪{−∞}, and R stands for the real
field. Let ε be defined as −∞, which is the unit
element of the addition ⊕, and let e be defined as
0, which is the unit element of the multiplication
⊗. We also define the following operations.

x ∧ y = min(x, y), x\y = −x + y (1)

The above operations are extended to the matrices
calculation whose elements belong to Rε. So, if
A, B ∈ Rm×n

ε , C ∈ Rn×p
ε , then

[A⊕B]ij = [A]ij ⊕ [B]ij = max
(
[A]ij , [B]ij

)
(2)

[A ∧B]ij = [A]ij ∧ [B]ij = min
(
[A]ij , [B]ij

)
(3)

1 ≤ i ≤ n, 1 ≤ j ≤ m

[A⊗C]ij =

n⊕
k=1

(
[A]ik ⊗ [C]kj

)
= max

k=1,···,n

(
[A]ik + [C]kj

)
(4)

where [ · ]ij stands for the element in the i-th row,
j-th column of the matrix, and

n⊕
k=1

ak = max(a1, a2, · · · , an)

. If d ∈ Rε, A ∈ Rm×n
ε , then

[d ⊗ A]ij = d⊗ [A]ij (5)

Furthermore, we define the operator � in the fol-
lowing way.

[A � C]ij =
n∧

k=1

(
[A]ik\[C ]kj

)

= min
k=1,···,n

(
−[A]ik + [C ]kj

)
(6)

where
n∧

k=1

ak = min(a1, a2, · · · , an)

. In the subsequent discussions, a ≤ b implies
[a]i ≤ [b]i 1 ≤ i ≤ n for a, b ∈ Rn

ε .

3. THE LPV-MPL SYSTEM

Consider the following MPL systems.

x(k + 1) =Ax(k)⊕ Bu(k + 1) (7)

y(k) =Cx(k) (8)

where A ∈ Rn×n
ε , B ∈ Rn×p

ε , C ∈ Rq×n
ε . And

x(k) ∈ Rn
ε , u(k + 1) ∈ Rε

p, y(k) ∈ Rq
ε are

state variables, control inputs and controlled out-
puts respectively. These variables represent time
instants at which the representing events occur at
k-times. According to the custom, the operation
of multiplication denoted by ⊗ is omitted.

In LPV-MPL systems(Masuda et al., 2002), the
system matrices A, B and C in (7) and (8) are
replaced by the parameter affine formA(d),B(d)
and C(d), which are defined as

A(d) = d0A0 ⊕ d1A1 ⊕ · · · ⊕ dlAl =
l⊕

i=0

diAi

B(d) = d0B0 ⊕ d1B1 ⊕ · · · ⊕ dlBl =
l⊕

i=0

diBi

C(d) = d0C0 ⊕ d1C1 ⊕ · · · ⊕ dlCl =
l⊕

i=0

diCi

where Ai, Bi and Ci,i = 1, · · · l are matrices
whose elements are either ε or e and the size are
the same asA,B andC, respectively, and d is the
parameter vector whose elements are d0, d1, · · · , dl

as is defined in the next.

d= [d0, d1, d2, · · · , dl],

d0 = e, di > 0, i = 1, · · · l

2



Hence, the LPV-MPL system can be described as

x(k + 1) =A(d)x(k)⊕ B(d)u(k + 1) (9)

y(k) =C(d)x(k) (10)

In general, the elements of the matrices A, B and
C in the system representation consists of e and ε
and real numbers. The elements of e and ε depend
on the system structure such as the connection
among the machines in the case where the pro-
duction systems are modelled based on the MPL
system. While parameters e and ε are expected to
be unchanged even as time goes by, it should be
considered that the real parameters might be the
varying ones.

4. THE INTERNAL MODEL CONTROL
(IMC)

The internal model control (IMC), which is a pop-
ular control technique in the field of chemical in-
dustries. The block diagram is given in Figure 1..

Fig. 1. The Block Diagram of IMC

In Figure 1., P stands for the real process, and
PM stands for the process model. y and yM are the
controlled process outputs and the model outputs,
respectively. u and r are control input and refer-
ence signals, respectively. rM is modified reference
signals, which satisfy the following equation

rM = r − (y − yM ) (11)

Hence, if the control input is designed so that the
model outputs yM should be equal to the mod-
ified reference signals rM , the controlled process
outputs follow the given reference signals. There-
fore, by using the inverse systems of the model
PM for the controller C in the IMC, we can get
robust tracking of the process outputs to the ref-
erence signals even in the presence of model-plant
mismatch.

Addition to the IMC control, this paper consid-
ers utilizing additive information on the param-
eter variation of the controlled process, depected
in Figure 2.

In Figure 1., θ stands for the parameters of pro-
cess model. In the conventional IMC control, it

Fig. 2. The Block Diagram of the Proposed IMC

takes much time to recover from the output de-
lays because the input signals are modified just
after the output errors are observed. On the other
hand, in the proposed IMC, it can be expected
that we can get better performance because the
information on the parameters variation would be
utilized effectively.

