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Abstract: Using identification of neural networks, a new robust iterative learning control algorithm is proposed in the
paper. Combined with feedback control in real time, the neural network is employed to identify the nonlinear system
online and to produce the feed-forward actions of iterative learning control algorithm to realize continuous trajectory
tracking task for robot. Simulation results demonstrate that the algorithm can not only overcome uncertainties and
external disturbances, but also meet the trajectory command with few iterative learning and network training, and

thus possess better robustness and control performance. Copyright © 2003 IFAC
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1. INTRODUCTION

Robot is a kind of high nonlinear, closely coupled
and time-varying dynamic system, so that its exact
dynamic model is difficultly established. In order to
satisfy the requirement of high-precision motion
control of robot, some of the literatures have
proposed many new control methods, such as
computed torque method, adaptive control method,
varying-structured control method and iterative
learning control method. Among these methods,
iterative learning control has been aroused general
interest. This scheme can utilize a prior knowledge
regarding the controlled system, combining its output
and desired signals, so as to make the controlled
system yield the desired movement. Especially for
high nonlinear and close coupled dynamical systems,
meanwhile with high-precision requirement of
position, like industrial robot and digital machine
tool, iterative learning control has acquired some
useful application results (Xie, Z.D et al., 2000)
However, the complex industrial plant like robot not
only possesses high nonlinear properties but also
operates in an environment with external
uncertainties in most cases. Therefore, it is more
significant to investigate the robust learning control
strategy for nonlinear system in the presence of
uncertain disturbances.

Since neural network not only has the satisfactory
capacity of approximating any nonlinear mapping
but also can learn and adapt to the dynamical
property of unknown system, neural network based
control system has fairly strong adaptability and

robustness (He, Y.B. and X.Z. Li, 2000). In resent
years, neural network control considered as a new
approach has been applied to robot control and
obtained some research results. When introducing
neural network to identify and control the nonlinear
system, a double-neural network structure is to be
used in most cases. One is to learn positive model of
the controlled system as a identifying one itself,
another is used to learn the inverse model as a
controller. But the structure may lead to more
parameters from controller to be adjusted, and
stability and robustness of the closed loop system
cannot be ensured. In (Li, M.Z. and F.L. Wang, 1998),
on the basis of positive model identification of neural
network, the control problem was converted to an
optimizing one and then processed iterative solution.
But it remains to be further studied to advance the
precision of neural-identifying model and to select
weight coefficients and step factors. A neural
network controller with iterative learning algorithm
is presented in (Wang, C.Q, 1998) incorporating
feedback control actions, in order to overcome the
uncertainties and load disturbances of model. The
neural network based controller was to directly
realize inverse-dynamic control, which means that
the plant must be dynamically invertible, and thus the
tracking precision lay on the precision of the inverse
model. A case of existing uncertainties and parameter
varieties was considered in (Ozaki T and Suzuki T,
1991) where two neural network controllers were
employed to identify different parts of the model so
as to compensate effects of uncertainties and
parameter varieties. But this kind of neural network
structure may induce many tuning parameters and
need much more repetitive trials. Usually, there isn't



standard procedure to select the structure of neural
network and effective algorithm; the training
numbers over hundreds of neural network and the
low convergence rate become one of the primary
open problems. Simulation results in (Wang, C.Q,
1998) and (Ozaki T and Suzuki T, 1991) illustrated
that the learning numbers and tracking error
performance of iterative learning control based on
neural network would be modified greatly.

This paper presents a new neural network based
iterative learning control algorithm, which combines
iterative learning control with neural network
identification for the purpose of trajectory tracking
control of robot. As neural network has the ability of
self-learning, that utilizes the prior output data of
uncertain system to estimate iteratively the system
static state property to achieve ideal approaching
precision for identification of positive model, a
robust iterative learning control scheme on the basis
of the better positive model is designed. The neural
network is used to identify the positive model of the
nonlinear system on iterative axis, which can give
feed forward actions of iterative learning controller
to reduce the effects of nonlinearities and model
uncertainties. Meanwhile, the feedback actions of
iterative learning controller make joint movement
follow the desired trajectory on time axis by using
the control parameters derived by the neural network.
That is, after obtaining better approaching precision
of network training for model identification
iteratively trail by trail, the feed-forward actions of
iterative learning control law of the next trail are
constructed by the output signals of the neural
network, and then integrated with feedback control
to track the desired trajectory of robot in real time.
The feedback control is introduced to compensate
effects of both errors of identification and iterative
learning, so the controlled system can get better
robustness and control precision. As there exist many
architectures of neural network, the paper uses the
most common multi-layered neural network to
identify the positive model. Simulation results
indicate that the method is very effective to robotic
systems with unknown external disturbances, and it
can also acquire satisfying tracking performance by
fewer numbers of network training and iterative
learning processes.

2. MODEL IDENTIFICATION BASED ON
NEURAL NETWORK

System identification is a basic and important work
for the control system design. But identification of
the complex system is a more difficult and
challengeable issue. Robot is a kind of high nonlinear,
close coupled and time-varying dynamical system,
with the effects of model uncertainties and external
disturbances, so it is difficult to establish its precise
dynamical model. Owing to complicated mechanism
of robot and many unknown uncertainties including
measurement errors, the conventional methods of
identification would not suit to high precision control
of robot. While the nonlinear approximating property
and the high parallel operation ability of neural
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Fig.1. Architecture of the neural network

based positive-model

network provide a valid way for identification of
complex systems, especially for nonlinear system.

Using multi-layered static network to get the positive
model of nonlinear system, the controlled plant can
be considered as a "black-box", which means that it
is unnecessary to analyze exactly the internal
structure of unknown process or plant. As an
approximate model of the actual system, if the neural
network based model can give sufficiently small
identification error, the output signals of the model
can be considered as the output estimates of the
actual plant. Therefore the following conventional
MIMO nonlinear input-output discrete time plant is
considered

y(@) = f(y@ =1,y =2),-,y(—n),

(1
u(t =1),u(t—2),--,u(t —m))

where
u(®) =[u, (),u, (0),--u, (0] OR”,
y(t) :[yl(t)’yz(t)""ayq(t)]T OR?

are the plant inputs and the plant outputs vectors of
dimensions p and g, respectively, m, n are called as
model orders and assumed to be known, and f is
allowed as an unknown nonlinear input/output vector

function of dimension g, i.e.

S =LA, £, (), f, (0]
Eqn. (1) can be simplified as

(O =fU@E-1) ©)

where
](t_l) :[y(t_l)Ta“'ay(t_n)Ta
u(t =07, u(t—m) JOR™™

It is pointed out in (He, Y.B. and X.Z. Li, 2000) that a
feed-forward neural network with simple hidden
layer has the capability of approximating arbitrary
nonlinear function if there are enough nodes on the
hidden layer of the neural network. A neural network
based positive model structure of the plant is
illustrated in Fig.1, where the used neural network is
a three-layered back propagation network showed in
Fig.2. Then the neural network based identifying
model can be described as follows

Y+ =NU@),W) 3)



Fig.2. Architecture of the three-layered BP neural
network

where W is the synaptic weights vector, N is the
input/output mapping function of the neural network;
I(t)OR"™™™ represents the inputs of the neural
network and (¢ +1) [ R? represents the neural
network outputs composed of N, output neurons.
So the number of the output neurons of the neural
network can be determined easily, i.e. N, =¢. In

the architecture of the three-layered BP neural
network showed in Fig.2, a nonlinear Sigmoid
function in the hidden layer and a linear function in
the output layer will be employed, and the outputs of
the hidden layer and the output layer can be
expressed as follows

Ny
S, = f(net,) = £,(S Wyl +6,),
i=1

j:1927'”9NH (4)
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WyisWey» 0,8, are the connection weights

where f (x) = is a sigmoid function,

and threshold values responding to the input layer to
the hidden layer and the hidden layer to the output

layer, respectively, [, denotes the input of the input

layer, net j is the input of the hidden

layer, S ; represents the output of the hidden layer,

 is the outputs of the output layer, N,,N,,N,

represent the neuron number of the input, hidden and
output layer, respectively. Define identification error
of the neural network as

e,(t+) =yt +) -yt +1)
=fU@)-NU@®),W)

When the neural network being trained sufficiently,

(6)

the optimal weighting value W™ can be obtained
and it holds that

FU@=-NUI@,W)
0[(t)OD

where &€ is a sufficiently small positive constant
standing for the given approximating precision, D is

e,(1+1)<¢,

(7

. . + . .
a strict compact set 1n R™™™ However, in this

paper the network training is integrated with iterative
learning control. In the kth trial, minimize the
following quadratic cost function to get an optimal

weighting value Wk* firstly by using all input-output
data of this trial

T

> i@ =5:@F, k=12 @

‘]k :l
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where T is the period of the trials, y,(f) and

¥, (t) represents the system outputs and the

network outputs of the kth trial, respectively. To solve

Wk* from (8), the steepest descent algorithm is

employed in the paper.

VVHI = VV; - :Ba_J +aAWr—1’r =12, 9
.

where [ isalearning rate and O is a momentum

factor. The function of the momentum factor is to
memorize the changing direction of connection
weights in previous training procedure and restrain
vibration of the system that may be produced called a

smooth action. During the kth trial, the weight W,

can be modified recursively along optimal direction
as the training number 7 increases, so one hopes that
the identification error of model can be reduced
gradually. When themodel satisfies the given
approximating precision,the training process of (9)
will be completed andthe final weight obtained from

(9) will be set as Wk*. Then using Wk* calculates

the network outputs defined by )A/; (t) ¢TJ[0,T))

based on (4)and (5) for each trial that will be applied
to construct the feed-forward actions of the k+1th
iterative learning control law, and combined with
feedback control in real time to produce the control

inputs #,,, that will be described in next section.

3. NEURAL NETWORKS BASED ITERATIVE
LEARNING CONTROL FOR ROBOT

The dynamics equation of an n-degree-of —freedom
robot can be described in the following

M(6(1)6(t) +V (0(1),6(t))
+GO) +T,(1)=1(1)

(10)

where @(¢) 0 R” is the vector of generalized joint

position, M (B(¢))IR”? is a

positive inertia matrix; ¥ (0(¢),0(¢)) DR is the

vector

G(B(t)) O R” is the vector of gravitational term;

symmetrical

representing centrifugal and  Coriolis;

T(¢) L R” is the vector of joint torques supplied by

the actuators and 7, (#) JR” is an unknown term

arising from bounded disturbances. Due to the



uncertainties and external disturbances of the robotic
dynamic model, it is impossible to get the exact
value of generalized joint position. The paper
coordinates a P-type iterative learning controller with
identification model of neural network. Regarding
the disturbances as a part of the system itself, the
neural network is employed to identify the whole
nonlinear system so as to make the outputs of
network approach the actual outputs of the system
infinitely. As an identified model of the controlled
plant, if the model error € 1is small enough, the
outputs of neural network can be considered as the
actual outputs of the controlled system, i.e.
y(t) = P(t) . In order to improve robustness of the
controlled system and reduce the influence of
nonlinear uncertainties and disturbances to control
performance, a feed-forward compensation action is
firstly introduced based on the iterative learning
controller that may be either a conventional
controller such as PID, PI, P-type controller or an
intelligent controller like fuzzy controller and expert
controller, but a simple PD-type controller is used in
the paper. However an extension to other type of

controllers is easily made. Suppose that u » is

output of feedback controller and u© 7 is the one of
feed-forward controller based on the neural network
identification. Then a compound control law (%)
composed of Up and Uy will be derived. The

block diagram of architecture of control system is
illustrated in Fig.3.

In the kth iterative learning control process, it can be
known from the diagram that the control law of robot
trajectory tracking is,

u' (1) = uf (1) +ujy (1) (11)

Kooy — . ok -k .

where  u, (6) =k,e, () +k,e,(f) is the

feedback control action, k » ,k, are the positive

matrixes of position and velocity gains, respectively,
koo — k : .

e, )=y, () =y, (&), y,(t) is the desired

trajectory of the system, y]; (¢)is the actual output

including model uncertainties and external

disturbances in the kth trial. But u 7 is obtained by

KN — ok k
wy (t) =ufy () +kyce, (1) (12)
which is of the iterative learning controller, where
k. is the
et =y, )=y (@), yi(t)is the output of

neural network in the kth trial. To guarantee the
convergence of iterative learning control algorithm

(Pi, D.Y. and Y.X. Sun, 1999), the selection of k.
should satisfy

learning control gain matrix,

P ~k;D(0)) <1 (13)

where D is the close-loop transfer function matrix
of the system, P(D] represents the corresponding
spectrum radius.

For a two-degree-of-freedom robot, the orders p and
g of the system are both 2, and maximum differential
degree of its mathematical model is 2 also. The input
signals of neural network are fed by vectors of the
plant input signals and the desired trajectory signals
with delay degrees 0,1 and 2. The neuron numbers of
the input layer, hidden layer and output layer are
N; =12,Ny =10 and N, =2, respectively. The
training algorithm of the network is described by (9).
It is observed from next section that rather short
learning time is needed in general.

In conclusion, the iterative learning control scheme
proposed in this paper can be summarized as follows:
1) Fork =0, give an initial weight Wo* of Wk* to
produce j/f (t) (¢UJ[0,7T]) based on (4) and (5), and
only feedback control action is considered in (11).

2) Fork =1, use (9) to derive Wk* and then (12) to

calculate the feed forward action ul;f (1).

Furthermore an iterative learning control law u,

resulting from (11) will be available. The process of
iterative learning control is detached from neural
network training. When the kth procedure of iterative
learning control is completed, the neural network is
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Fig.3. The block diagram of architecture of control system



then trained by (9) using all inputs and outputs in the
kth trial.

4. SIMULATION AND ANALYSIS

The robot wused in  simulation is a
two-degree-of-freedom SCARA-type one given in
(Ozaki T, Suzuki T, 1991). The expression of each
term in the robotic dynamic equation is shown as
follows

My =m K} +my (L} + K3 +2L K, cos(6,))
+1,+1,

My =my (K3 + LK, cos(6,)) +1,

My =M,

My, =myKj +1,

Vi ==m, LK, sin(6,)(26, +6,)6, +D,,,6,

V, =myL,K,sin(8,)67 + D,,,0,

G, = g((m K, +myL;)cos(6,) +myK, [

cos(6, +0,))

G, = gm,K, cos(6, +0,)

where the following physical parameters of the robot
with two links are, arm length L, =0.25m, L, =0.16m;
link centers of gravity K, =0.2m, K, =0.14m; mass
m, =9.5kg, m,=5.0kg; inertia

I, =43%x107 kg Gn*, I, = 6.1x107 kg [n* ; motor
damping coefficients

D,, =3.85x10° N,

D,, =139x10° N3O~

gravitational acceleration g =9.81m B2,

The desired trajectories of two

T m . .
0,4 =—Ecos(%_5),92d :Esm(%'s) ; the gain
matrixes of the feedback controller are set at
k , =diag[300, 300], k,= diag[20, 20]; the external
disturbance was
T, =[0.13 cos(7%0+5),0.23 sin(7%0+4)]T . the

gain  matrix  of

joints are

learning  controller  is

K, - =diag[100,100]; the connection weights of the

neural network are randomly initialized between (
-0.5,0.5) ; the momentum factor is @ =0.9, the

learning rate is [3 =0.01. It takes about 5s for

simulation, and the sampling period is 0.01s. The
numbers of iterative learning and neural network
training for one iterative learning procedure are both
20. As convergence of the BP network depends on
the initial weights of its learning mode, we would
reinitialize the connection weights at the outset of
each learning trial. Fig.4 showed the tracking error of
the manipulator with two joints, and (a) —(d)
illustrate the error curves of the first, 7th,14th, and 20"
iterative learning trial. At the 20" iterative learning
control process, the index curve of training
performance for the neural network identifying

model was shown in Fig.5. It is easy to see from
Fig.4(a)—(d) that the error curves of two joints
possess clearly convergent trend as iterative learning
times increase. At the 20™ iterative learning control
process, the error satisfied the requirement of better
tracking precision. From Fig.5, it is clear that the
performance criterion of the BP network training
attain to le-6 level. Whereas the simulation results in
(Wang, C.Q, 1998) presented that there existed
certain error between the actual and desired trajectory
of the joints when only feedback control was
operated. At the 85" iterative learning control
procedure, the square sum of tracking errors on two
joints are 0.0059 and 0.064, respectively. As far as
other kinds of external disturbances are concerned,
such as a noise signal, an impulse at any time,
simulations are also performed in the paper. The
results show that the proposed scheme can also get
rather good requirement of tracking precision.

5. CONCLUSION

The paper presents a method of iterative learning
control combining with identifying model of neural
network. The BP neural network is employed to
identify the nonlinear system and to produce the
feed-forward action of iterative learning control
algorithm, and it is integrated with feedback control
in real time to form the neural network based robust
iterative learning control algorithm. The scheme
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Fig.4. The tracking error curves of two joints:
(a) First trial; (b) 7™ trial; (c) 14™ trial; (d) 20" trial.;
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Fig.5. The performance index curve of the neural
network identifying model

makes the robotic controller have the ability of
self-learning and eliminate the influences of
uncertainties and external disturbances of the
dynamical model. Further analysis performed in the
paper indicates that the control system can realize
high-precision tracking to any trajectory on the
condition that the identification precision of neural
network is good enough. Moreover, the simulation
investigation shows that the neural network based
control strategy can be used better for the complex
industrial processes.
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Abstract: A robust adaptive control design is considered for a class of bilinear plants with unmodeled
high-order dynamics and bounded disturbances. A basic optimal control law is first introduced by the
generalized minimum variance control strategy, followed by a modification of introducing the
modeling error estimate to the control law. Modified least-squares scheme with a relative dead zone is
developed to form a novel robust adaptive controller. The resulting closed loop system is proven
theoretically to have a zero average tracking error and robust stability. Furthermore, the simulation and
an application in controlling of sensitive plate temperature of distillation column demonstrate the
effectiveness of the algorithm. Copyright © 2003 IFAC

Keywords: robust stability, adaptive control, bilinear system, unmodeled dynamics, distillation

column.

1. INTRODUCTION

Attempts to invent, design and build systems capable
of controlling unknown plants or adapting to
unpredictable changes in the environment resulted in
the emergence of adaptive control in the 1950s, and
since then, adaptive control has been in the
mainstream of control research and development with
numerous papers and books published and successful
applications every year (Astrom 1983, Ljung and
Soderstrom 1983, Goodwin and Sin 1984, Astrém
and Wittenmark 1995, Kanellakopoulos and Koktovic
1995, and the References therein). Significant
contributions have been made with the stability
establishment of adaptive control theory (Egardt 1979,
Gawthrop 1980, Goodwin and Sin 1984, Middleton et
al. 1988, 1989). They, however, have been limited to
the ideal cases, such as linear plants of disturbance-
free, random noises, etc. A stable adaptive control
algorithm may not be necessarily robust stable
(Egardt 1979, Rohrs et al. 1982), and the disturbances
in an adaptive control system may be inherently
related to the plant inputs and outputs (Krisselmeier
and Anderson 1986). This led to the recent interest of

the robust stability research for adaptive control
systems. In the presence of nonlinear uncertainties,
unmodeled dynamics and/or bounded disturbances, it
has been shown that for the linear plants, robust
stability can be ensured by combining the
normalization, 0-modification and relative dead zone
parameter estimation algorithms with the control
strategies of minimum variance, generalized
minimum variance or pole placement (Clarke and
Gawthrop 1975, 1979, Gawthrop and Lim 1982,
Middleton et al. 1988, 1989, Shao 1991, 1996). For
the bilinear systems, adaptive control stability has
been studied recently with bounded external
disturbances (Sun and Rao 1999), but the robust
stability has not been considered for the systems with
the presence of unmodeled dynamics.

This paper examines the robust stable adaptive
control problem of the bilinear system in the presence
of unmodeled plant uncertainties and bounded
disturbances. The considered plant is a class of high-
order bilinear systems with unknown and perturbed
parameters. By means of minimizing a generalized
variance function, a basic control law is first derived
and then modified by introducing model error
feedback. A self-tuning controller is proposed by
combining the control law with a modified least



squares parameter estimator with relative bilinear
dead zone. With the proposed self-tuning controller,
it is proven that robust stability for the bilinear
system can be ensured with respect to the unmodeled
high-order nonlinear dynamics and bounded
disturbances, without any static state tracking error in
an average sense.

Distillation column is a kind of important fraction
equipment in chemistry industry. Due to the complex
structure of the equipment and the different effects
caused by the fluids, the whole system is of essential
nonlinearity and of large delay. The control of
distillation process is quite concerned with the
products quality. In the control system designing for
it, in order to satisfy the high quality demand, the
sensitive plate temperature is usually selected as the
controlled variable. Bilinear system can be used to
model many industrial process. In this paper ,a plant
of sensitive plate temperature modeled as bilinear
system is presented and used as application model.
Because of nonlinear characteristics of distillation
column, it is naturally to develop robust nonlinear
adaptive control algorisms to solve this problem. The
experimental results suggested in the paper
demonstrated the effectiveness of the proposed
bilinear adaptive algorithm for control of distillation
column also.

2. THE PLANT DESCRIPTION

Consider a class of bilinear plants with uncertain
perturbation and bounded disturbances

(1) =g~ Gu(t) +q ™ G, y()u(t) +Vv(t) (2.1a)

G, =BU+HE) 2.1b)
A +pA')
_C+uC)

© = e i) 2.1¢)

where y and u are the scalar output and input,
respectively, V is a bounded output disturbance,
d =1 is the plant delay, 4, A, B, B',C and C' are

1

polynomials of delay operator ¢ of orders

n,,Ny,Ng,Np,N. and n. , respectively,
and U = 0 is a singular uncertain perturbation scalar,

by which the unmodeled high-order dynamics will be
brought. In fact from (2.1):

y(r)=§u(z—d>+§u<z—d)y<r—d)+np(z) (2.24)

np(0) = u—j((i;i,)) u(t - d)
o (2.2b)
C(C'-4") _ _
B 1= D)+ v

Consequently, a singular perturbation from ¢ >0 to
U =0 results in the reduced-order model

y(t):%u(t—d)+%u(t—d)y(t—d)+v(t) (2.3)

The designer is assumed to be given only the
reduced-order model (2.3), without the knowledge of
the coefficients of 4, B and C. Therefore, the

modeling errors 1 p(¢) which includes the unmodeled
high-order dynamics related to u(¢), y(¢) and their

products, has to be considered in designing of
adaptive controller and the robust stability of the
resulting closed loop system must be ensured. Model
representation of (2.3) has been effectively employed
for modeling a combustion process with one input
(flow of air) and one output (Oxygen content) in
discrete time and many other industrial processes,
such as nuclear fission, convective heat-transfer, and
turbo-pump dynamics may be also effectively
modeled by a bilinear system (Mohler 1991,
Aganovi¢ and Gaji¢ 1995). The analysis of the model
is made with the following assumptions for the model
polynomials 4, B and C, in this paper.

Assumption 1: A is monic and coprime with B.
Assumption 2: N, ,Ng N and delay d are known.

Remark 1: Assumption 1 implies that the reduced-
model is controllable, the pole placement control
design can, therefore, be applied to the processes that
are unstable and/or non-minimum phase. Assumption
2 provides a necessary structure parameter frame for
constructing a self-tuning controller.

3. ANOVEL SELF-TUNING CONTROLLER

Our objective is to design a self-tuning controller
based on the reduced-order model, or the structural
knowledge of 4, B and C, so that the application of
such a controller to the plant (2.1) results in a robust
stable closed loop system tracking the desired output
in the presence of the unmodeled dynamics and
bounded disturbances.

Let P be an arbitrary monic polynomial in q_l of

order 7, . Introduce the polynomial identity

P=AF +¢q7°G (3.1

where F and G are polynomials in q_1 of orders
np=d-1 and ng=max{n,~1,np} , respectively,
and F'is monic also. Multiplying (2.2a) by AF gives

Py(t+d)=Gy(t) + FBu(t) + FCu(t)y(t)

(3.2)
+AF, (i +d)

Define

@) = Py(t)



X' (@)=(y(t),...., y(t = ng),u(t), ...,

u(t = ny=d +1),u(t)y(@), .. (3-3)
u(t—-n, —d+l)y(t-n, —d+1))
n(t) = AFn,(t) (3.4)

Then a regression form of (3.2) can be given as
follows

Pit+d)=0"X@)+n(t+d) (3.5)

where O is the parameter vector composed of the
coefficients of G, FB and FC. It should be noted that
though the plant is modeled linearly in 6 , the
nonlinearity exists in the multicity of measured inputs
and outputs, and the high-order unmodeled
dynamics ) (¢) . The following lemmas are given to

establish a relative upper bound of 1(z).

Lemma 1: Let D(¢™") be a polynomial in q_l with
finite order #,, . For arbitrary 0 [J(0,1) there exists
Ho >0 such that D, (z™)=1+uD(z"")#0 for all
|z| >0 and pO[0, 4,1, that is D, (¢™") is strictly
Hurwitz uniformly in (4 U[0, 14, ].

The proof is given in Shao (1996).

Lemma 2: There exist non-negative constants K

and K, independent of y and p; such that for all
Hoo, 141

176)| < K, fma{ y(0)| + max| u(@) ()]}

= <r<i-d
+K,

(3.6)

Proof: Substituting (2.2a) into (2.2b) results in:

_ B-A C(C-B) _
M (0) = Hy s YO+ ot =d)y(e=d)
1+ud’
a0

The result follows from (3.7) and (3.4) by applying
Lemma 1 to B;l: 1 +UB’" and referring to the proof

of Lemma 2 of Shao (1996).

To achieve a basic optimal control law, suppose that
{I’](t)} is a white noise sequence, the generalized

minimum variance control strategy of Clarke-
Gawthrop type (Clarke and Gawthrop 1975, 1979)
then may be employed by minimizing the following
quadratic cost function with respect to u(f):

J =E{P(y(t+al)—y*(z+d))+§u(t)}2 (3.8)

where P and Q are constant weighting polynomials
in ¢~ withQ = (1-¢™")Q, and y*(2) is bounded
desired output. It follows from (3.5) that

J=E{07 X ()~ Pyt + ) + Ou(r) +Dn
(3.9)

It is obvious that an optimal control law can be given
by

07 X (1) + Qu(t)= Py *(t+d) (3.10)

The preceding control law (3.10) is not suitable for
our purpose, as f](¢) includes unmodeled dynamics.

In fact for the self-tuning case, replacing 6 in (3.10)
with its estimate é(t) and then applying (3.10) to (3.5)
one obtains

POt +d) =y *(t +d))=(0-0()) X(z)
—Qu() +n(t +d)

which means that due to the existence of n(¢) the

(3.11)

tracking error e(z) = y(¢t) —y *(¢t) will not converge to

zero even when the parameter estimates

() approach to their true values. To remove the

effect of unmodeled dynamics, the control law (3.10)
is modified by introducing an estimate of () :

A0 =90 -6 X (1 - d) (3.12)
which results in a novel self-tuning control law
0" X (1) +Qu() =Py *(t+d)-n@n)  G.13)

The parameter estimates are given by the modified
least squares scheme with relative dead zone (Shao,

1996) by changing the parameter A(t) as follows:

D iffe(o] < 280K * (ax (o)

+ max [u(T)y(1))) +1]
A(t) - % 05rsr—d| Y |
¥ otherwise,yUd[o,,3(1-0,)/4]

where [ is positive user adjustable parameter with

B= max{Kl,Kz} (see (3.6)), and {W(t)} is a
matrix sequence with arbitrary initial ' (-1) > 0 .

(3.14)

Remark 2: Tt can be shown that for a linear plant (i.e.
C equals to zero in (2.1)) the quadratic cost function
(3.8) is equivalent to the generalized minimum
variance function of the Clarke-Gawthrop type
(Clarke and Gawthrop 1975, 1979, Gawthrop 1980,
Gathrop and Lim 1982, Shao 1996)

J= E{[P(y(t + d) =y * (1 + d))* + [Qu ()] }
(3.15)

And here choice of weighting polynomial Q in the

form of Q =(1-¢7")0 , to be seen in the sequel,

will remove static state tracking error in an average
sense.



Remark 3: It can be observed that a relative bilinear
dead zone method is employed in this paper. Despite
the appearance of the bilinear term in the control law,
u(f) is always solvable from (3.13) by choosing
proper A(¢) and/or O . The singularity problem in

solving u(¢) from (3.13) can hence be avoided.

Remark 4: The condition f3 Zmax{Kl,KJ is not

crucial. In practice, one can start with a large initial
value, and then reduce [ when the closed-loop

system approaches the steady state, to improve
control accuracy.

The following assumption is made on P and Q .

Assumption 3: The off-line choices of P and Q are
such that

f(@)y=P(qg ")B(g )+ 0(qg")A(q™")
(3.16)
is stable, that is f(z) %0, |z|sl.

Remark 5: Assumption 3 is often made for linear
control systems with the pole placement design. Here
it is made, however, for the reduced-order model with
the design consideration of the robust stable adaptive
control of a bilinear system with unmodeld high-
order dynamics. The linear part of the plant (2.2) may
be unstable and/or non-minimum phase, without any
further constraints on 4 and B.

The only assumption on the unmodeled dynamics is
made as the following:

Assumption 4: A sufficiently small upper bound [*
of U is available. (The meaning of ‘'sufficiently

small' will be elaborated later.)

Remark 6: This is a condition often used to construct
relative dead zone adaptation algorithms for solving
the linear robust adaptive control problems
(Kreisslmeier and Andson 1986, Shao 1996).
Extension has been made here to bilinear nonlinear
systems with unmodeled high-order dynamics.

4. ROBUST STABILITY ANALYSIS

The following lemmas are given for the robust
stability of the resulting closed loop system.

Lemma 3: If pu* is sufficiently small such that
p*<u, , the application of parameter estimation
scheme (3.14) to (3.5) for all p O[O0, u*] has the
following properties.

M i 202 e)

=g @)
SR+ X(—d) Wt -2)X (1 -d)]?

2) ‘[é(t )-8 -d) X(t - d)‘ <h@o|X@-d)| -
h(t) > Oas t » (4.2)
where ” E” denotes the vector-Euclidean norm.

3) é(t) is bounded.

The proof may be referred to that of Lemma 3 in
Shao (1996), and is thus omitted here.

Lemma 4: The tracking error and the input dynamics
satisfy

(PB + QA)e(t) = QCy(t —d)u(t —d) + 40N, (t)
+BA,£(1) + 3, (1)

(4.3)

(PB + QA)u(t—d) = —PCy(t —=d)u(t —d) - APN , (1)
+ AN £(2) +0, (1)
(4.4)
where A, =1-¢~ and
3,(t1)=B[B(t-1)-0(t-d)]" X (t —d)
+B[O(t-d)-0(t—d -1)]" X (t —2d) 3)
— 40y * (1)

3,(1) = A0t -1)-0(t-d)" X(t-d)
+ A[6(t—d)-O(t—d-1)]" X(t-2d) (4.6)

+ APy * (1)

Proof: Using (3.13) and (3.14d) gives

Pdt) =@(t) ~1i(t —d)~0(t —d) X(t —d) ~ Qu(t ~d)
=0,£0) +[6( 1) -6 ~d)] X(t~d)
+[6(t ~d) =0t ~d =] X(t ~2d) = Qu(t —d)
4.7)
From (2.2a) one obtains
Ae(t) = Bu(t—d)+ Cu(t—d)y(t-d)
+ AN, (1) = Ay * (1)

(4.8)

A summation of (4.8) multiplied by Q and (4.7)
multiplied by B results to (4.3) with J,(¢) of (4.5). In

the same fashion, a summation of (4.8) multiplied by
P and (4.7) multiplied by -4 leads to (4.4) with J, (¢)

of (4.6).

Lemma 5: Subject to Assumptions 1-4, there exist
sufficiently small p* >0 and non-negative constants

L,L, and Lj that are independent of yu and
polynomial C such that for all p [0, pu*]



max ‘u(T)‘SL'(ué +[1P) max ‘CU(T),V(T)‘

0sr<t-d (49)
+ L, max] s(r)\+L

max | y(1)| < Lj(Hg+H,) max |Cu(T)y(1)| 4.10)
+ L) max 8(T)|+L

0<T<t
h _ ng — np ~ d
where yi =% " |g,| #p=) [Pl @ and py

are coefficients of polynomials Q and P, respectively.

The following assumption is further made on

weighting polynomials P and Q to ensure the
resulting closed loop system with robust stability.

Assumption 5: The norms Up, Hp of P and é,

respectively, are relatively small.

Remark 7:
requirement on the weighting polynomials P and Q

Assumption 5 gives the specific

for the robust stabilization of bilinear systems, in
addition to the general pole placement method.

Theorem 1: Subject to Assumptions 1-5, there exists
sufficiently small p*>0 such that the application of
self-tuning control algorithm (3.14) to plant (2.1)
ensures that

(1) The resulting closed loop system is globally
robust stable in the sense that u and y are bounded for
arbitrary bounded initial conditions and all

p o, p*]

(2) The tracking error satisfies

1 N
SPRUS
(3) In particular, if the disturbance V is constant (not

necessarily equals to zero) and the reference signal y*
is fixed, then

lim [y() = y*] = 0

(4.11)

(4.12)

The proof is omitted here.

5. NUMERICAL SIMULATION

To demonstrate the effectiveness of the proposed

adaptive  control algorithm some numerical
simulation results are given below.

EXAMPLE

Select
A=1+qg'+¢?2,B=1,C=1;4"=1+q"",
B'=1,C'"=1. Then a bilinear system plant is

given as below:

40

-a0
o

Fig.1 The plant output

k) ==y(k=1) = p(k =2) +u(k =2)* (k=2)
Fu(k=2) = p* y(k=1)/(1+ 1)
+(1+240) [(1+ ) * e(k)

e(k) is a random gaussian distribution sequence

with mean zero and variance 0.01;
controller:

P=6+5¢"+q7,0=1,a=1,B=4,y=05,
U =0.01, and the initial conditions:

é(O) =[-2,043,-0.01403] , WQ=al>0 ,
(@ =0.8); As shown in figure 1, the controller

worked well with the presence of unmodeled
dynamics.

For designing

6. APPLICATION OF THE ALGORITHM

A certain loop in a industrial distillation column can
be modeled as follows:

T(k +1) = 0.3848T (k) + 0.0767T (k)u(k)
+0.5*sin(u(k — 1) * y(k — 1))
~1.2663u(k) + e(k)

T (k) (°C)is the temperature of the sensitive plate,

u(k) (kmol / h) s the charge in flow.

The sampling cycle 7, =Is. e(k) is a random
gaussian distribution sequence with mean zero and
variance 0.01.The simulation result is shown in figure
2. From the results, it can be seen that the tracking
error is zero and the tracking velocity is satisfactory.
The robust adaptive control algorithm worked very
well and improved the quality of the controlled

system.



0 100 200 300 400

Fig.2 The plant output

7. CONCLUSIONS

A new self-tuning control algorithm has been
developed in this paper for a class of bilinear systems
with uncertain perturbation and bounded disturbances.
The generalized minimum variance control strategy
has been extended to suit our purpose together with a
modified least squares estimation with relative
nonlinear dead zone. The robust stability of the
resulting closed loop system has been established
with respect to unmodeled high-order dynamics
related to the plant input and output, and to bounded
disturbances. Simulation example and application for
control of sensitive plate temperature of distillation
column showed that the proposed algorithm is
available for robust control of a class of nonlinear

systems with uncertain disturbances and high degree

unmodeled dynamics.
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COMBINED GAIN-SCHEDULING AND MULTIMODEL CONTROL
OF A REACTIVE DISTILLATION COLUMN
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Abstract: Reactive distillation (RD) is a favourable alternative to conventional series of
reaction-separation processes. Control of RD is challenging due to its integrated
functionality and complex dynamics. Linear PID algorithm is not satisfactory and
needs because of the need for adequate retuning over a wide range of operating
conditions. Combined gain-scheduling and multimodel control scheme is proposed to
handle the nonlinearities of the process. Simulation results show the superior
performance of the proposed method to that of a standard PI control.
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1. INTRODUCTION

The RD column is gradually becoming an important
unit operation in chemical process industry. It offers
reduction in both investment as well as operational
costs. Tight control of product composition and
conversion is fundamental for an economically
optimal operation. Unfortunately, both composition
and conversion cannot be economically and reliably
measured on-line and in real time. Moreover, the
relationship between the product composition and the
potential manipulated variable (eg. reboiler duty)
may reveal multiplicity. Inferential control via stage
temperatures, which have monotonic relationship
with the manipulated variable, is commonly adopted.

Directionality of a chemical process means that a
vector of inputs (eg. manipulated variables) is
differently amplified according to its direction. It has
been known to create considerable complex problem
in control system design for multivariable processes
such as in conventional distillation (Ségfors and
Waller, 1995). Standard PID with fixed parameters is
not satisfactory because of the need for adequate
retuning over a wide range of operating conditions.

Inferential control of RD, which has directionality in
the process gain, is investigated in this study. Limited
number of reports has discussed control aspects of
RD. Control strategies of batch RD (Sorensen and
Skogestad, 1994) and its structure for optimisation
(Wajge and Reklaitis, 1999) have been investigated.
Recently, nonlinear control of batch RD has been
proposed (Balasubramhanya and Doyle III, 2000).

For continuous RD, a nonlinear input-output
linearizing controller and nonlinear controller have
been designed for ethylene glycol system (Kumar
and Daoutidis, 1999). A robust PI control scheme has
been proposed for the same system (Loperena et al.,
2000). Linear and nonlinear control strategies have
been applied for an ethyl acetate system (Vora and
Daoutidis, 2001). A variety of control structures have
also been explored for two product RD (Al-Arfaj and
Luyben, 2000).

For ethyl tert-butyl ether (ETBE) RD, which is the
focus of this study, general control considerations
have been presented (Sneesby et al., 1997).
Combined composition and conversion control have
been discussed (Sneesby et al., 1999). Control
performance of a variety of one-point control
schemes has been compared (Bisowarno and Tadé,
2002). Pattern-based predictive control has recently
been proposed for controlling the product
composition (Tian et al., 2003). Effectiveness of
control schemes has been compared for single and
double-feed RD (Al-Arfaj and Luyben, 2002).
Standard PI algorithms, which were employed for all
cases, indicated more advanced controller is required
to improve the control performance.

In this study, combined gain-scheduling and
multimodel control will be implemented on one-point
control of an ETBE RD. The models cover
directionality of the process gain and a switching
scheme will be employed to integrate them. Its
performance will be compared to that of a standard
PI controller.