However, the conventional controller requires re-
calculation of the inverse system of the MPL sys-
tem according as the parameters changes because
the relation between controller’s parameters and
the MPL system’s parameters is not represented
explicitly. Therefore, this paper utilizes the in-
verse system of LPV-MPL systems (Masuda et
al., 2002). Since the system’s parameters are ex-
plicitly represented in the LPV-MPL systems, the
additive information on the parameters variations
can be utilized effectively when the parameters are
measured on-line, or the variation of the parame-
ters are scheduled beforehand.

5. THE INVERSE SYSTEM FOR LPV-MPL

As is shown in 4., the controller of IMC systems
is designed for the model, so we will give the
model equation of LPV-MPL system besides the
real process model (9) and (10).

xM (k + 1) =AM (dM )xM(k) ⊕ BM (dM)u(k + 1)

(12)

yM (k) =CM(dM )xM (k) (13)

This section gives the inverse system for the
model equation of LPV-MPL system (Masuda et
al., 2002) in (12) and (13).

The first, let the predition equation be derived for
the preparation of the inverse system. By using (9)
and (10), we can get




yM 1(k + δ1 + 1)
...

yM q(k + δq + 1)




=ΓM (dM )xM (k)⊕∆M (dM)u(k + 1) (14)

where
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ΓM (dM ) =




c1
M (dM)AM (dM )δ1+1

...
cq

M (dM)AM (dM )δq+1


 , (15)

∆M (dM ) =




c1
M (d)AM (dM )δ1BM (dM )
...
cq

M (dM)AM (dM )δq BM(dM )


 (16)

ch
M (dM), h = 1 · · ·q is the h-th row vector of

CM (dM ). δh are called the characteristic numbers
(Boimond and Ferrier, 1996), which imply that
δh-th outputs are firstly influenced after the k-th
input, and they are defined as:

ε= ch
M (dM )BM (dM ) = ch

M (dM )AM (dM )BM (dM )

= · · · = ch
M (dM )AM (dM)δh−1BM (dM ) (17)

ε = ch
M (dM )AM(dM )δhBM (dM), h = 1, · · ·q (18)

ε is the vector whose elements are ε. When the
desired reference signals are defined as

r(k) = [r1(k + δ1 + 1), · · · , rq(k + δq + 1)]T,

it is considered that the control law for the inverse
system should be satisfied with the following equa-
tion replaced the predicted output vector in (14)
with the desired reference signals.

r(k) = ΓM(dM )xM (k) ⊕∆M (dM )u(k + 1) (19)

(19) is considered to be a linear matrix equa-
tion in max-plus algebra. Hence, let the equation
be solved based on the linear equation theory in
dioid(Cohen et al., 1989). According to the theory,
after (19) is transformed into

∆M (dM )u(k + 1) = r(k)⊕ ΓM (dM )xM (k) (20)

the greatest subsolution of (20) is calculated. In
(Masuda et al., 2002), the following control law is
introuduced for the inverse systems of LPV-MPL
systems.

u(k + 1) =
I∧

i=1

{
∆T

i N i(dM )

�
(

r(k) ⊕
I⊕

i=1

(M i(dM )Γi)xM (k)

)}
(21)

Here,

ΓM (dM ) =
I⊕

i=1

(M i(dM )Γi) (22)

∆M (dM ) =
I⊕

i=1

(N i(dM )∆i) (23)

where I = (l+1)δ̄+2, δ̄ = maxh δh Γi and ∆i,i =
1, · · ·I are matrices whose elements are all ε and

e. The size of Γi and ∆i,i = 1, · · ·I are the same
as Γ and ∆, respectively. M i(d) and N i(d) are
diagonal matrices.

Therefore, the control law for the proposed IMC
can be obtained as

u(k + 1) =
I∧

i=1

{
∆T

i N i(dM )

�
(

rM (k)⊕
I⊕

i=1

(M i(dM )Γi)xM (k)

)}

(24)

rM (k) = r(k) − (y(k) − yM (k)) (25)

where rM (k) is the modified reference signals.

The main feature of the control law (24) is that
it explicitly includes the parameters of controlled
MPL systems as free parameters. Hence, when the
parameters are measured on-line, or the variation
of the parameters are scheduled beforehand, the
proposed control law can utilize the additive infor-
mation on the parameters variations effectively.