2. REACTIVE DISTILLATION

A pilot scale packed RD column for ETBE
production serves as an example for a typical single-
feed two-products RD process. The column consists
of 1 rectifying stage, 3 reactive stages, 4 stripping
stages, a total condenser, and an electric partial
reboiler, respectively, as shown in Figure 1. The feed
is a mixture of isobutylene, ethanol, ETBE, and n-
butane, resulting from a pre-reactor, which converts
most of isobutylene to ETBE. Typical operating data
including the operating range are summarised in
Table 1. The primary and secondary manipulated
variables are reboiler duty (Qg) and reflux rate (Lg),
respectively. LV control scheme, which outperforms
other control schemes for this column (Bisowarno
and Tadé, 2002), is employed.

Inferential control is adopted to control the ETBE
purity. The relationship between the purity and the
reboiler duty reveals input multiplicity phenomena as
shown in Figure 2. Based on the sensitivity analysis,
stage 7 temperature is found to be the most
appropriate measured variable to infer the ETBE
purity (Tian and Tadé, 2000). Figure 2 also shows the
relationship between the stage 7 temperature and the
reboiler duty. The nonlinear process gain (AT-/AQ,)
is large around the nominal operating condition and
becomes small outside this range.

Distillate

Bottoms

Fig. 1 ETBE Column with the controllers
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Fig.2 Stage 7 temp./purity vs. Qg (Lg =2.2 I/min)

Table 1 ETBE RD column characteristics and Inputs

Column Specifications:

Nre/Nrx/Nst 3/3/5

Feed stage 6

Overhead pressure 950 kPa

Feed Conditions: Range Nominal*

Temperature 30°C 30°C

Rate (1/min) 0.684-0.836 0.76

Comp. (mol) 70-80 mol% 0.291 ETBE,
conversion 0.091 EtOH,
in the pre-reactor  0.073 iBut,

0.545 nBut

Man. Variables: = Range Nominal*

Lz (I/min) 20-24 2.2

Qr MJ/min) 0.4825-0.555 0.520

* Nominal (optimum) operating condition for
designing the control system

3. CONTROL OBJECTIVES

The main objective of the control system is to keep
the controlled stage 7 temperature close to the set-
points despite the presence of disturbances. The most
significant disturbances are changes in the feed flow
rate and in the feed composition. The second
objective is a sufficiently fast set-point tracking.
These two objectives must be achieved for the entire
operating range of the reactive distillation column.

4. CONTROL DESIGN METHOD

Adaptive control with multimodel was introduced in
(Narendra and Balakrishnan, 1997). The basic idea is
to choose the best model for the column from an a
priori known set of models at every instant, and then
apply the output of the corresponding controller to
the column. Firstly, the process identification is
performed by rapidly choosing the smallest error
with respect to a criterion (switching). Unlike the
previous work, the controller parameters are then
adjusted using a parameter-adaptation algorithm in
this study (gain-scheduling).

4.1 Multimodel

Although a single highly nonlinear and/or adaptive
model may be used to represent the process
dynamics, several simple fixed multimodels are
employed. They are chosen to cope with nonlinear
and time varying characteristics of each operating
condition point. A proper switching scheme is
needed to integrate the models. As a result, process
identification and rapid control action can be
satisfied.

Simplified input-output dynamic models of the
manipulation and disturbance paths are identified



Table 2 Multimodels based on open-loop tests

Ly (I/min) Qg, min Qr, nom Qg, max
2.0 4709.5 4679.5 498
2384Tis+ 1 78.5Tis+ 1 21 Tis+1
22 6442.75 4675 493
1974Tis+ 1 732Tis+1 232Tis+1
2.4 960.5 9043.5 1472
1224Tis+ 1 126.1Tis+ 1 549Tis+1
Disturbances at Lg = 2.2 1/min
Feed rate 0.412
23.75Tis+1
Feed comp. 0.163
6.75Tis+ 1

around the optimum reboiler duty at constant reflux
rate. Referring to Figure 2, three simplified models
are derived to capture the nonlinearity of the process
gain for each constant reflux rate. At each of the
reboiler duty of 0.4825, 0.520, and 0.555 MJ/min,
respectively, the models are derived at the reflux rate
of 2.0, 2.2, and 2.4 1/min, respectively. The models of
disturbance patch are derived at the optimum reboiler
duty of 0.520 MJ/min. Table 2 shows the models
formulated as first order transfer functions.

4.2 Switching scheme

The switching scheme involves firstly monitoring a
performance index based on the identification error
for each model and then switching to the model with
smallest index. A small identification error leads to a
small tracking error (Narendra and Balakrishnan,
1997). The performance index (IE) is formulated in
equation 1,

IE=og’ +Be™e’dt,a>0andp>0 (1)

where o and B are the weighting factors on the
instantaneous measures and the long-term accuracy,
respectively. These two free design parameters
provide smooth transition between different process
models. g is the difference between the outputs of the
model and the real plant.

4.3 Gain Scheduling

Gain scheduling is based on linear time-invariance of
the process at a number of operating points. A linear
controller is then designed for each operating point.
Therefore, the parameters of the controller should be
interpolated or scheduled (Rugh and Shamma, 2000).
The controller gain is commonly scheduled due to
the process nonlinearity with constant dynamics.

Switching between local linear controllers is a
conventional way for gain scheduling. A function of
a scheduling variable can also be employed to
interpolate the gain. Measured ouput or set-point may
be used as a scheduling variable (Bequette, 2000).

set-point
— GS » RD Plant

Glé \IE

output

v

A 4

A 4
Q
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Fig. 3 Combined gain-scheduling and multimodel
control scheme

In this study, the scheduling controller gain (Kc) is
formulated in equation 2 (Ogunnaike and Ray, 1994),

_ KcoKpo
= Ko

Kc ()

where Kco and Kpo are the reference values of the
controller gain and process gains, respectively. The
time varying process gain (Kp) is identified and
computed on-line from the inferred variable and the
manipulated variable.

The reference control parameters are tuned by using
Abbas method (Abbas, 1997). This method relates
the controller parameters to the characteristics of a
first-order plus time delay model and the desired
over-shoot of the closed loop system (Alexander and
Trahan, 2001). For a PI controller, the controller
parameters are formulated in equation 3,

Ke = T+6/2 (3a)
Kpo(L+6)
Ti= T+6/2 (3b)

where Kpo, T, and 0 are the open-loop process gain,
time constant, and time delay, respectively, and A is
the desired closed-loop time constant.

The general structure of the combined gain-
scheduling and multimodel control scheme is shown
in Figure 3. G1, Gn, GS, and IE are the simplified
model 1, the simplified model n, the gain-scheduling
controller, and the performance index, respectively.

5. CONTROL PERFORMANCE

The control performance of the proposed method is
compared to that of a standard PI controller. The
desired closed-loop time constant is chosen to be 5
min. Applying the Abbas method, the controller gain
and time constant of the PI controller in the range of
operating conditions are 0.00622 °C/(MJ/min) and



84.53 min, respectively. For the proposed method,
the time constant is kept constant at 84.53 min while
the controller gain is computed on-line as a function
of the scheduling variable.

Figures 4 and 5 show the dynamic responses when
the feed flow rates (Fy) increase or decrease steeply
by using either standard PI or the proposed method,
respectively. The Figure shows that the disturbance
rejection of the proposed method is superior to the
standard PI controller.

Figure 6 shows the dynamic response resulting from
step change in the feed composition (F.). The
changes were represented by changes in the pre-
reacted feed from 80 to 70 mol% of the isobutylene
conversion. Figure 6 shows the proposed controller,
which can tightly control the stage 7 temperature,
does not keep the purity at the set-point value. This
results from the model mismatch. Although more
models can be employed to enhance the control
performance, the intrinsic problem remains. This
problem results from the difficulties to infer
composition from VLE temperature measurements in
multi-component mixture.

Figures 7 and 8 show the dynamic responses for step
changes in the set-point value (T;). The proposed
method clearly has better set-point tracking as shown
by shorter settling time.

The corresponding values of the integral absolute
error (IAE) and integral of time-weighted absolute
error (ITAE) criteria are shown in Table 3. The
criteria confirm the previous analysis that the control
performance can be improved by using the proposed
method.
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Table 3 Comparison of IAE and ITAE indices

Magnitude IAE ITAE

PI  GS* PI GS*
+10% F; 219 83 19990 1120
-10% F; 218 83 19877 1113
80-70%conv. (F.) 81 83 7741 1117
+5°C T, 19 4.1 389 288
-5°C T, 15 4.3 334 294

* The proposed method using gain-scheduling and
multimodel control scheme

6. CONCLUSIONS

The combined gain-scheduling and multimodel
control has been applied to a RD column for ETBE
production having nonlinearity in the process gain.
Several input-output first order models were derived.
Gain-scheduling control was then implemented
employing the multimodel for model identification
and scheduling the controller gain. The proposed
controller is superior to standard PI control with
fixed parameters for RD columns. However, the
effectiveness is reduced for feed composition
disturbances. This work clearly demonstrates that
nonlinear processes can be controlled successfully
with a linear multimodel concept.
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Abstract: Gath-Geva fuzzy clustering algorithm is a nonparallel fuzzy clustering
algorithm and is not easy to get a suitable and interpretable fuzzy set. The outputs of the
Takagi-Sugeno fuzzy model can influence the input space partition. Neglecting this
influence increases the identification error. In this paper, a modified Gath-Geva fuzzy
clustering algorithm is introduced to solve these problems. Together with weighted least
square method, we construct Takagi-Sugeno model to identify non-linear system. The
identification of the glass oven demonstrated the effectiveness of the proposed method.
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1. Introduction

Fuzzy modelling and identification techniques have
become an active research area due to its successful
application to non-linear complex systems, where
traditional methods are difficult to apply because of
lack of sufficient knowledge. Among the different
fuzzy modelling techniques, the Takagi-Sugeno (TS)
fuzzy model has attracted most attention.

The TS fuzzy model consists a set of if-then rules
that have a special format with a polynomial function
type consequent. The TS fuzzy model approach tries
to decompose the input space into fuzzy subspace
and then approximate the system in each subspace by
a simple linear regression. Without the time-
consuming and  mathematically  intractable
defuzzification operation, the TS fuzzy model is the
most popular candidate for fuzzy modelling.

There are two main issues in the process of
constructing a TS fuzzy model. The first is how to
determine the premise structure, and the second is
how to estimate the parameters of the TS fuzzy
model. Fuzzy clustering and least square method
have proved to be suitable techniques to create TS
fuzzy model.

Fuzzy clustering algorithms like the algorithm by
Gustafson and Kessel (GK), Gath and Geva (GG), or
the fuzzy C-means algorithm partition the input
space into adequate subspaces and detect linear local
substructures. Therefore, these algorithms are very
suitable to construct TS fuzzy model from data. A
modified Gath-Geva algorithm is proposed in this

paper.

This work is supported by NSFC (60174051/F03)
and ICTF (DZYFYY0204)

The paper is organized as follows. In section 2, we
formulate the TS fuzzy model. A modified Gath-
Geva fuzzy clustering (MGG) algorithm is described
in section 3. Identification of glass oven is provided
in section 4 to illustrate the effectiveness of the
modified Gath-Geva algorithm. Finally, Section 5
constrains some conclusions.

2. Takagi-Sugeno Fuzzy Model

The Takagi-Sugeno Fuzzy Model was proposed by
Takagi, Sugeno in an effort to develop a systematic
approach to generating fuzzy rules from a given
input-output data set. A typical fuzzy rule has the
form:

Ri:if x;is Aj;and  and x, is A;, then y; is fi(x)

where
fi(x)= Aipta;x+-+a;, x,
in which i=1, .k, x(1<<i<Xc), are the input variables,

y; is the output variables, A,;, (1<j<p), are fuzzy
sets defined on the universe of discourse of the input.
fi(x) is usually a linear polynomial function in the
input variables.

In the TS fuzzy model, each fuzzy rule describes a
local linear model. All these local models combine to
describe a non-linear complex system, which is
difficult to find a global model.

The outputs of the TS fuzzy model is computed using
the normalized fuzzy mean formula:

Y A f(x)

2 A

where A; is the level of fulfilment of the ith rule:

y(k)=



A (x)= Ai,l (X)X Ai,z (x,) %X Ai,p (XI’)

in this paper, Gaussian membership functions are
used to represent the fuzzy sets A; ;:
2

(x i~V j) )

2

ij
where v, ; represents the centre and ¢ ; ;* the variance
of the Gaussian function.

1
A (x)=exp(—

3. Modified Gath-Geva fuzzy clustering
algorithm

The algorithm by Gath and Geva is an extension of
the Gustasfon-Kessel algorithm that also takes the
size and the density of the clusters into account.
Contrary to the GK algorithm, the GG algorithm
does not restrict the cluster s volumes and the
clusters can be directly described by univariate
parametric membership functions. So lower
approximation error and more relevant consequent
parameters can be obtained than GK algorithm can.

The Gath-Geva fuzzy clustering algorithm can

briefly described as follows:

1) Choose ¢ the number of the clusters and the
weighting exponent m > 1;

2) Generate the matrix U with the membership

Hix randomly.

N u =1
condition &=tk=1""1k

3) Compute the centre of the clusters:
N
(I-1)\m
o) Zk:l('uisk )"z
Vi = N =)\ m
Zk:l (u i.k )
4)  Compute the fuzzy covariance matrices:

N -1 ! DN\T
FO — k:“ui(,k (2 =v" )z = v
! N D
M
5) Compute the distance between the data z; and
the centre of the clusters v;:

degrees U must satisty

@n)' JaalF) .

i

with the a prior probability a;

1
Q= NZ:;I#[,/(

6) Update the partition matrix U of the
membership degrees:

1 ~
Dl (z;.v) = xP(5 (2, v F (2 —v")

o _ 1
ik T i
Y (D, (z,.v)I D, (2,,v,) "

U"-U""V|<e

7)  Stop if I
3

else go to the step

Univariate membership functions can often be
assigned linguistic labels. This makes fuzzy systems
transparent, i.e. easy to read and interpret by humans.

But it is difficult to specify meaningful labels for
membership functions with high dimensional
domains. So it is necessary to decompose multi-
dimension membership functions to univariate
membership functions. Projection method was often
utilized.

The projections of ellipses or ellipsoids, which are
the clusters of the Gath-Geva fuzzy -clustering
algorithm, are rectangles that contain the ellipses (see
Fig.1). In this transformation process, the
information about the clusters rotation and the
scaling of the axes is lost, and thus decomposition
error is made. To circumvent this problem, we
propose a new Gath-Geva fuzzy clustering method.

b
/‘\ axes nonparallel
14 3 cluster
\\_——// ]
axes parallel
cluster

Fig.1 Axes parallel and nonparallel clusters

In Fig.1, the axes parallel cluster is illustrated.
Obviously, axes parallel cluster has no rotation and
thus reduce decomposition error. In Gath-Geva fuzzy
clustering algorithm, if the covariance matrix is a
diagonal matrix, only the axes are scaled and no
rotation is performed.

For modification of the Gath-Geva algorithm, we
assume the data are realization of p-dimensional
normal distributions and each of these normal
distributions is induced by p independent, one-
dimension normal distribution.

The probability density function of the ith normal
distribution is

1 1 1y, (-,
gxIn) =——— ——exp(-5 ) )
@n)"? [T & gl
g
where 7 is the jth element of the diagonal of the

ith covariance A;

We introduce a fuzzification of the a posteriori
probabilities in order to determine the parameter

)
g;

p(ni lx, y) :H;(pigi(xj))(u"f)m

We determine the maximum likelihood estimator for
the formula to obtain the estimation for the parameter:

N 2
() _ deti=1 M (xj,k _vj,k)

i N
o Mik

the distance between the data z; and the centre of the
clusters v; is modified as:



1(x,—v,)?

O,;

)

exp(

=1 F

Thus, we gain the axes parallel version of Gath-Geva
fuzzy clustering algorithm with diagonal covariance
matrix.

The outputs of the TS model can influence the input
space partition. Neglecting this influence, the Gath-
Geva fuzzy clustering algorithm misses some data in
the output space, and cannot get the most optimized
clusters. Fig.2 illustrates such circumstance for a
two-input single-output system. The input variables,
x; and x,, are divided into clusters, S; and S,. After
identification, S, projects to S, and S, projects to s
The dots denote the outputs of the system and the
lines denote the linear consequents of TS model.
Obviously, some data leak out of the ellipsoids, and
identification error increased.

5

S;
e
v (b

Fig.2 (a) input variables clustering (b) the actual
outputs and the model outputs

(a) ¥

To solve this problem, J.Abonyi introduce the error
between actual output and model output, thus the
formula of distance was modified as follow:

(5. 0) G~ f, (%9,)))

) 270, 10, —v,)° (e~
D= Hj:! @, e'\p(i .ko' el V270, exp(-=* /
A )

2
The second part of the = ** considers the influence
mentioned above, and in this way the performance of

the TS model is proved.

In this paper, the weighted least-squares estimator is
used to estimate the consequent parameters of TS
model.

6, = (XeTq)iXe)_IXeTq)iy

where Xe = [X 1] and X is the input matrix. @; is a
matrix having the membership degrees on its main
diagonal. y is the output of the system.

From above, we give the modified Gath-Geva
algorithm used to construct TS model.

The modified Gath-Geva fuzzy clustering algorithm
can briefly described as follows:

1) Choose ¢ the number of the clusters and
the weighting exponent m > 1, choose the
termination tolerance &€ >0

2) Generate the matrix U with the

membership degrees ik randomly. U

N
k:“ui,k =1

must satisfy condition

3) Compute the centre of the clusters and
Compute the standard deviations of the
membership functions:

Zk 1(#(1 1))m Zk

Zk 1( (] l))m

2
W _ klll'llk(xjk Vi)
i
kzllui,k
4)  Compute the consequent parameters of TS
models:

0, =X!®X,)'X'®,y
5)  Compute the distance between the data z;
and the centre of the clusters v;:

27O, =y )?

q i, 1 (X Jk vz,_)

D :H,-:1 . i eXp(E j - 7.
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A/270 , exp( (s
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with the a prior probability

1
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6) Update the partition matrix U of the
membership degrees:

0 — 1
ik T

Z (Di,k (Zk ,Vi)/Dj’k (Zk v, ))2/(m—1)

) _pru-n
7 swpif U ~U T l<e

step 3

else go to the

4. Using modified Gath-Geva fuzzy clustering
algorithm to construct TS model for glass oven

In this section, we will use the method mentioned
above to construct Takagi-Sugeno model for glass
oven. Other algorithms, including FMID and ANFIS,
will also be used to identify the glass oven. The
comparison of the result will prove the validity of the
modified Gath-Geva fuzzy clustering algorithm.

The glass oven has 3 inputs (2 burners and 1
ventilator) and 6 outputs (temperature from sensors
in a cross section of the furnace). The data have been
pre-processed: detrending, peak shaving, delay
estimates and normalization. The data set, including
1260 entries, is divided into a training subset and a
test subset, each containing 600 samples. The
number of clusters is 2.

The performance considered to evaluate the obtained
model will be the root mean square error:

1l wr 1 v 2
Ezgzp_lx/ﬁxk_l(yk -3




where P is the number of outputs and N is number of
data, y, is the actual output, and )?k if the model

output.

Table 1 compares the performance of the model
identified with these techniques, including FMID and
ANFIS.

Tablel. Comparison of the performance of the
different algorithms

Method Train data error Test data error

MGG 0.8395 1.0732
FMID 0.8563 1.0489
ANFIS 0.7771 1.1403

The observation of this table indicates that modified
Gath-Geva fuzzy clustering algorithm has slightly
better performance than FMID in the training data set
and slightly better performance than ANFIS in the
test data set.

We explain the interpretability of the obtained TS
fuzzy model of the 40 output as flows. For the
number of clusters is two, there are also two rules.

R;:
1 ~10.0309 0.0218 0.9892
‘_[1.0012 0.9924 0.0049}
B, =[-0.2095 0.0620 -1.9251 2.5638]
R;:
_|—0.0218 —0.0099 -1.0041
_[0.9960 1.0067 0.0071}

B, =[-0.0413 0.0395 —0.7477 —1.4202]

The first row of A; represents the centre v and the
second row represents the variance O 2 of the
Gaussian function. B;is the consequent parameters of
the TS fuzzy model.

In Fig.3, we plot the curves of the actual outputs and
the TS fuzzy model outputs of the 4 output of the
glass oven. (a) is the result of training data and (b) is

the result of test data.
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Fig.3 (a) the actual outputs (solid lines) and the TS
model outputs (dotted lines) of the 4t outputs
(training data, 90 samples).

Fig.3 (b) the actual outputs (solid lines) and the TS
model outputs (dotted lines) of the 4™ output (test
data, 65 samples).

This identification of the glass oven proves that the
modified Gath-Geva fuzzy clustering algorithm can
be used efficiently to construct Takagi-Sugeno fuzzy
model.

5. Conclusions

We have proposed a modified Gath-Geva fuzzy
clustering algorithm together with weighted least
square method to create Takagi-Sugeno fuzzy model.
Through minishing the projection error and
considering the model outputs influence on input
space partitions, we get interpretable and more
accurate Takagi-Sugeno fuzzy model.

This method was used to identify the glass oven. The
result proves that this method is sufficient to
construct Takagi-Sugeno fuzzy model. We also
compare other modelling methods, including FMID
and ANFIS, with this method. The comparison
shows its superiority.
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Abstract: An Artificial Neural Network (ANN) is an adequate tool for modeling

nonlinear systems and can be applied straightforward in the predictive functional control.

New structure of ANN multi-step prediction that is different from cascade or parallel is

presented, at the same time, the nonlinear predictive functional control using this ANN

model has been developed in this paper. The useful of this control strategy is evaluated

by applying it to a Continuous Stirred Tank Reactor (CSTR). The simulation results
indicate that it is more effective than PID control. Copyright © 2002 IFAC
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1. INTRODUCTION

Model Based Predictive Control (MBPC) refers to a
class of algorithms that compute a sequence of
manipulated variable in order to optimize the process
performance. It is recognized as an efficient control
strategy by the industrial control community. The
first MBPC techniques were developed in 1970s.
Model Predictive Heuristic Control (MPHC) based
on finite impulse response has been successfully
applied in PVC plant, a distillation column and
power plant by Richalet, et al.(1978). Dynamic
Matrix Control (DMC) based on finite step response
was developed by Cutler, et al.(1980). Not only
MPHC but also DMC belong to MBPC based on
nonparametric model. In 1987, the Generalized
Predictive Control (GPC) of Clarke, et al.(1987a,b)
which absorbs the advantages of predictive control
and adaptive control can turn the model parameter
online. The Predictive Functional Control (PFC)
which belongs to the third generation predictive
control has been developed by Richalet, et al.(1988),

which has been successfully used in the fast and

accurate robot control.

Many processes are sufficiently nonlinear to preclude
the successful application of linear model based
predictive control technology. MBPC such as DMC
and GPC developed initially for linear processes have
been successfully extended to nonlinear processes by
many researchers (Mutha, et al.(1998), Robit, et
al.(1998)). Henson(1998) has published excellent
technical reviews of Nonlinear Model Based
Predictive Control (NMBPC). It has presented the
current status of NMBPC technology, and meanwhile

outlined myriads of directions for future research.

The purpose of this paper is to develop a Nonlinear
Predictive Functional Control (NPFC) based on the
Artificial Neural Network (ANN) model. The general
principle of PFC is discussed in section 2. In section
3, the ANN model is developed. NPFC using ANN

model is developed in section 4. Simulation results



are elucidated in section 5 and conclusion is

described in section 6.

2. GENERAL PRINCIPLE OF PREDICTIVE
FUNCTIONAL CONTROL

PFC belongs to the classical family of MBPC. It is
essentially based on the following three principles of
MBPC:

optimization, modeling error compensation.

predictive model, receding horizon

2.1 Predictive model

PFC uses a model to predict future output. The
output of the model y,(k+i) can be divided into two
main components: free response y;(k+i) and forced

response ydk+i).

Free response has nothing to do with future inputs

and thus just depends on the actual model output.

The other component of the model output is forced
response that depends on the set of future
manipulated variables and has nothing to do with the
actual model output. The structure of manipulated
variables is the key to the control performance in
PFC. The future manipulated variable are structured
by a linear combination of functions defined forehead
that we refer to as base functions. The future
manipulated variables u(k+i) and forced response are

given by:

N
u(k +i)=Y pu,, (D),i=12,..H (1)
n=1

N
Y k+0)=" 1,,,0) @)
n=1
Where 1 , stands for coefficients, u,,(i) the nth base
function at t=iTs, yp,(i) is the advance output of the
nth base function at t=iT; and T, is the sampling
period. The selection of the base functions depends
on the nature of the set point and on the process.

Often the polynomial base function set is used.

2.2 Receding Horizon Optimization

Various types of reference trajectories can be used.
The most elementary reference trajectory is a
first-order exponential trajectory. The reference
trajectory y,(k+i) can be given by:

yelkti)=c(k+i)- X (c(k)-ye(k) 3)

(=Ts/Tr)

Where c is the set point, A =¢€ and T, is the

95% response time of the reference trajectory, yp is

the process output.

The control objective of PFC is to minimize the sum
of squared errors between the predicted output and
the reference trajectory at all coincidence points. The

objective function can be given by:

)
minJ, = Z(y,.(kJri)—;(kJFi))z “4)

i=H,
yk+i)y=y, (k+i)+e(k+1i) (5)

Where y(k+1i) is the predicted output at

t=(k+1)T, ym(k+i) is the output of the model at
t=(k+1)T,, e(k+i) is the predicted errors, H;, H, are

coincidence horizon.

2.3 Modelling error compensation

The output of the predictive model and the process in
general differ due to model mismatches, secondary
input and disturbances which are not taken into
account by the predictive model. There are several
procedures to eliminate a permanent off-set by
compensating the reference trajectory with the
predicted errors between model and process output at
each time instant of the coincidence horizon. The
predicted errors can be given by:
e(k+1)=yp(k)-ym(k) (6)

Where yp(k) is the process output at t=kT;, y(k) is
the model output at t=kT..



3. ARTIFICIAL NEURAL NETWORK MODEL

PFC uses a model to predict future outputs. Any type
of predictive model such as transfer function, state
equations and ANN model can be used. NPFC
requires the availability of a suitable nonlinear
dynamic model of the process. The NPFC controller
may be based on a fundamental model or a
combination of the fundamental and empirical model.
First, it is difficult for us to construct sufficiently
accurate comprehensive mathematical process
models. On the other hand, the potential disadvantage
of the fundamental modeling approach is that the
resulting dynamic model may be too complex to be
useful for NPFC. In this work, ANN model is

employed as the predictive model in PFC.

During the last decade, there has been an increasing
trend in the industry towards the use of ANN. It has
been proven that a feed forward ANN which is
comprised of a great number of interconnected
neurons can approximate any continuous function to
any desired accuracy. This makes feed forward ANN
very suited to deal with complex nonlinear. A feed
forward layered ANN is employed as the model of
NPFC.

The structure of ANN is shown in Fig 1. It consists
of a layer of input neurons, a layer of output neurons,
and two hidden layers. The transfer function f1(x) of
the first hidden layer neuron is given by:
fl(x)=(¢-e")/(e" te”) (7)
The activate function f2(x) of the second hidden

layer neuron is shown by:

Rx)=1/(1+e") (®)

The transfer function f3(x) of the output hidden layer

lnput Output
M) M)

U A\

Fig. 1 Structure of ANN

neuron is given by:

f3(x)=x ©)

The most important aspect of the ANN is learning the
information about the system to be modeled. The
most versatile learning algorithm for feed-forward
layered network is back propagation (BP).
Unfortunately, BP is very slow because it requires
small learning rates for stable learning, on the other
hand, it is possible for the network solution to
become trapped in the local ~minimum.
Levenberg Marquardt(LM)( Matlab User’s Guide,
1994) optimization algorithm is used in this
investigation. This technique is more powerful than

gradient descent, but requires more memory.

The LM update rule is given by:
AW=J"J+ul)'JE (10)

Where J is the Jacobian matrix of derivation of each
error to each weight, U is a scalar, and e is an error
vector. If the scalar b is very large, the above
expression approximates gradient, while if it is small
the above expression becomes the Gauss-Newton
method.

4. NONLINEAR PREDICTIVE FUNCTIONAL
CONTROL

A NPFC strategy is developed in this section. The
principle of the NPFC using ANN is shown in Fig. 2.

[Base Function

4 d
Ysp | Reference PFC gty
—p o Gp(s) >

Trajectory | ™ |Controller

P ﬂ

ANN |- ¢
y T = Model _J
J0=1,2.. H)

Fig. 2 Principle of the NPFC using ANN model



4.1 Artificial neural network model

Predictive model plays a key role in predictive
functional control. It demands that certain precision
must be attained, at the same time with multi-step
prediction. Generally there are two kinds of
structures which can fulfil multi-step prediction using
ANN, one is cascade, the other is parallel. Cascade
structure, in which the output of time k+1(y(k+1))
can be achieved from the data of time k, and next
time y,(k+1) as input to estimate the output of time
k+2(ym(k+2)), and so on. The benefit of this structure
is that only one ANN model is needed. But there also
exists the accumulation of prediction error in such a
structure. Parallel structure needs many ANNs to
predict, with each ANN for a specific step. The
benefit of parallel is that the prediction error is
comparatively small, but the disadvantage is that the
calculation is heavy for there are so many ANNs to
be trained. In this paper, a new structure for
multi-step prediction is proposed. Only an ANN is
needed in such a structure. In order to fulfil
multi-step prediction, an additional input J(J=1,2,...H)
is employed, which distinguishes the ANN outputs
Ym(k+]). So the multi-step prediction is realized.

4.2 Nonlinear predictive functional control using

artificial neural network model

The objective function of NPFC is similar to the
other classical MBPC. With a certain optimization
procedure we can determine a sequential manipulated
variable that minimizes the objective function. The
objective function of NPFC is given by equation 4.
The  method of
Gauss-Newton which can be realized by MATLAB
TOOLBOX is used as optimization algorithm.

Levenberg-Marquardt  or

The algorithm of NPFC can be summarized in the
following steps:

1) Select the sample for training

2) Identify the ANN model with sample

3) Evaluate the extent of ANN model

4) Realize the NPFC strategy using ANN model

and L_M optimization algorithm

(O Calculate the error between the output of
process y,(k) and actual model output
Ym(k)

@ Calculate the
Vm(k+1),i=1,2,....H and the predictive

actual model output

output of the process y(k +1)

(@ calculate for reference trajectory of
y(k+i), i=1,2,....,H

@ calculate the sequence
variable u(k+i) i=1,2,....H using the

manipulated

method of LM optimization algorithm.
® Perform u(k) and go to O at the next

sample time.
5. SIMULATION
In order to evaluate the performance of the NPFC, a
Continuous Stirred Tank Reactor (CSTR) is chosen
as an application example.
5.1 Reactor

The dynamic equations describing the CSTR systems

can be written as:

£z,

=)
Vd;A =F(C, ~C)~Vke ™ C, an
dT.
V,C, dt =pC,F(T;~T,)
=V~ AHkyexp( ~ 2 )€, ~UA(T, ~T) (12)
g
The dynamic equations can be written in

dimensionless from Venkateswarlu(1997) as:
. X,
X% =% +D,(1-x Jexp(——)
1+)%
®

X

X, =—x, +B,D,(1-x, Jexy( )+Bu-x,) (13)

14+
¢

Y=x

Where x; and x, are the dimensionless reactant
concentration and temperature, respectively. The
input u is the cooling jacket temperature. The

physical parameters are chosen as:



D, =0072, ®=200, B, =80, f=03 (14)

Here the task is to control the reactant concentration
x1, and the manipulated variable is the input u of the

cooling water temperature.

5.2 Predictive model of artificial neural network

Given the xi(k), x,(k),u(k) at the t=(k)T; and J, the
x;(k+J) at the t=(k+J)T, can be obtained. The number
of neurons in the two hidden layers is 10,
respectively. In order to evaluate the performance of
the ANN model, 30 groups input data are created at
random to compare the output of the ANN and
process. The output of ANN model (+) and the
output of the process (o) are shown in the Fig 3(a).
The errors between the output of ANN model and
process are shown in Fig 3(b). We can obtain that the
accuracy of ANN model is enough for NPFC.
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Fig. 3(a) Results of process output and ANN output
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a] g i0 15 20 25 30
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Fig. 3(b) Errors between process output and ANN output

5.3 Simulation of nonlinear predictive functional
control and PID control for CSTR

Simulation studies are carried out in order to evaluate
the performance of the NPFC, the results of PID are
also presented as a reference. The parameters of PID
are P=0.2, =30 seconds and D=0. The NPFC selects
one base function. The parameters of NPFC are given
by H=5, Tr=10 seconds.

The setpoint of concentration is changed from x1=0.2
to x1=0.6 at t=20, at the same time, a step
disturbance 0.1 has been applied to the system at
t=200. The results of PID control are shown in the
Fig 4(a). The manipulated variable of PID is shown
in Fig 4(b). The results of NPFC are shown in the Fig
5(a). The manipulated variable of NPFC is shown in
Fig 5(b).

¥ 0oE R
setpoint
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Fig. 4(a) Results of PID control

o s0 100 150 200 250 aon
time (5]

Fig. 4(b) Manipulated variable of PID control
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Fig. 5(a) Result of NPFC control
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Fig. 5(b) Manipulated variable of NPFC control

As can be seen from the figure, PID control has fast
response but has large overshoot. NPFC using ANN
has slow response but no overshoot. Compared with
PID control, NPFC can reject the disturbance more
effectively.

6. CONCLUSION

An NPFC using ANN model strategy is presented for
control of high-nonlinear system. The performance of
this strategy is evaluated by applying it to a CSTR
for controlling them at the desired state operating
point. The results illustrate that the NPFC is more

effective for control nonlinear system than PID

control.
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Abstract: A new method for Computational Intelligence (CI), CI formulated with
Analytic Functions and Logics, is given, and a new PID controller - CISAPID is put
forward. CISAPID take the strategy attempt to incarnate but not to realize or imitate the
complex thinking and behaviour of human being. The constitution, principle and
qualitative arguments tuning experience of CISAPID are analysed in detail. Simulation
and practical application show that the performance of CISAPID is better than that of

general PID.

Keywords: CI Al incarnate CISAPID PID

1. PREFACE

Computational Intelligence (CI) is a new chapter in
Intelligence Theory™. The reason why the research
of Artificial Intelligence (AI) did not achieve
expected progression perhaps is that Al depend on
excessively the advantage of computer - precise
arithmetic and the fast calculation to imitate the
complex thinking and action of human being'®. But
thinking and action of human being do not often
depend on precise arithmetic and fast calculation,
furthermore, the ability to abstract of human being
plays, I think, the most important role in the
intelligence of human being, but this ability is just
what computer lacks extremely. So, an one-year old
babe perhaps don't understand any arithmetic, and
can't calculate at all, but some intelligence of his or
hers is far more better than any current sophisticated
computer. It is possible that the thinking mechanism
of human being can hardly be cryptanalyzed
completely, so, what machine can achieve or imitate
is perhaps only fragmentary and dyshematopietic
intelligence of human being forever, no matter what
advanced machine can hardly reproduce entirely the
complicated mechanism of the thinking of human
being!" ¥].

But for practical application in engineering, it is
enough to achieve our given purpose, to obtain a
satisfactory but not optimal result, and the truly
advanced theory, algorithm or method perhaps are
those that are not complicated, sophisticated and
optimal but practical, feasible, satisfactory, reliable
and simple, thus, take a strategy attempt to incarnate
but not to realize or imitate the complex thinking and
behavior of human being is not only a remedy for
computer's shortcoming, but also a practical, feasible
and simple shortcut. So, in this paper, a new method
for CI - CI formulated with Analytic Functions and
Logics is given, Logics mentioned in this paper are
expressed as "if ... , then ... " instructions of
computer program, they are enough to incarnate
logical relation for practical project, it is no need to
resort to more complex method.

2. COMBINE CI WITH PID

Copyright © 2002 IFAC

Today, the most popular controller is still PID
controller, even in developed country - Japan, the
rate of utilization of PID controller reached 84.5%""".

But general PID has many intrinsic shortcomings. In
order to improve the performance of general PID ,
many scholars had done a lot of research. So, how to
combine Computational Intelligence with widely
used general PID is very significative in theory and
in practice. So, in this paper, a new PID controller-
CISAPID is put forward.

In our practical project for engineering, this
controller seems not highly depend on the precise
model of controlled object (we could not find the
precise model), but make use of some Analytic
Functions and Logics to regulate arguments of PID
real-timely according to the feedback information, to
incarnate some intelligence of human being to a
certain degree in a practical, flexible, simple way,
and to incarnate knowledge, experience and rules of
experts and skilled operators, thus, it has some
characteristics of Fuzzy Control and Expert Control.
But it is not confined to the patterns of Fuzzy Control
and Expert System, because fuzzy rule table is not
intuitionistic, and is not convenient to establish,
furthermore, we don't want to make the control
system too complex. In practical project, the more
simple a system is, the more practical, feasible,
reliable and robust it often is. So, if it is able to
achieve the same satisfactory efficiency, the control
system should be simple as best as possible, thus, not
only the control efficiency is improved, but also the
hardware cost and the developing cycle are reduced
markedly, thus this system is advanced in fact.
According to the viewpoint of James C. Bezdek, CI
is based on the data provided by operator, but
traditional Al is on so-called "knowledge". He
defined the CI system as follows: When a system
only treats with the data from bottom, and possess
the part for pattern recognition, and don't make use of
knowledge in the sense of Al, then, this system can
be viewed as a CI system. Such a system would have
characteristics as follows: has the adaptability of
compute; has the tolerance of compute error; close to
the speed that human handling problem; close to the
error rate of human being". So, we can also think in
the same way: If a controller treats with the data from



bottom only based on Logics and Analytic Functions
abstracted from experience, rules and knowledge of
experts and operators, and possess the part for
pattern recognition, and don't make wuse of
knowledge in the sense of Al, then this controller can
also be viewed as a CI controller. So, CISAPID can
also be viewed as a controller based on CI.