6. A SIMULATION EXAMPLE

Fig. 3. Two-Inputs and Two-Outputs Production
System

Consider a two-inputs, two-outpus production
system with four machines depicted in Figure 3..
The inputs ui(k + 1), i = 1, 2 are defined as
time instants at which the k + 1-th manufac-
tured parts are fed into the input stock in the
line i. The outputs yi(k), i = 1, 2 are time in-
stants at which k-th finished products leaves
the output stock in the line i. The state vari-
ables x1(k), x3(k), x4(k), x6(k) are time instants
at which k-th processing unit starts working in the
machine 1, 2, 3 and 4, respectively. The state vari-
ables x2(k) and x5(k) are time instants at which
k-th processing unit finished working in the ma-
chine 1 and 3, respectively. di, i = 1, · · · , 4 are the
working time in the machine 1, 2, 3 and 4, respec-
tively.

The working times for each machine are d1 = 0.7,
d2 = 0.4, d3 = 0.3, d4 = 0.6 for the first 15 parts,
but the working times are changed into d1 = 1.0,
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d2 = 0.9, d3 = 1.2, d4 = 1.2 after 16-th parts. It
is assumed that the information on the parame-
ter variations are given beforehand. Namely, the
model parameter dMi = di, i = 1, · · · , 4. How-
ever, after 16-th parts, the information on d3 has
error, so the model parameter dM3 is assumed to
be set to dM3 = 0.8.

The reference signal is given as follows

r1(i+ 1) = r1(i) + 1.6, r2(i+ 1) = r2(i) + 1.4

0 ≤ i ≤ 9
r1(i+ 1) = r1(i) + 1.5, r2(i+ 1) = r2(i) + 1.5

10 ≤ i ≤ 30
Then, the proposed control law is applied to the
production system. The following control law can
be derived as is designed in section 4.

u(k + 1) =
2∧

i=1

{
∆T

i N i(dM )

�
(

rM (k)⊕
4⊕

i=1

(M i(dM)Γi)xM(k)

)}

(26)

rM (k) = r(k) − (y(k) − yM (k)) (27)

where

N1(dM ) =
[

dM 1 + dM 2 ε
ε dM3 + dM4

]
,

N2(dM ) =
[

dM 2 + dM 3 ε
ε dM1 + dM4

]
,

M1(dM ) =
[

dM 1 + dM 2 ε
ε dM1 + dM4

]

M2(dM ) =
[
2dM 2 ε

ε ε

]

M3(dM ) =
[

dM 2 + dM 3 ε
ε dM3 + dM4

]

M4(dM ) =
[

ε ε
ε 2dM 4

]

∆1 =
[

e ε
ε e

]
, ∆2 =

[
ε e
e ε

]

Γ1 =
[

ε e ε ε ε ε
ε e ε ε ε ε

]
, Γ2 =

[
ε ε e ε ε ε
ε ε ε ε ε ε

]

Γ3 =
[

ε ε ε ε e ε
ε ε ε ε e ε

]
, Γ4 =

[
ε ε ε ε ε ε
ε ε ε ε ε e

]

The simulation results are shown in Figure 4..

In Figure 4., the output errors, which imply
e(k) = y(k) − r(k) with using both IMC control
law and the information on the parameter varia-
tion are shown.
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Fig. 4. Plots of the 1st output error (o) and the
2nd output error (x) with using both IMC
control law and the information on the pa-
rameter variations (above) and the plots of
the control input (below)

For the comparison, the output errors with only
using the information on the parameter variation
are shown in .
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Fig. 5. Plots of the 1st output error (o) and the
2nd output error (x) with only using IMC
control law (without using the information
on the parameter variations) (above) and the
plots of the control input (below)

From Figure 4., in the case with using both IMC
control law and the information on the parame-
ter variation, the output delays, which mean the
output errors are positive value, does not occur ex-
cept during 3 samples after 16-th sample at which
the working time is changed. From Figure 5. and
Figure 6., however, the output delays occur after
the 16-th sample due to the change of the working
time when either IMC control law or the informa-
tion on the parameter variation is not utilized.

Therefore, it follows from the simulation result
that the utilization of both IMC control law and
the information on the parameter variations im-
proves the performance of the control system.
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Fig. 6. Plots of the 1st output error (o) and the
2nd output error (x) with only using the in-
formation on the parameter variations (with-
out using both IMC control law) (above) and
the plots of the control input (below)

Therefore, we can see that the proposed control
law shows better performance than the conven-
tional IMC control law and the inverse systems
for LPV-MPL systems with using the information
on the parameter variations.

7. CONCLUDING REMARKS

This paper proposed the IMC control for MPL
systems in the case where the controlled systems
are given as MPL systems with linear parame-
ter varying structure, which is called LPV-MPL
systems. In the LPV-MPL systems, the systems
parameters are explicitly represented in the sys-
tems description. Hence, the obtained IMC con-
trol law can utilize the additive information on the
parameters variations effectively when the param-
eters are measured on-line, or the variation of the
parameters are scheduled beforehand.

Furthermore, owing to the IMC control law, the
proposed method has robust property even when
the the information on the parameters variations
has some errors.

The effectiveness of the proposed IMC is shown
through a numerical example where it is applied to
a two-inputs, two-outpus production system with
four machines.
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