3. CISAPID
For typical standard negative feedback control
system, general PID controller can be expressed as:
(+1 /dt+Tde) €))
u= er— e —
T “dr
The CI Self-adaptive PID Controller (CISAPID) can

be formulated as follows!®

de
u=(1-k_ u)*(Kp e*e + Ki e* /e dt + Kd e de* — +

dt
Kd dde* 2€)+k * 2
_dde —u*uy
dr’
Kp_e=Kp0_e+Kpl e*(I-exp(-Kp_s*W Kp_e*(e-p*s)’)) (3)
Ki e=Ki0 e+Kil e*exp(-W Ki e*é’) @)
Kd e de=Kd e+ Kd de )
Kd_e=Kd0_e+Kdl e*exp(-Kd s*W Kd_e*(e-p*s)’) 6)
Kd_de=Kd0 _de+ Kdl_de*exp(-W_Kd_de*(de)?) @)

Kd_dde= Kd0 dde+ Kdl_dde*exp(-W_Kd_dde*(de)’) (8)
up=(u_0+u_I*u_power+u_2*(u_power)*+...+u_n*(u_pow
er)"+..)/(1+u_power+(u_power)*+...+(u_power)"+...) (9)

e=setting value-actual value, error e. Kp e, Ki_e,
Kd e indicate that these arguments are related to e.
Kd_de indicate that the argument is related to de, the
first-order differential of e; Kd e _de indicate that the
argument is related to e and de; Kd dde indicate that
the argument is related to d’e, the second-order
differential of e; So as to the rest. If arguments
except Kp0O e, Ki0 e, KdO e are all 0, then,
CISAPID turn itself back to general PID. The
reasons why we construct Analytic Functions as
above and more detailed information about
arguments tuning, please refer to my master’s degree
thesis. The tuning method of Kp0 e, Ki0 e, Kd0 e
can refer to the tuning method of general PID based
on object model or dynamic response curve!'l, such
as Ziegler Nichols - frequency response method'™,
CohenCoon - response curve method® integral
squared error - ISE™ and so on. Because physical
meaning of the other arguments are explicit, simple,
and regular, so, it is not very difficult to determine
them by off-line simulation or resort to experience
and by means of trial-and-error method. Further
more, what needed to tune are their initial arguments,
the running arguments are self-adjust online and real-
timely based on the initial arguments according the
situation on-site. Even if you did not tune these

arguments very well, or the controlled object and
other factors had already changed, the control
efficiency would not decline greatly (but the burden
of executing mechanism would perhaps increase),
thus, the self-adaptability and robust of this controller
are good.

3.1 The proportional action of CISAPID
Kp_e=Kp0_e+Kp1_e*(I-exp(-Kp_s*W_Kp_e*(e-p*s)z)) 3)

Kp_e is similar to a reversed double peak gaussian
function, the larger the W _Kp e is, the more sharp
the curve is, the value of W _Kp_e should ensure that
system would respond enough proportional action
within a wide range, so the value of W _Kp e should
be minor; p is a sign variable, when e <0, p=-1I;
when e =0, p=+1. s =0 is an offset; Kp s is related
to offset s, and is a coefficient to adjust W Kp e,
when |e| =5, Kp_s=1, when |e|<s, it is allowed Kp s
# 1. Because of offset s, the minimum value of Kp e
is not at the point of e=0, but at the point of e=+s or
-s. If system is not very stable, and the requirement
for accuracy and rapidity are not high when system is
near to the equilibrium point, then, Kp s should be
nearly equal to 0, thus, when |e| <s, Kp_e would
hardly increase with the reduction of |e|, and seems
to be a constant, and this is beneficial to system
stability.

Analytic Function of formula (3) in fact incarnated
knowledge, rules and experience of experts and
operators, and approximately incarnated the fuzzy
rules as follows:

if |e| is "extreme big", then proportional action Kp_e
should be "very big";

if |e| is "very big", then proportional action Kp e
should be "comparatively big";

if |e| is "comparatively big", then proportional action
Kp e should be "not big and not small";

if |e| is "a bit big" (namely, |e| is a little bigger than
s), then proportional action Kp e should be
"comparatively small";

if |e| is "not big and not small" (namely, |e|=s), then
proportional action Kp e should be "minimum";

if |e| is "comparatively small" (namely, |e| is a little
smaller than s), then proportional action Kp_e should
be "comparatively small";

if |e| is "very small" (namely, |e| is approaching to 0
or |e|=0), then proportional action Kp e should be
"not big and not small";

3.2 The integral action of CISAPID

Ki e=Ki0 e+Kil e*exp(-W Ki e*e’) 4)
Ki e is a gaussian function related to error e. The
value of W Ki e should cause system respond
integral action only within narrow ranges (error is
very small). When error e becomes a little big,
integral action should be near to 0 in order to carry
out the isolation of integral action and to avoid
integral saturation. So the value of W _Ki e should be
a little larger, then the curve of Ki e would be very



sharp. Ki0 e should be far less than Ki/ e to help to
realize the isolation of integral.

Analytic Function of formula (4) in fact incarnated
knowledge, rules and experience of experts and
operators, and approximately incarnated the fuzzy
rules as follows:

if |e| is "extreme big", then integral action Ki e
should be "extreme small";

if |e| is "very big", then integral action Ki e should
be "extreme small";

if |e| is "comparatively big", then integral action
Ki e should be "very small";

if |e| is "a bit big" (namely, |e| is a little bigger than
s), then integral action Ki e should be "very small";
if |e| is "not big and not small", then integral action
Ki e should be "comparatively small";

if |e| is "comparatively small", then integral action
Ki_ e should be "a bit small";

if |e| is "very small" (namely, |e| is approaching to 0
or |e|=0), then integral action Ki e should be "not
big and not small";

3.3 The differential action of CISAPID

Kd e de=Kd e+ Kd de %)
Kd_e=Kd0_e+Kdl e*exp(-Kd s*W Kd_e*(e-p*s)’) 6)
Kd_de=Kd0 de+ Kdl de*exp(-W _Kd_de*(de)’) @)

Kd_dde= Kd0_dde+ Kdl_dde*exp(-W _Kd_dde*(d’e)’) (8)

Kd e is a double peak gaussian function. p is a sign
variable, when e <0, p=-1;when ¢ =0, p=+1. s =0 is
an offset, and is not the same value as that of formula
(3); Kd_s is related to s, and is a coefficient to adjust
W Kd e, when |e| =s, Kd_s=1, when |e| <s, it is
allowed that Kd s#1. For the reason of simple, you
can assign Kd_s=1. But if disturbance is severe, then,
you should assign Kd s > 1, then, when |e| is
approaching to 0, differential action Kd e can reduce
more quickly, thus, system would not be very
sensitive to disturbance.

Analytic Function of formula (6) in fact incarnated
knowledge, rules and experience of experts and
operator, incarnated approximately the fuzzy rules as
follows:

if |e| is "extreme big", then differential action Kd e
should be "extreme small";

if |e| is "very big", then differential action Kd e
should be "extreme small";

if |e| is "comparatively big", then differential action
Kd e should be "comparatively small";

if |e| is "a bit big" (namely, |e| is a little bigger than
s), then differential action Kd e should be "not big
and not small";

if |e| is "not big and not small" (namely, |e|=s), then
differential action Kd e should be "maximum";

if |e| is "comparatively small" (namely, |e| is a little
smaller than s), then differential action Kd e should
be "comparatively big";

if |e| is "very small" (namely, |e| is approaching to 0
or |e|=0), then differential action Kd e should be
"not big and not small";

Kd de and Kd dde are help to control more ahead
when controlled object is of very great inertia and
hysteresis such as furnace temperature control

system. If the inertia and hysteresis are not very great,
or if filtering for de and dde are not very satisfactory,
then Kd de and Kd dde are not necessary.
Knowledge, rules, experience of experts and
operators and the fuzzy rules incarnated by the
Analytic Functions of formula (7)(8) are similar to
those of (3), the main deffrence is that the curve of
Ki_e should be very sharp.

From above, we can see that CISAPID is not only a
controller of proportional action, integral action and
differential action, it is actually related to the first-
order and second-order differential of error e, the
ability that it can control ahead according to the error
tendency is very strong, so, engineering application
of this thesis is kiln temperature control system with
very great inertia and hysteresis.

3.4 Dynamical Weighting Average Algorithm with
selection

It is also important to make use of u,. When adjust
system on-site, because of the intrinsic shortcoming
of general PID and complexity of control system,
you can only compromise among stability, rapidity,
accuracy and anti-disturbance. System would often
oscillate even if you make great effort to tune the
arguments of PID. The purpose of u, is just to turn
this disadvantage into advantage.

It can be observed, the oscillation of output u is often
symmetrical about "a specific value", so, the
oscillation in fact provide some important
information: this "a specific value" is probably close
to so-called "setting value" or "right value", so, if we
can properly figure out this "a specific value" and let
it be uy, and add this u, to output u, then, it is
equivalent to give a reference point to output u (if
k u=0.5), and it also seems to calculate output u
based on "setting value" or "right value", thus, it is
possible that output ¥ would probably be just right,
and thus system would eliminate oscillate very soon
of its own accord. the calculation of uy is as follows:
up=(u_0+u_I*u_power+u_2*(u_power)*+..+u_n*(u_pow
er)"+..)/(1+u_power+(u_power)’+...+(u_power)"+...) (9)

u 0, ul,u?2 ..,un, .. represent the value of
output # at current moment, previous one moment,
previous two moment, ... , previous # moment, ... ,
This is in fact the Dynamical Weighting Average of
output u# at each moment. The selection of weight
coefficient u_power is very important, if we make
u_power=0.9847, then, u 300 would have little
effect on u, because u_300 is multiplied a coefficient
u_power®=0.9847°"=0.009799 <0.01=1%. So, the
nearer u i approach to current moment, the more
effects it has on uy; the further u i is away from
current moment, the less effects it has on u,. This
Dynamical Weighting Average Algorithm is coincide
with practical situation, the u, that figured out as
above mainly reflect current working information,
but also reflect previous working information to
certain extent, thus, this u,is quite possible to close
to so-called "setting value" or "right value". Further
more, we can also multiply a coefficient u_power i
before corresponding u_i.



u_power_i=Ku0_e/(KuO _e+Kul e)+Kul e/(Kul e
+Kul _e)*exp(-W_Ku_e*(e_i)’) (10)
Assign biggish value to W _Ku e, and make Ku0 e
far too less than Kul e, thus curve u_power i is very
sharp, only when e i is very little, then u_power i
would approach to 1, otherwise, u_power i is always
very little, thus, those u_i that correspond to biggish
e i are filtered off, however, those u i that
correspond to minor e_i are selected. So, algorithm
of formula (9) change into the algorithm of formula
(10) with selection, and better efficiency would be
get.

Of course, what mentioned above are only close to,
not equal to so-called "setting value" or "right value",
but for practical project in engineering, it is enough
to incarnate the idea of "closing to"; If £ u=0, then
output u of CISAPID would not relate to u,. If
"setting value input" of system is a constant, then k£ u
could be greater than 0.5, or even near to 1. In fact,
The Analytic Functions of formula (9) and (10)
incarnate the ideal of "stabilizing by force" and
"Sampling and Statistical Learning", and computer is
always in a state of self-studying and self-perfecting,
the more it has learned, the more it become "clever"
8] Statistical Learning has solid theoretical basis,
and is drove fully by objective data, so, playing an
important role in CI. Basal model, strategy and
algorithm related to the design of Statistical Learning
perhaps is a direction needed our efforts in future.
Practical running of the algorithms mentioned above
shows: With u,, CISAPID can shorten control time
notably if input is step signal, can come into stable-
state and close to "setting value" or "right value"
more quickly, and can keep stable-state for a
comparatively longer time. But, if system is simple
and is very stable, then, it is not necessary to make
use of this algorithm;If system is tracking system and
the requirement for rapidity is high, it is also not
appropriate to make use of this algorithm.

4. SIMULATION!®

6_5 s

(60s +1)(50s +1)

as controlled object to carry out simulation. As to
such second-order object with great inertia, great
hysteresis in practical project, what is the most
important may be stability and rapidity but not
accuracy or control time (is allowed to correspond to
5% (or >5%) error range). There are four criterion
for performance comparison during simulation:
1.Integral Squared Error (ISE), (let J= /¢’df); 2. Rise
time (defined as the time needed that system rise
from zero to 90% steady-state value); 3.Average
value of |e|; 4.Overshoot;

Typical object G(S)= is taken

ISE and Rise time are main criterions. Arguments of
General PID (perhaps had been optimized in
reference [6]) are as follows: Kp=5, Ki=0.025,
Kd=90; Arguments of CISAPID (only satisfactory
but not optimized) are as follows: KpO e=4.999,
Kpl e=217, W_Kp e=100, p_s=0.085,

Kp s=0.0002119, Ki0 e=0.015,
W_Ki_e=100, Kd0 =90,
W_Kd e=100,d s=0.2,Kd s=2

Kil e=0.1,
Kdl e=100,

4.1 Performance comparison

setting value

\IS/\P]D
24
eneral PID

Fig.1 Comparison between CISAPID and general
PID for ideal case

When the case is ideal, and there are no disturbance
and non-linear parts, the performance of general PID
is very well, but it is still inferior to that of CISAPID.
General PID: ISE is 29.29, average value of [e| is
0.07128, rise time is 66 seconds, overshoot is 3.014%;
CISAPID: ISE is 21.15, enhancement is 27.79%,
average value of |e| is 0.06706, enhancement is
5.92%, rise time is 42 seconds, enhancement is
36.364%, overshoot is 2.319%, enhancement is
23.06%;

If controlled object changed greatly, for instantce,
hysteresis changed to 8 seconds, pole points changed
to 1/110 and 1/100, simulating curves are as follows:

setting value

\AEISAPID
ot \general PID

Fig.2 Comparison between CISAPID and general
PID if controlled object had changed

Compare with Fig.1: general PID: ISE is 55.38,
55.38-29.29=26.09, average value of |e| is 0.1581,
0.1581-0.07128=0.08682, rise time is 100 seconds,
100-66=34, overshoot is 23.91%, 23.91%-
3.014%=20.896%; CISAPID: ISE is 41.56, 41.56-
21.15=20.41<26.09, average value of |e| is 0.1316,
0.1316-0.06706=0.06454<0.08682, rise time is 71
seconds, 71-42=29<34, overshoot 1is 23.88%,
23.88%-2.319%=21.561%>20.896%;

From above we know that the performance of general
PID and CISAPID are both worsen when controlled



object changed, but the worse of CISAPID are less
than those of general PID except overshoot.

4.2 Comparison for Anti-disturbance

We could suppose that disturbance is a sinusoidal
input of which the amplitude is 0.2 and the frequency
is 0.0314 radian / second (cycle is 200 seconds),
then, simulating curves are as follows:

/im;t superposed sinusoidaleisturbance

\CISAPID

general PID

Fig.3 Comparison between CISAPID and general
PID if disturbance is sinusoidal
It can be known from the Fig.: general PID: ISE is
46.38, average value of |e| is 0.1207, rise time is 65
seconds, overshoot is 19.38%; CISAPID: ISE is
34.94, enhancement is 24.67%, average value of |e| is
0.1065, enhancement is 11.765%, rise time is 44
seconds, enhancement is 32.31%, overshoot is
24.28%, enhancement is - 25.28%; When input is
changing, the requirement for rapidity is main to
make system follow the change of input quickly
enough, it is allowed that overshoot increased a bit. It
also can be known from the Fig.: the output of
CISAPID and general PID are both lag behind input,
but, after system become stable, the lag of CISAPID
is less about 1 second than that of general PID.
If load (yg) decreased 0.2 suddenly at t=400, and
increased y,=0.2 suddenly at t=700, and setting value
of input increased 0.2 suddenly at t=1000, then,
simulating curves are as follows:

s“CISAPID

general PID

L

Fig.4 Comparison between CISAPID and general
PID if load changed suddenly and disturbance
is a step input

It can be known from the Fig.: general PID: ISE is

32.74, average value of |e| is 0.05612, rise time is 66

seconds, overshoot is 3.014%; CISAPID: ISE is

24.63, enhancement is 24.77%, average value of [e| is
0.05451, enhancement is 2.87%, rise time is 42
seconds, enhancement is 36.364%, overshoot is
2.319%, enhancement is 23.06%.

4.3 Comparison for non-minimum phase

Add a non-minimum phase part on the base of
previous controlled object, then, transfer function is

e>*(1-y5) )
G(S)= instead,
(60s +1)(50s +1)

curves are as follows:

\“j value
\ ISAPID

general PID

simulating

Fig.5 Comparison between CISAPID and general
PID if there is a non-minimum phase part

It can be known from the Fig.: general PID: ISE is
29.91, average value of |e| is 0.07195, rise time is 66
seconds, overshoot is 3.48%; CISAPID: ISE is 21.95,
enhancement is 26.613%, average value of |e| is
0.06958, enhancement is 3.294%, rise time is 41
seconds, enhancement is 37.88%, overshoot is
4.735%, enhancement is - 36.06%, this is because
rise time reduced greatly, rapidity improved greatly,
so, overshoot increased a bit more;On the whole, if
there is a non-minimum phase part, performance of
CISAPID is still better than that of general PID
greatly (main criterion ISE improved
21.95%,rapidity(rise time) improved 37.88%).

5. CONCLUSION

The constitution, principle and qualitative arguments
tuning experience of an ameliorative PID controller-
Computational Intelligence Self-Adaptive PID
Controller (CISAPID) has analysed in detail, and the
ability for anti-disturbance, robustness, adaptability
and the performance for non-minimum phase system
of CISAPID are also discussed. Contrastive
simulation between CISAPID and general PID
showed that the efficiency of CISAPID is better than
that of general PID, and practical application in
engineering (High Temperature tunnel kiln in
TEGAOTE special kiln Corporation, Sansui,
GuangDong Province) also showed that the
performance of CISAPID is practical, feasible,
satisfactory, reliable but simple, better than that of
general PID

5.1 Innovative ideas of CISAPID
Here, we should first thank QingChang Zhong,
JianYing Xie, Hui Li, please refer to reference [6] for



specific details, they bring gaussian function into
PID and put forward a new PID controller- Variable
Arguments PID (VAPID). But, the constitution of
proportional gain function and differential gain
function of VAPID are all have something to be
improved, and they were probably not aware of : If
this idea improved appropriately, it is in fact a new
idea for CI with Analytic Functions and Logics at
which computer is good. Then, this new idea only
process bottom data, and possess the part for pattern
recognition (by means of Analytic Functions and
Logics), and don't make use of knowledge in the
sense of Al, but can incarnate knowledge, rules and
experience of experts or operators and can perform
Fuzzy Logic Control and Expert Control to a certain
extent, thus, this system is a CI system in fact. So-
called innovative ideas in this thesis are listed simply
as follows, please refer to my master’s degree for
more details, and we urgently welcome precious
critical advice.
1) A new idea - incarnate Computational Intelligence
with analytic functions and Logics
2) Particular structure of CISAPID
3) Proportional action of CISAPID
4) Differential action of CISAPID: (1) Based on e; (2)
Based on de; (3) Based on d’e
5) Dynamical Weighting Average Algorithm with
selection of CISAPID

5.2 The problems to be improved for CISAPID

There are many arguments of CISAPID, it is a little
inconvenient to tune so many arguments, and we
have not yet find perfect tuning method in theory, all
these are to be improved in future.

As to so many arguments that to be tuned and
optimized, resort to Neural Network, Genetic and
Evolutive Algorithms maybe good ideas.

Sampling and Statistical Learning, and the basal
model, strategy and algorithm related to the design of
Statistical Learning perhaps is a direction needed our
efforts in future.

At last, it is needed to point out: The reasons why we
attempt to incarnate but not to realize or imitate are
mainly as follows: 1) It is easy to incarnate, but it is
difficult to realize or imitate. 2) Algorithms are
comparatively concise, feasible, ingenious, but they
are enough to achieve given target for practical
application in engineering.

But all these are still only the execution but not the
creation of intelligence of human being, in the long
run, research for CI should probably aim at the
purpose of creating intelligence.
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Robust Stability Analysis for Descriptor Systems with State
Delay and Parameter Uncertainty *

Shengyuan Xu *

Abstract: This paper considers the problem of robust
stability analysis for continuous descriptor systems with
state delay and structured uncertainties. A computa-
tionally simple approach to test stability of descriptor
delay systems is proposed. Based on this, we developed a
sufficient condition which guarantees that the perturbed
descriptor delay system under consideration is regular,
impulse-free and stable for all admissible uncertainties.
An example is provided to demonstrate the application
of the proposed approach.

Keywords: Continuous descriptor systems, robust sta-
bility, time-delay systems, uncertain systems.

1. Introduction

In the past years, much attention has been addressed to
the study of stability analysis and controller design for
time-delay systems since time delays are often the main
causes for instability and poor performance of systems
and encountered in various engineering systems such as
chemical processes, long transmission lines in pneumatic
systems, and so on [8] . When parameter uncertainty
appears in a delay system, the problem of robust stability
as well as robust stabilization has been dealt with and
various approaches have been proposed [5, 16] .

On the other hand, it is known that descriptor sys-
tems provide a more natural description of dynamical
systems than state-space systems and have attracted much
interest in recent years. Descriptor systems are also re-
ferred to as singular systems, implicit systems, general-
ized state-space systems, differential-algebraic systems or
semi-state systems [4] . Applications of such systems can
be found in dynamic models of chemical systems [2, 11] ,
mechanical engineering [9] , and other areas. There have
been many research works on extending existing theories
and results based on state-space systems to descriptor
systems [4, 14] . Recently, there has been a growing in-
terest in the study of robust stability analysis and robust
control for descriptor systems [6, 7, 15, 21] . In [6] and
[7] , upper bounds on structured perturbations ensuring
robust stability for uncertain continuous and discrete de-
scriptor systems were given, respectively. For descriptor
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systems with unstructured uncertainties, [20] and [22]
studied the robust stability problem by extending the
concept of “quadratic stability” for state-space systems,
and some sufficient conditions for robust stability were
obtained. Similar results for discrete-time descriptor sys-
tems were reported in [21] . Very recently, discrete de-
scriptor systems with time delays as well as parametric
uncertainties were studied in [18] , where both robust
stability and robust D-stability results were presented.
For continuous descriptor delay systems with unstruc-
tured uncertainties, sufficient conditions for both robust
stability and robust stabilization were given in [19] . It
is worth pointing out that when dealing with the robust
stability problem for descriptor delay systems, similar to
delay-free case [6, 7] , not only stability robustness, but
also regularity and impulse immunity (for continuous de-
scriptor systems) and causality (for discrete descriptor
systems) should be considered simultaneously [18, 19] ,
while for state-space delay systems the latter two issues
do not arise. For continuous descriptor delay systems,
although robust stability results for unstructured uncer-
tainties were obtained in [19] , when structured uncer-
tainties appear, no results on robust stability are avail-
able in the literature, this issue is still open.

In this paper, we deal with the problem of robust sta-
bility for continuous descriptor systems with state delay
and structured uncertainties. The purpose is to devel-
ope conditions such that the perturbed descriptor delay
system under consideration is regular, impulse-free and
stable for all admissible uncertainties. We first present a
computationally simple stability condition for descriptor
delay systems without parameter uncertainties. Then,
by this and some properties of modulus matrix, a robust
stability condition is proposed, which can be viewed as
an extension of existing results on robust stability for
descriptor systems without delay. Finally, an example
is given to demonstrate the effectiveness of the proposed
approach.

Notation. Throughout this paper, for matrices X,
Y € R™*", the notation X > Y means that X;; > Y;, 1,
j=1,2,...,n, where X;;, Y;; (i,j =1,2,...,n), are ele-
ments of X and Y, respectively. I is the identity matrix
with appropriate dimension. The superscript “I” rep-
resents the transpose. CT is the closed right-half plane.
|z(t)|| denotes the Euclidean norm of vector x. p(M)
refers to spectral radius of matrix M and |M]|,, is the
modulus matrix of M. Matrices, if not explicitly stated,
are assumed to have compatible dimensions.



2. Preliminaries and Problem
Formulation

Consider the following linear continuous descriptor sys-
tem with parameter uncertainties and state delay:

(£):  Eit) = (A+AAa()
+(Ag +AAgz(t—7) (1)
z(t) = é(t), t€(~7,0] (2)

where z(t) € R™ is the state, u(t) € R™ is the control
input. The matrix & € R™*" may be descriptor, we shall
assume that rank F =r <n. A and A4 are known real
constant matrices with appropriate dimensions. 7 > 0 is
a constant time delay of the system, ¢(¢) is the compat-
ible continuous vector valued initial condition. AA and
AA, are time-invariant parameter uncertainties and are
assumed to have the following properties [7, 13] :

|AAl, < Ma, |AAql,, < Mg (3)

where M 4 and M, are constant matrices whose elements
are all nonnegative. The constant matrices M4 and My
represent the highly structured information for the addi-
tive perturbation matrices AA and AA,. The parameter
uncertainties AA and AA, are said to be admissible if
(3) holds.

The nominal descriptor delay system of (1) can be
written as:

Ei(t) = Ax(t) + Agx(t — 7). 4)

Definition 1 [4, 14]

(I) The pair (E, A) is said to be regular if det(sE — A)
is not identically zero.

(IT) The pair (E, A) is said to be impulse-free if deg(det(sE—

A)) =rank E.
(III) The pair (E, A) is said to be stable if all of its finite
eigenvalues are in the open left-half plane.

The descriptor delay system (4) may have an impul-
sive solution, however, the regularity and the absence
of impulses of the pair (E, A) ensure the existence and
uniqueness of an impulse-free solution to this system,
which is shown in the following lemma.

Proposition 1 [19] Suppose the pair (E, A) is reqular
and impulse free, then the solution to (4) exists and is

impulse-free and unique on (0,00).

In view of this, we introduce the following definition
for descriptor delay system (4).

Definition 2 [19]

(I) The descriptor delay system (4) is said to be regu-
lar and impulse-free if the pair (E, A) is regular and
impulse free.

(IT) The descriptor delay system (4) is said to be stable if
for any € > 0 there exists a scalar 6(¢) > 0 such that,
for any compatible initial conditions ¢(t) satisfying

SUp_,<;<o |9(t)[| < 6(¢), the solution x(t) of system
(4) satisfies ||z(¢)|| < e. Furthermore,

z(t) = 0, t > o0

The purpose of this paper is to develop robust a-
stability conditions for descriptor delay systems. To this
end, it is worth pointing out that the regularity, impulse
immunity as well as stability robustness should be con-
sidered simultaneously when dealing with the problem
of robust stability analysis for uncertain descriptor de-
lay systems [19] , which is similar to the robust stability
analysis for uncertain descriptor systems without delay
6, 7] .

3. Main Results

In this section, a computationally simple robust stability
condition for descriptor delay systems will be developed.
We first present the following lemma which will play a
key role in the derivation of our main results.

Lemma 1 Suppose the pair (E, A) is regular, impulse-
free and stable, then the descriptor delay system (4) is

regular, impulse-free and stable if

0 [(sE A Ad] <1, VseCt. (5)

Proof. From the Definition 2, the regularity and im-
pulse immunity of the pair (E, A) implies that the de-
scriptor delay system (4) is regular, impulse-free. To
show the stability of system (4), we first note that from
[4] the regularity and impulse immunity of the pair
(E, A) guarantees that there exist two invertible matrices
P and @ such that

I 0 A0 ] ©

0 0 I

where A; € R"™*". Since the pair (E,A) is stable, we
have that sI — A; is invertible for all s € C*, which
implies that (sE — A)~" is well defined for all s € C*.
Now, write

PEQ = , PAQ =

A A
PAQ = a1 Ade (7)
Aaz Ada
compatibly with (6). Noting
_ 0 0
lim (sE—A)"' Ay =Q Q' (8
o ) —Agz —Aaa ®)
This together with (5) implies that
p(Ags) < 1. 9)

Now set £(t) = Qz(t) and decompose

T
§0=] 6O & ]
where £;(t) € R” and &,(t) € R*". Then, noting (6)
and (7), system (4) can be transformed to
E(D) = Ay(t) + Anéi(t — h) + Aasby(t — 1)
£, (1) —Aas&y (t — h) = Aaa&y(t — h).



On the other hand, considering (5), it is easy to see
det [I —(sE—A)" Ade—ﬂ £0, VseCt.

Using this and noting det (sE — A) # 0 for all s € C*,
we have
det (sE — A — Age™T)

= det (sE — A) det [I —(sE—A)"! Ade—ST] £0,¥secCT.
(10)
That is,
I_ A _ A —S8T _A —S8T
det | 3T AT Aae @€ 140, VseCH.
—Ad3e ST —I—Ad4€ ST

From this and (9) and along the same lines as in the
proof of Theorems A and B (page 384) in [10] we can
show that
& () — 0, &(t) — 0, — o0.
This implies
z(t) — 0, t — oo.
Therefore, the descriptor delay system (4) is stable. O

The following lemmas will be used in the proof of our
main results.

[7, 17] For any n x n matrices X, Y and Z

< Z, we have

(a) |XYY], <|X1], Y], <Z[Y],

(b) [X + Y], <|X[, + Y], <Z+Y],

(©) p(X) < p(1X],,) < p(2)
)
) P

Lemma 2
with | X|,,

(d) p(XY) < p(IX],, [Y],) <p(Z|Y],,)
(e |}(/)|(+Y) <p(IX + Y1) < p(1X], +[Y],) <

p(Z +

Lemma 3 [12] For any n xn matrices X, if p(X) < 1,
then det(I — X) # 0.

Lemma 4 [1] A regular pair (E, A) is impulse-free if
and only if (sE — A)~" is proper.

Lemma 5 [3] Let M(s) be a square rational matriz

= Mp(s) + Mp(s),
where My(s) is a polynomial matriz and Mg,(s) is a
(s) is proper

and be decomposed uniquely as M(s)

strictly proper rational matriz. Then M—!

if and only if M, " (s) exists and is proper.

Suppose the pair (E, A) is regular, impulse-free and
stable, then we can write
(sE—A) ' =G(s)+ H (11)

where G(s) is a strictly proper rational matrix which is
analytic in right-half s-plane and H is a constant matrix.

Lemma 6 [6] If the pair (E, A) is reqular, impulse-free
and stable, then

‘(sE—A)_l‘m <L+|H|, (12)

where o

L= |G()],, dt

0
and G(t) is the impulse response of G(s) which is given
in (11).

(13)

Now we are in a position to present the robust stabil-
ity result for uncertain discrete descriptor delay systems.

Theorem 1 Suppose the pair (E, A) is regular, impulse-
free and stable, then the uncertain descriptor delay sys-
tem (X) is still reqular, impulse-free and stable for all

admissible uncertainties AA and AAg if

p[(L+[H|,) Mal+ p[(L+ |H],,) (|Adl,, + Ma)] <1
(14)

where H and L are given in (11) and (13), respectively.

m

Proof. From (14), it is easy to show that
p[(L+[H],,) Ma] < 1.
Then, by Lemma 2 and (11) we have

P [(sE A AA] < p H(SE A AA’m]

(15)

IN

pllcE-27 1a4],]
pl(L+H|,)Ma] <1 (16)
for all s € C*. Therefore, it follows from Lemma 3 that
det [T - (sE—A)' AA| £0, VsecCt,
Thus, Vs € CT,
det (sE— A —AA)
= det (sE — A)det [I -

IN

(sE— A" AA| £0.

This implies that the pair (F, A + AA) is regular for
all admissible uncertainties. Next, we shall show that,
for all admissible uncertainties, the pair (F, A+ AA) is
impulse-free. Applying Lemma 2 and noting (15), it can
be seen that

p(HAA) < p([HAA],) <p(H|, Ma)
< plL+IH],) Mal <L
By Lemma 3, we have that I — HAA is invertible. Now,
considering (11) we can write
[sE— (A4 AA)
[I _(sE—A)! AA} T sE— A)

(I — HAA) — G(s)AA] " (sE—A)~". (17)
Taking into account G(s)AA is strictly proper and I —
HAA is invertible, it then follows from Lemma 5 that
[(I — HAA) — G(s)AA] ™" is proper. Noting this and re-
calling that (sE — A)~"
[sE — (A+AA)]™"

is proper too. Therefore, it follows from Lemma 4 that
the pair (F,A + AA) is impulse-free. This together
with the regularity of the pair (E, A+ AA) implies that
the uncertain descriptor delay system (X) is regular and
impulse-free for all admissible uncertainties..

is proper, we have that



On the other hand, by Theorem 9.8.3 in [12] , it fol-
lows from (16) that for all s € CT we can write

= I+(sE—A)'AA

[I —(sE—A)"! AA} B

+ [(sE—A)*lAA]QJr--..

Using this and (15), we have
-1
P H(I _(sE—A)"! AA) ‘ }

o1+ ’(SE At AA’m

IN

+H(3E—A)1AA]2'm+---]

IN

plr+ ‘(SE - A)_l‘m IAA|

+ H(SE - A)—I)m |AA|m]2 4 }
L+ p[(L+|H],,) Ma]

0 (I(L+H|,) Mal®) + -
1/ (1= p[(L+ |Hl,) Ma]).

IN

Henceap :(SE (A4 AA) T (A + AAd)}
- (I _(sE—A)7! AA) TsE— A (Ag+ AAd)}
< p (I —(sE— A" AA)_ ](SE - A)*]m
< (Ag + A4, | i
< ol (I _(sE—A)! AA>_1 m]

<p[|E=A)7"| I(4a+244)],,]
UL+ |Hl,,) (Adly, + Ma)]
= 1= p[(L+H],)Ma]
From (14), it can be easily shown that

pI(L+ |H],,) (|Adl,, + Ma)]
1= p[(L + |Hl,.) Mo
This together with (18) gives

p [(sE A+ AA) T (A + AAd)] <1

< 1.

(19)

By recalling the pair (F, A+ AA) is regular and impulse-
free, noting (19) and using Lemma 1, we have the un-
certain descriptor delay system (X) regular, impulse-free
and stable for all admissible uncertainties. ]

Remark 1 Theorem 1 provides a simple method to test
whether the uncertain descriptor delay system (X) is reg-
ular, impulse-free and stable for all admissible uncertain-
ties under the assumption that the pair (E, A) is regular,
impulse-free and stable. Note that in order to use Theo-
rem 1, the computation of the matrices L and H is neces-
sary. A simple method proposed in [6] can be resorted to

and the matrices L and H can thus be easily computed.

(18)

Remark 2 In the case when Ag = 0 and My = 0,
that is, the time-delay system (%) reduces to a descriptor
system without delay, it is easy to verify that Theorem 1
coincides with Theorem 2.7 in [6] , therefore, Theorem
1 can be viewed as an extension of existing results on
robust stability for descriptor systems with delay-free to

descriptor delay systems.

4. Example

Consider the uncertain continuous descriptor delay sys-
tem (X) with parameters as follows:

0 -1 0 0

1 -1 0 1

0 00 o0’

| 0.5 =05 0 0.5

0 6 0
9.5 0
0
1

0 1
2.75

0 —0.6

—-2.5

0.1 0
-04 -0.1 0.2 0
0 0.1 —-0.1 0.2
0.1 -0.1 0 —-05

[ 0.1 0.1 0.1 0]

0.1 0.1 0 0.2
0 01 01 0.1

0.1 0 02 0.1 |

01 02 01 0.1]
01 0 01 01
01 03 0 01
02 0 01 0|

The time delay is 7 = 2. It can be verified that there
exist two invertible matrices

Aq

My

My

oo | e 05 -1 0 0
o 0 05 0 —1
0 0 -1 0
0 -1| 0 —05
0l 0 0
v = | v, |lw =
[‘b} 0] -1 0
05 0] 0 05
such that
1 0 0
I
— o] _]o 0 0|
ofo 0 0[0 0
0 0[0 0




6 00 0
Ao 0 -5[/0 0

UAV = 1 =
0|1 0 o0f10
0 0]0 1

Therefore, the pair (E, A) is regular, impulse-free. Now
using the method in [7] , we obtain

L = / |G(t)|mdt:/ VaeArto, | dt
0 0
0.1 02 0 O
_ 0.1667 0 0 O
B 0 000
0.0833 0 0 O
0 0 05 0
Hl = W= | 0 o5 o
0 05 0 1
0 0 05 0

Then, we can calculate
p[(L+|H,,)Ma] =
p[(L+[H|,)(|Adl, + Ma)] =

0.3043
0.6315
and

pl(L+[HL,) Mal + p[(L + |H],,) (|Adl,, + Ma)]
= 0.9358 < L.

Hence, from Theorem 1 it is seen that the uncertain
descriptor delay system under consideration is regular,
impulse-free and stable for all admissible uncertainties.

5. Conclusions

In this paper, the problem of robust stability analysis
for continuous descriptor systems with state delay and
structured uncertainties has been studied. A sufficient
condition ensuring regularity, impulse immunity and sta-
bility for the perturbed descriptor delay system has been
presented. The proposed approach is computationally
simple to use. An example has been provided to demon-
strate the effectiveness of the proposed approach.
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Abstract: A zone model predictive control algorithm is proposed and developed through
the soft constraint method. The estimation of zone violation is avoided; as a consequence
the selection of the approximate setpoint when the control variable violates its zone
constraint is skipped. To further improve control performance, zone trajectory method is
proposed and a parameter is provided to trade off the response performance and model
accuracy. The effective performance is proved by the simulation results. The stability of
the algorithm is also analyzed. Copyright © 2002 IFAC
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1. INTRODUCTION

Although in industrial control applications, the
controlled variable usually has a specific set point. It
is common that many of the controlled variables
have range limits rather than set point. This kind of
process variable is treated as zone variable in most
industrial MPC controller such as RMPCT,
DMCPlus and HIECON, which all provide zone and
setpoint options for CVs to meet industrial need
(Richalet, et al., 1978; Qin and Badgwell, 1997;
Morari and Lee, 1999).

Zone control is also necessary for over-specified
processes, whose process model can be cast at steady
state by the following form (Muske and Rawlings,
1993)

N T I d,
eI B I E 1)
Vs ag - a, | u, d,
where a; issteady gain , d, is disturbance. When

the number of outputs exceeds the number of inputs,
all the set points cannot be met at the same time. If
one of the set points is changed into a zone
specification, the outputs specifications are relaxed
slightly. The probability that the process will meet all
of its specifications increases. Moreover, because the
output’s change within zone is ignored, the need to
coordinate the movement of inputs is largely
eliminated, which decreases its sensitivity to model
mismatch and improves its robust performance,
especially for the process whose outputs and inputs
variables are interacted with each other strongly.

* Address correspondence to this author
E-mail: xuzh@iipc.zju.edu.cn.

In conventional dynamic model control, zone control
cannot be solved directly. But the receding
optimization formulation of model predictive control
provides the possibility to realize zone control. Zhou
(2001) wused setpoint approximation method to
implement zone control, but the limit was that it still
needed estimation of zone violation concomitant with
the selection of the approximate setpoint value.

In this paper, a zone model predictive control
algorithm using the soft constraint method is
proposed to achieve better control performance and
to avoid the mentioned problem. To further improve
control performance, zone trajectory method is
proposed which provides a tuning parameter to trade
off the response performance and model accuracy.
The stability of the algorithm is analyzed finally.

2. ZONE CONTROL ALGORITHM

Consider a stable multi-input multi-output system
represented by the following model (Garcia, et al.,
1989)

1
y(k+j|lc):NZHiAu(k+j—i)+HNu(k+j—N)+d(k+j|k)
i=1
N-1
dlk+ k)= d(klic) = ZH,Au V= Hyulk-N)  (2)
i=1
an(l) ()
H, =
as.(i) e a, (i)
where

»lk+ jJk)=Predicted output vector at time &+

y(k)=Actual output vector at time &
u(k):Actual input vector at time &



d(k + _j|k):Predicted disturbance vector at time &+ j

N = model horizon length
r=number of inputs
s = number of outputs

For setpoint control, the optimization problem at
every sampling time is solved (Cutler and Ramaker,
1979; Garcia and Prett, 1986; Garcia, et al., 1989):
Find the a optimal sequence of M future manipulated
variable moves Au(k),---,Au(k + M —1) so that the
prediction of the manipulated variables and
controlled outputs satisfy the criteria which
minimizes the sum of squared deviations of the
predicted CV values from a time varying reference
trajectory over P future time steps. The formulation
of optimization problem is:

P
. X X 2
Au(k)’.r.r.nzu(kﬁM _1)— jz_l ”J’(k + .llk) w(k + J|k1|Q
M -1
+ Z aute + Y G)
j=0
st u” <ulk+j)<u”
Au” < Au(k+ j)< Aut , Vj=1,M

where
w(k + j|k)=reference trajectory value at time k +

A zone region is defined by the minimum and
maximum values of a controlled variable’s desired
range of values. One way to simply implement zone
control is to use setpoint approximation method:
when the CV is predicted to lie within its zone, its
weight coefficient of matrix Q is set to zero so the
controller will ignore it; when the CV is predicted to
violate its zone limits, its weight is non-zero and a
point within zone is defined as the approximate
setpoint and is chose to drive the output back into the
zone. The simple way to estimation the zone
violation of output is by examining the initial
predictive value of outputs.

Even though the initial predictive value of outputs
meets its zone limits, some of output predictive value
still may violate its limits when correcting other
outputs error during calculating the optimal inputs
moves sequences. The controller will transiently
move the output farther outside its zone limit,
because the controller ignores the output’s error
when the predictive initial value of outputs lie within
its zone. The solution of set point approximation
method is generally sub-optimal. Moreover, the
selection of the approximate setpoint when the
control variable violates its zone constraint lacks
rigorous analysis rules, because distinct response
performance can be achieved by selecting different
approximate setpoint values.

For zone control, the deviation between the output
predictive value and zone limits [,- ,- ]is

defined as
lk+ k)= v e vl k)= v

i+ k)= vz - ylo+ ). it ylk+ slk) <y~ )
0, if ylk+ k)< v& and ylk+ k)= v;

The optimization problem of zone control can be
formulated as

minl z Jle G + ]|k

Au(k ) Au(k+M-1) s Z o i+ Jlls

st u” <u(k+j)<ut (
AT <Au(k+j)<Aaut, Vi=1L,M
5)
Apparently, e(k + j|k)is the optimal value g*(k + j|k) of
following optimization problem

min s(k + j|k)

(i k)

st ye —s(k+ jlk)< y(k+ jlk)
ek + jk)= 0

Therefore, optimization problem (5) can be further

transformed as
(k)mm Jk z " k + Jlk z "Au(k + ]]l
<ulk+j)<u” (©)

k+1k l(k+P|k1)
Au~ < Au(k + j)s Aut ,Vi=1,M

vi —elk+ )< vk + k)< v+
ek + jk)=0, vi=1pP

+elk+ jlk)

st ou-

ek + jJr)

In the above problem formulation, the zone limits is
treated as soft constraints by adding a slack variable.
At the same time the slack variables are also included
in the objective function to be minimized.

Soft Constraints are used to prevent the controller
from introducing transient errors by defining soft
constraints on the controlled outputs at intervals from
the current interval to predictive horizon. When the
controlled variable has a set point instead of a zone
region, both the upper and lower limits of the zone
are set equal to the set point. Through soft constraint
method, the estimation on the zone violation is
avoided; as a consequence the selection of the
approximate setpoint when the control variable
violates its zone constraint is skipped.

In order to drive the outputs back into its zone region

more slowly to avoid overshoot consequently, zone
trajectory is introduced for each controlled output as

follows
ZII e+ el ZuAukw)nS

+

min Jk
(b;m’kl’ fkwks
stoou Su(k+j)£u
Au” < Aulk + j)< Au™ )
vr e+ )=l + k)< wle+ )< v (e )+ ol + gle)
where y;(k+j) »;(k+ ;) is determined as follows:
If y(k) within [ . y: ], then
v, (k+ )=y and  yi(k+ /)=y
If y(k)> y!, then
v, (k+j)=y. and
yilk+ j)=a’y(k)+ (170{’))/;
f y(k)< y_,then
yi(k+j)=yrand
vk f)=alv(e)+ (=a’ )

where ¢ 1is the time constant, which is determined



by the trade-offs that inherently exist between speed
of response and model accuracy or inputs movement.
A smaller value gives faster response and
consequently large MV movement, which requires a
more accurate model for stable control. A larger
value, on the contrary gives slower response with
smaller MV movement and works well with a less
accurate model.

The controller is obliged to keep the CV within the
constraints defined by the zone trajectory, but it is
allowed to follow any figure within these constraints.
The sensitivity to model error is decreased and the
robustness is improved

3. STABILITY ANALYSIS

Alex Zheng and Manfred Morari(1995) analyzed the
closed-loop stability for constrained MPC with
setpoint control. Zone Control also has the similar
property when using soft constraint method.
Assume:

a) There is no model mismatch

b) Predictive horizon is infinite

¢) Steady-state gain matrix of the model has

full row rank.
then the closed-loop system is asymptotically stable
if and only if the optimization problem (7) is feasible
at the first sampling time.
Proof:
If the optimization problem is not feasible, then the
controller is not defined.
At sampling time k, the optimal solution is
Au(k+ilk)i=0,m -1
g (k+ilkLi=1, 00

At sampling time k+1,the solution (18) is a feasible
solution but may not be the optimal solution.

Aulk +ilk +1)= Au(k + ik )i =1, ,m —1

Au(k + mlk + 1): 0

gk +ilk +1)= & (k+ilk)i=2, 00
Define Au, = Au*(k|k) Ep = g*(k + 1|k)
The above feasible control input yields:

* * T T

S S =Jg =& Qg — Auy” SAuy

Jin <J; -6, 06, — Au,” SAu,

Therefore, the sequence {J ; } is non-increasing, its
low boundary is zero. Consequently, the sequence
{J . } converges. So

lim (ngng +AukTSAuk)
k— o

< lim (J}:)— lim (JZ+1):0

k— k— o
This  together with Q. §>0
gy, >0 and Au, > 0 as k - o©

implies  that
Since the

steady-state gain matrix of the model is bounded,
y(k) approaches  the  steady-state  value

asymptotically.

4. SIMULATION

(1) Consider the two-input three-output system:

1.77 e *¢ 5.88 ¢ 7"

60 s + 1 50 s + 1

-14 5 -15 5

G(S)= 5.72 e 6.9e
60 s + 1 40 s + 1
4.42 7.2
44 5 + 1 19 s +1
with the following input constraints
—0.5<u,u,<0.5  |Au,||Au,|<0.03

and the following initial conditions
n=y=y,=0 uy=u,=0

Choose T=5s,N=100,M=4,P=30,Q=I,S=I,a= 0.95

If all of the controlled outputs have set points

» =05 y,=064 y,=0.67
0.8
o6t /. oo d
/ - -
04t | ,/ o - - y1.0.584
| // e — y2:0.632
02 “‘f" /, — y3:.0.682
]
/]
0 L L L L L
0 20 40 60 80 100

Fig. 1. Responses of setpoint control

Because the degree of freedom is insufficient, it is
physically impossible to keep all output at setpoint or

within range. When the set point for y, is replaced by
zone limit[o.65 0.7], all output specification would

be met.
08
o6t / '//,;i S ————
T T _ y1:059
04r [ —— y2:064
02 ! — y3:0.69
0 / L L L L
0 20 40 60 80 100
Fig.2. Responses of zone Control
(2) Consider the system:
1.77 e ** 5.88 ¢ 77" 4.05¢7 7"
60 s + 1 50 s + 1 50s+$
—14 s 15 s 18 s
G(S): 5.72 e 6.9e 5.39 e
60 s + 1 40 s + 1 50 s + 1
4.42 ¢ 2 7.2 4.38 ¢
44 s + 1 19 s +1 335 +1

with the following input constraints

|Au |,|Au, |, |Auy| < 0.03

and the following output regulatory objective
» =02 -0.5<y,,y,<05

and the following initial conditions
n=r,=y3=0

Choose T=5,N=100,M=4,P=30,Q=I,S=I,0= 0.95

When using set point approximation, the result is

shown as follows:

—1<u,,u,,u, <1

u =u,=u, =0

04

03f - ]

02} //// ///,4,7,¥::
L // - = ; - Y1 i

0.1 // Y j g

% 50 100 150 200 250 300
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Fig.3. Responses of set point approximation method

When using soft constraint method, the result is
shown as follows:

04
0.3+ o
o2t /=== =
/ ~ — v
o1t / ) 7 el
0 /l /\ L L L \7>6
0 50 100 150 200 250 300
0.06
— ul
004+ —w
-- 3

002} et ;

Fig. 4. Responses of soft constraint method

From the simulation result, the soft constraint
method prevent the controller from moving a CV
farther outside zone while correcting other CV errors
by defining constraints on the CVs that are imposed
at intervals from the current interval out to the
predictive horizon. In setpoint approximation method,
the controller will ignore the CV when the CV is
predicted to be within its zone, so its performance is
worse than that with soft constraint method.

5. CONCLUSION

Estimating the violation of zone output limits in the
setpoint approximation method is simply through
examining its output predictive initial value, but it
can not always keep zone output in its zone limit
while correcting other outputs errors. Using the soft
constraint method, zone specification is directly
imposed as constraints in optimization formulation,
while correcting other CV errors, it will not  violate
zone output limits, but its computing burden is larger
than the setpoint approximation method. The tuning
parameter provided by =zone trajectory method
enables a flexible way to achieve better performance
and reach a tradeoff between performance and model
accuracy.
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Abstract: The large number of various advanced control strategies (e.g. Model
Predictive Control, Neural Networks or Fuzzy Control) and the lack of a practically
usabl e selection methodology make it very difficult to choose an appropriate strategy
for a given plant. In order to support the selection of proper control strategies and
products a set of relevant evaluation criteria is developed. A flexible and expandable
test environment (workbench) is created aiming a a controller evaluation
considering these criteria. The evaluation approach and workbench are demonstrated
for PID based and commercial Model Predictive Controllers at some typical process

units and plants.
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1. INTRODUCTION

In the last decade, in the area of process control
more sophisticated control strategies have been
developed (e.g. Model Predictive Control, Neural
Networks or Fuzzy Control). With the number of
advanced control agorithms increasing a sound
selection of the control strategy and product
became a challenging task.
The main objective of this project was to develop a
methodology and tools to evaluate / compare
different control approaches from the viewpoint of
industrial application.
To obtain practical relevance all important aspects
of the controller application should be considered.
Therefore the standard criteria describing the
controlled variable performance (i.e. set point and
disturbance responses, IAE, ISE) are extended by
such practical issues as.

» Engineering and operational aspects

» Robustness and integrity

* Ability to explicitly consider constraints.

Based on literature (Harris, 1996; Joshi, 1997;
Le Page, 1998; Schuler, 1998; Seborg, 1999), inter-
views of control engineersand personal experience
a criteria catalogue was accomplished (details in
section 4.).

A set of answers to al the criteria is thought as
valued quideline for the selection of most
appropriate  control  strategies or  products.
Considering the diversity of al the criteria, the
processes, the enterprises and the control tasks no
attempt is undertaken to provide a single selection,
instead the user is supported in his multiobjective
decision.

The initial idea of the project was to create only
exemplary evaluations of important control strate-
gies for typical process units which should
represent entire classes of equipment and to obtain
generic evaluations. However, a retrospective result
is the usefulness of the proposed approach for any
specific process assumed its detailed dynamic
model isavailable.

While some of the criteria can be evaluated using
documentation / literature others need



measurements in a real plant or - as chosen in this
project - in asuitable simulation environment.

This simulation environment (referred to as
Workbench) is the platform for the detailed
dynamic process simulation, for the basic control
functions, and can be connected to commercial
Advanced Control Algorithms. It is utilized to
“experimentally” obtain the controller design
models as well as to implement and evaluate the
controllers.

To achieve an industrialy relevant assessment of
the above mentioned criteria a commercial
distributed control system (DCS) is used and
representative  commercial advanced controller
software packages can be included. The emulated
controller of the DCS performs the basic controls of
the simulated units or plants, and provides the
interface between the emulated DCS controllers and
the advanced
controller (Figure 1).
In addition it pro-
vides the function

Advanced Control

blocks for some con- DCS
ventional advanced
control strategies

Simulated Process(es)

(e.g. PID based, and
decoupling control).

Fig. 1 Workbench Structure

2. TECHNICAL REQUIREMENTS FOR THE
WORKBENCH

A complete controller evaluation is not possiblein a
sole offlineesimulation environment such as
Matlab/Simulink since the actual commercial
control products are available only as self-contained
applications without source code. This and the
intended use of the workbench lead to the following
demands:
 evaluation of strategies and products
* evaluation of commercial and user
programmed controller
» fast simulation
* high reproducibility
* availability of appropriate interfaces
* implementation on heterogeneous distributed
computers/ DCS systems
 assessment of engineering effort
« flexible choice of controller or process models,
respectively.
The selected workbench structure is depicted in
figure 2 and contains the following levels:
APC-Strategies / Products: Commercia as well as
user-specified APC-strategies, which are relevant
for the process industry and hence will be assessed.
Digtributed Control System (DCS): The DCS is
utilized as Operator-Station, data transfer unit and
watchdog. In addition, PID-controllers can be
realized in the DCS. The control units (process
connected devices) can be emulated on the PC.

Workbench

APC-strategies

Client
.
DCS |:‘:|'
Server
Client

A

f;
Server

Process simulation

Fig.2 Client-Server-Concept of the Workbench

Process simulation: The existing plant is replaced
by a dynamic typically non-linear, first principles
process model. The demand of a flexible and easily
usable workbench requires a well-defined con-
nection from the APC to the simulation process via
the DCS (Figure 2). The desired flexibility and
short training period to get familiar with the
workbench is attained by using Microsoft Windows
NT operating system which provides severa
(industrial) standard interfaces like Dynamic Data
Exchange (DDE) and OLE for process control
(OPC). Because of the performance advantage of
the OPC versus the DDE and its popularity in
process automation the OPC-interface is selected as
standard interface in the workbench.

Most of the actual APC products provide an OPC-
interface, therefore they can easily be implemented
in the workbench. However, the products of the
simulation level (i.e. MatLab or Gproms ) do not
provide this interface as standard feature. Therefore
several simulation products were extended with the
OPC interface. OPC is based on the Client-Server-
Concept, and the APC-strategies usually provide
the OPC-Client functionality only. Thus the
selected DCS needs to have an OPC Server and an
OPC Client in order to accomplish the depicted
connections. The OPC code of WinTECH
Software Design was used to add these functions to
Matlab/Simulink and stand-alone simulations
(WIinTECH, 2001). The different workbench levels
can be implemented on a single PC or two / three
PCs communicating via TCP/IP.

Due to the real time character of some workbench
components (e.g. DCS, MPC) their calculations are
normally triggered by the computer’s real time
clocks. The interactions of the process model and
the controller must be synchronized. The
achievement of a significant acceleration of the
simulation time compared with real time (up to the
factor of 100 on standard PC) was a challenge and
a the same time a prerequisite to cope with the
many simulations necessary for the evaluation. One
simple option is to “shrink” the controller's time
scale by the ratio “necessary computation time for




integrating the model about a given rea time
interval / rea time interval”. Another option is
using the “external trigger” mode of the APC-
strategies. In this mode (often hidden for end user)
the controller calculations can be triggered by an
external program.

3. PROCESS MODELLS AND CONTROLLERS
IMPLEMENTED

The four process models used in the workbench

hitherto are:

e A Binary distillation column: A simple
digtillation process, enabling initial experience
in controller implementation and eval uation

e A Distillation Operator Training simulator: A
detailed rigorous dynamic plant model which
can be used not only for normal operation but
aso for the simulation of start-up, shut down
transients and several process / equipment
malfunctions.

e A Divided Wall Column (DWC): A DWC can
efficiently be used for the separation of three
products. Since a dynamic model was developed
for a DWC pilot plant the evaluation approach
could be accomplished on the model and on the
pilot plant. This provided the opportunity to
validate the simulation based evaluation
approach by real process data.

e The Tennessee Eastman process. A complex
academically well acknowledged control
benchmark process

All models contain unit operations relevant and

typica for process industry. With the exception of

the first model they all comprise not only the main
equipment components but also the auxiliary ones,

e.g. separators, pumps heat exchangers.

The commercial DCS and controllers which were

offered to participate at the evaluation are:

* DCS PlantScape, Honeywell

¢ RMPCT, Honeywell

* DMC, Aspen
e INCA, Ipcos
e 3dMPC, ABB.

4. APPLICATION OF THE EVALUATION
CRITERIA

The evaluation approach is divided into five groups
containing qualitative or numerical ratings. The
tables 1 to 5 list the criteria concerning:

* identification and tuning

e implementation of the controller

e control performance

e control system robustness and integrity

e usability

The application of the evauation criteria is
exemplarily demonstrated here for the binary
distillation column.

The binary distillation column (Figure 3) comprises
41 stages and separates a binary mixture. The
model is based on the following assumptions:

e Constant relative volatility

e Constant hold-up

* Perfect level control.

The model of the distillation column considers the
material balance and the phase equilibrium on each
stage.

As both the bottom and the top condenser levels are
assumed as perfectly controlled, the remaining
manipulated variables reflux flow and heating
steam flow are utilized to adjust the concentrations
of the light component x; and Xg.

The control objective is to ensure tight control of xr
and xg during operating point transition and in the
presence of disturbances (feed flow and
composition changes).

Fig.3 Distillation column

The model of the column is a non-linear Multi

Input Multi Output (MIMO) system. Although the

process has only two manipulated and two

controlled variables, it represents some typical

features of digtillation units.

The comparative evaluation study includes the

following controllers:

e Decentralized PID controller

¢ PID controller with steady state decoupling

e Commercia Linear model predictive controllers
(MPC #1, MPC #2).

Both PID based control structures are implemented

on the DCS, the MPCs are installed on top of the

DCs.

The evaluation method comprises the assessment of

the controller design steps and of the controller

performance:

e Controller design:



- ldentification to obtain the controller design
model (e.g. step tests at the rigorous model)
- Tuning of the controller
- Offline simulation using the design model
e Implementation of the controller on the non-
linear ssimulation model of the plant.
* Investigation of controller performance
- Controlled variable performance
- Stability
e Applicability

Example:
The first step of the controller design is the model

identification to obtain a design model (figure 4).

Reflux Gy, 1.795s + 0.29 o
_— A Tox
23557 + 14.3s +1 !
Gy . -1.65
>
13.6s + 1
> 1.391s-0.235 ||
Gi, 209s? + 15.1s +1
Heating [P -1.67 v N
11.9s + 1 T e

Fig.4 Linear model of the column

At the next step the controllers are to be configured
and tuned. To achieve an equa performance
specification for al controllers, the tuning
parameters are adjusted to obtain the same closed
loop settling time (figure5) with minimum
manipulated variables activity.

This indirect “unification” was necessary because
the optimisation criteria of the commercial MPCs
differ widely and are not documented in detail.

[mol / mol]
Operating point change
0.992 Tk LA W T PSSP S S R —
5 0.990
c
S 0.988
S 0.986
Fossa HF 1 e (MPC#1)
0.982 —— (MPC#2)
0.980 = — - (PID) =
= = — (Decoupled PID)
0.04
1%
S 003
o
£ 0.02
9
8 oo01 |
0.00} . .
i 0 g 20 40 60 80 100 120
: < DD Time [min]
Fig. 5 Closed loop settling time tos specification
(linear model)

For the PID controllers the IMC tuning was applied
whereby the two A were determined by a non-linear

optimisation according to the above objective.

The evaluation criteria concerning identification are
shown in (table 1).

After being tuned the controllers can be
implemented and used to control the non-linear
simulation process. The assessment of the
implementation procedure is given in table 2.

The controlled variable performance can be
evaluated analysing figure 6.

[mol / mol]

0.992
. 0.990
8 0.988
8 poms [V
a 0.986 C
2 o.08al! (MPC#1)

0.982 M — (MPC#2)
— - (PID)
= = = (Decoupled PID)

0.980
0.04 [
003!/
0.02

0.01 [
0.00

Bottom conc.

0 20 40 100 120

60 80
Time [min]

Fig.6 Closed loop control (non-linear model)

It shows the transients of the non-linear plant with
the different controllers for a given change of the
operating point (Xr).

Further quantitative evaluation criteria values are
given in table3 to assess the controlled variable
performance.

As analytical considerations of the stability margins
are hardly possible many of the considered
controllers they are determined here by an
empirical simulation approach. To do this gain or
dead time blocks are placed between model outputs
and controller inputs. Either the gain or the dead
time is increased until the closed loop stability
threshold is reached. The obtained gain and delay
represent some kind of of the phase and gain
margins. The robustness is considered as criteriain
the table 4 below, see also (Subawalla, 1996; Le
Page, 1998).

Last but not least some features describing the
practical usability are investigated (table 5).

From these evaluation criteria it gets evident that
the selection of a control strategy and product for a
given plant type and control objective is a multi-
objective task. However, the proposed criteria give
a clear guideline, which allows to give the choice a
reasonable foundation. Besides the proposed
evaluation criteria, the final decision is aso
influenced by “external” and partially soft factors
as companies policy.

For the given simple binary digtillation with
relatively “control-friendly” steady state and
dynamic behaviour and no explicit constraints on
controlled and manipulated variables the best
choice is obviously a pair of PID controllers with
steady state decoupling.

Similar investigations were performed also for the
other processes mentioned above and for an
additional commercial MPC. The evaluation results
are published in (Mahn, 2003).



5. SUMMARY

The proposed approach to evaluate control

strategies and products (incl. their tools) in a close-

to-reality simulation environment has been tested
on several processes from arelatively simple binary
distillation column up to the difficult to control

Tennessee Eastman Challenge benchmark process.

The approach was successfully validated applying

the evaluation criteria for both a real pilot plant

DWC with DCS and for a simulated DWC in the

workbench.

Until now PID based control structures and several

linear MPC controllers were analysed.

The major findings for the time being are:

e The evauation of advanced control strategies
using a simulation environment and rigorous
models of typica units is feasible (and
affordable).

Tab. 1 Criteria concerning identification and tuning

¢ While the evaluation results of the workbench
regarding the controllers inspire confidence the
assessment  methods / tools seems to be less
significant due to the variety of disturbances and
operating limitations in real plant experiments.

» Prectically relevant evaluations comprise more
than just controlled variable performance only.

e The evauation results can be significantly
biased / influenced by the evauator's
experience. This issue is worsened due to the
lack of good product manuals/ documentation.

e The maturity of the evaluated APC products
regarding the engineering by externa users is
still low.

e Besides the use as evaluation tool the developed
workbench turned out to be a useful medium to
acquaint oneself with the identification / design
and operation of control products and to try out
control system designs.

Criteria group Criteria PID PID with MPC #1 MPC #2
decoupling
I dentification I dentification tool available No' No' Yes Yes
Model accuracy Normal Normal Normal High
Number of tuning parameters 1° 1° 1 5 (many)
Tuning rules available Yes Yes Yes No
Tuning Off Line simulation possible No No Yes Yes
Adaptation of parameters Yes Yes No No
possible
PV transformation possible Yes Yes Yes Yes
! several identification tools available  “dueto IMC-tuning
Tab. 2 Criteria concerning the implementation of the controller
DCS
Criteriagroup Criteria PID PID with MPC #1 MPC #2
decoupling
Transfer of tuning parameters No No No Yes
from offline to online possible
Implementation Minimal execution period 50 ms 50 ms 5sec 5sec
Connection controller to DCS Browser Browser Manual Manual
Specia requirements for the tags No No Yes Yes
Tab. 3 Criteria concerning the control variable performance
DCS
Criteria group Criteria PID PID with MPC #1 MPC #2
decoupling
Ju=[ 2e(x)?| ZAu?] Top conc. Top conc. Top conc. Top conc.
— 2 2 1|1 2.0]0.5 20103 19]0.2
J2= [ 2e(xe)" | 24u;"] {1 I 1} {0.045 | 1].01 % 01 I o.e} {1.0 I 0.5%
Pgr?gtrrrﬂgr?(r:e 3. (Actual Controller) Bottom conc. | Bottom conc. | Bottom conc. | Bottom conc.
RP| =—1 [1]1] [0.2]0.9] [08|01] |[08]0.06]
J; (Dec.PID Controller) | [1]1] [21]032] |[23]006] |[[23]0.02]

e = set point-controlled variable

Au =manipulated variable J= controller performance criteria




Tab. 4 Criteria concerning the control system robustness

DCS
Criteriagroup Criteria PID PID with MPC #1 MPC #2
decoupling
Robust design possible Yes Yes No No
AKP
RRI,, = (D) | RPIp(x)=1 |RPlp(x)=18 |RPlxp(x1)=3.0 | RPIxp(x1)=3.0
Stability AKF,, RPle (Xg)=1 |RPlp(Xs)=4 |RPlp(Xg)=1.2 | RPlxp(Xg)=15
margin*
ATP
RR.=—— (2 RPIp(%1)=1 | RPlp(x)=4.5 |RPIp(%1)=5.0 | RPlp(x)=5.0
ATR,, RPlIp(%e)=1 |RPltp(Xe)=12 |RPIp(Xs)=24 | RPIwp(Xs)=3.2
(*): Used as measure of the control system robustness
(D: AKP isthe minimal change of the process gain, which induces unstable operation for the controller.
(2): ATP isthe minimal change of the process dead time, which induces unstable operation of the system.

AKPpp, AKTpp are the values of the stability thresholds of the PID controllers used as reference.

Tab. 5 Criteria concerning the usability

DCS
Group of criteria Criteria PID PID with MPC #1 MPC #2
decoupling
Separately usable subsystems Yes No Yes Yes
supported
Anti-reset windup supported Yes No Yes Yes
Usability User interface available Yes/Yes | Yes/Yes | Yes/No Yes/ No
/ customized possible
Quality of human-machine- Normal Normal Normal Poor
interface
(poor, normal, excellent)
Quiality of user guide Normal Normal Poor Poor
(poor, normal, excellent)
Le Page, G.P., Tade, M.O.; Stone, R.J. (1998):
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Abstract: Based on an extension of the Hermite-Biehler Theorem to the quasipolynomial stability problem,
this paper studies the problem of stabilizing a second-order plant with dead time via a PID controller. The

region in PID parameters space for the closed-loop stability is given. For a feasible proportional gain (kp ),

the region of all the admissible integral gains (k;) and derivative gains (K ) is a convex polygon. The PID

controller design is formulated as a convex optimization problem of load disturbance rejection with
constraints on stability and non-fragility, which can be solved by using existing linear programming

techniques. Copyright © 2003 IFAC
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1. INTRODUCTION

In today’s process industry it is still PID controllers
that are the most frequently used controllers.
Estimates indicate that more than 90% of all
controllers used are of the PID type. The main reason
is its relatively simple structure, which can be easily
understood and implemented in practice (Astréom &
Hégglund, 1995). In order to satisfy the increasing
requirements for control systems performance,
knowing all stabilizing PID controllers and using this
information in controller design can be extremely
useful. To this extent, Ho, Datta, and Bhattacharyya
(1996) obtained a characterization of all stabilizing
gains using a generalized Hermite-Biehler Theorem.
They (1997a,b) have then extended this result to
characterize stabilizing PID controllers. Recently,
Silva et al (2001) solved the problem of stabilizing a
first-order plant with time delay via a Pl controller.
On the other hand, in practice, controllers do have a
certain degree of errors due to finite word length in
any digital systems, the imprecise inherent in analog
systems and need for additional tuning of parameters
in the final controller implementation. It is shown
that relatively small perturbations in controller
parameters could even destabilize the close-loop
system (Kell and Bhattacharyya 1997, Dorato 1998).
This brings a new issue: how to design a controller
for a given plant such that the controller is insensitive
to some amount of errors with respect to its
parameters, i.e., the controller is non-fragile.

In this paper, the problem of designing a non- fragile
PID controller is studied for a class of second-order
systems with time delay. First the region in PID
parameters space for the closed-loop stability is
derived based on a suitable extension of the Hermite-
Biehler Theorem. Then the primary goal of the
design problem is to achieve good disturbance
rejection, which in mathematical terms corresponds

to minimizing the integrated error. According to
Astrom et al. (1998), this is equivalent to maximizing

the integral gaink; for a step change in the load

disturbance. Finally the PID controller design is to
maximize the integral gain k; with constraints on

stability and non-fragility.

This paper is organized as follows. In Section 2,
some preliminary results due to Pontryagin and
others are presented for the stability of systems with
time delay. These results are used in Section 3 to
study the stabilization problem via a PID controller.
The procedure for determining the PID parameters is
presented in Section 4. The simulation and
experiment examples are given in Section 5 and
Section 6 to demonstrate the usefulness of the
proposed results.

2. PROBLEM STATEMENT AND
PRELIMINARY RESULTS

Consider the feedback control system shown in
Fig.1,

r(y + y(®)

—> C(s)

u(t) G(s)

Controller Plant

Fig.1. Feedback control system.

where the transfer function G(s) and the PID
controller C(s) are in the form of

k _
G(s)=———e™ 1
©) asz+bs+1e @)
kgs? +k,s+k;
C(S):f 2

where k,a,b,L are known, k,,k, k; are the PID



parameters.

When the time delay L of the plant model is zero, the
characteristic equation of the closed-loop system is
given by

O(s) =as® + (b +kk,)s? +(L+ Kk ,)s +Kk; . (3)
It can be concluded from the Routh-Hurwitz stability
criterion that the closed-loop system is stable if

a>0, b+kk, >0,
K> 1 yso @
“hrkk, k

or
a<0, b+kk, <0,

| 5

<1 <o ©)
Sbekk, k

When the delay of the model is nonzero, the
closed-loop characteristic equation of the system is
given by

3(s) =k(kgs® +k,s+k)e™ +s(as’ +bs+1) (6)

that includes an exponent term. So the region of

parameters kg, k,,k; can’t be determined directly

by Routh-Hurwitz stability criterion for closed-loop
stability. To overcome the difficulty, a new method is
put forward based on the Hermite-Biehler Theorem
and its extension.

Consider the closed-loop characteristic equation of
the system with time delay

3(s) =d(s) +e " ny(s) +--+e ", (s) ()

where d(s),n,(s) (i =1,2,---,m) are polynomials with
real coefficients. The characteristic equations of this
form are known as quasipolynomials. To study the
stability of certain classes of quasiplynomials, we
first introduce the extension of the Hermite-Biehler
Theorem, which was developed by Bhattacharyya et
al (1995). In (7), assuming

Al. deg[d(s)]=n and deg[n;(s)]<n,
for i=12,---,m;

A2, 0<T,<T,<.---<T,.
Instead of (7), we consider
7 (s) =e™d(s)

=e"md(s)+e*™™n, (s)+e ™ PN, (s) +---+n, (S)

(@)

Since e*™ does not have any finite zeros, the
Hurwitz stability of 5(s) is equivalent to that of 57 (s) .

The following Lemma presents a necessary and
sufficient condition for the Hurwitz stability of d(s) .

Lemma 1. (Extended Hermite-Biehler Theorem)
Let 5" (s) be given by (8), and write

0" (jw) =9, (w) + I, (w)
where J, (w) and J,(w) represent, respectively, the
real and imaginary parts of & (jw) . Under

assumptions (A1) and (A2), 8°(s) is Hurwitz stable
if and only if

(1) o,(w) and 9, (w) have only single real roots
and these interlace;

(2) &(w)d, () = & (e)d, (a) >0, for some ay in
(=00, 00) .

where J; (w) and J; (w) denote the first derivative with

respectto « of J, (w) and J; (w) , respectively.

A crucial step in applying the above theorem to

check stability is to ensure first that J, (w) and J; (w)

have only real roots. Such a property can be ensured
by using the following result (Bellman & Cooke,
1963).

Lemma 2. Let M and N denote the highest powers of
S and e°, respectively, ind"(jw), and 1 be an
appropriate constant such that the coefficients of
terms of highest degree in J, (w) and J,(w) do not

vanish at « =rn. Then for the equations J, (w) =0
or J,(w) =0 to have only real roots, it is necessary
and sufficient that in the interval wD[— 2m+n,
2lm+n] J, (w) or d,(w) has exactly 4IN+M real
roots starting with a sufficiently large number I.

3. STABILIZATION USING A PID
CONTROLLER

In this section, a stabilizing region in PID parameters
space is given based on the extended Hermite-
Biehler Theorem. Obviously, the equation (6)
satisfies the assumptions (Al) and (A2). A
quasipolynomial is constructed as follows:

0" (s) =e"5(s)
=k(kqys? +k,s+k;) +s(as’ +bs +1)e"
Substituting s = je in the above yields
5 (jw) = 3, (@) + ().
where
0 (w) = afkk,, = (aw?® —1) cos(Lw) —bwsin(Lw)];

0, (w) =Kk, —kk, " + w(aw’ —1)sin(Lw) —bw’ cos(Lw).

The controller parameter k, only affects the
imaginary part of 5" (jw) . Whereas k; andk, affect
the real part 6" (jw) . Let z =L, then

ZZ
5,(2) = I{ki kg h(z)} ©)

2

5,(2) = %{kkp —(aZL—Z—l]cos(z)—bfsin(z)} (10)

where
2

h(z) = k_zl_{b%cos(z) - [ai—z —1Jsin(z)] . (1)

A general assumption on k>0,a>0,b>0,L>0
is suitable for a second-order model with time delay.

The following theorem gives a stabilizing region in
PID parameters space.



Theorem 1. Under the assumption on k >0, a >0,

b>0andL >0, the closed-loop system with transfer
function G(s) as in (1) is stable if and only if

kp D(maX(_j/k ) kplow)’ kPUP) ;

>0, ky>—2, k> 1,
k' " b+kk, k
7 22
ki ‘kdrlz<hu ey ki—ky ‘*LZZ <h._,;
z; Zi,
K=ka 5> kimkg =5 >0, (12)
Where
(1).Kpow and k., denote the upper bound of all

minimum values and lower bound of all maximum
values, respectively, for

k,(2) = %{[azé —1Jcos(z) +%zsin(z)} ;

(2).2,>0(j=12,3,---) denote the roots of & (z)
associated with a given parameter k;

(3). When j is an odd number, k,denote k, in the
joints of k —k,(z;/L*)=h, and k =0. Then e
is the minimum odd number satisfying k, <k, ;

(4). When j is an even number, kg denotes kg in
the joints of k, —k,(z2/L*)=h, and k —k,(z’/L%)
=h,. Then f is the minimum even number satisfying
k, >K,,-

(5).Where

z, |, z, z .
h, =h(z,) :E{bTCOS(Zj) —[aF—l]sm(zj)} .

Proof:
Step 1: Check the condition 2 of Lemma 1. Letw, =

z, =0, thus
5,(20)9, (29) = 6, (20)3; (z5) = kk; (kk, +1)/L .

From the above assumption and (4), then J/(z,)
0,(2,)=6,(2,)9,(z,) >0 if k; >0 and k, >-Vk.

Step 2: Check the condition 1 of Lemma 1. From (10)
the roots of the imaginary part can be computed, i.e.,

3(2) =L kk, - al -1 cos(z) —bZsin(z) [= 0
' L| P L L '
The solutionare z=0 and
1 z° b .
k =—|| a—-1{cos(z) +—zsin(z) | 13
b k{(l_z J ()L ()} (13)

For j=1,2,3,---; the derivatives of k, versus z

T D 1 (L RI=D' ), b
SO (G i

(14)

am=cy (B a9

From (14), (15 and the assumption on

k>0,a>0,b>0,L>0, it can be seen that k is
strictly monotonously increasing in (2j-1)7z, while
it is strictly monotonously decreasing in 2j7. This
means that k, versus z depicted by (13) is

oscillatory and nonconvergent, and its oscillatory
period is gradually to tend towards 27. The curve

of k,versus z depicted by (13) is shown in figure

2, where A, B, C and D represent extremums of the
curve, respectively.

Now check if J,(z) has only real roots using
Lemma 2. Substituting s, =Ls in the expression for
d°(s), it can be seen that for the new quasi-
polynomial in s;, M =3 and N =1. Selectn =
/4 to satisfied the requirements that sin(77) #0
and cos(r7) #0. Now from Figs 2(a) and 2(b), it is
seen that for a given k; O(-Yk, k), 9(z) has
four real roots in the interval [0, 27T—7T/4]=[0,
7m/4], including a root at z=0. Since J,(z) is an

even function of z, it follows that in the interval
[-7m/4,771/4], 3,(z) will have seven roots, whereas

3, (z) has no root in the interval [77/4,971/4] . Thus,
J,(z)has 4N +M =7 real roots in the interval [—27‘[
+71/4, 27T+ /4] . Moreover, it is clear that J,(z)
has two real roots in each of the intervals
[2lr+ /4, 2(1 +)r+7/4] and  [-2(1 +1);r+77/4,
=2lr+m/4] for 1=12,---. Hence, it follows that
0;(z) has exactly 4IN +M real roots in [—2Irr+
/4, 2|+ /4] starting from 1=1 for any given
K, D(—l/k,kpa). At the same time, starting from
=2, J,(z) has 4IN+M real in the
interval [-217r+77/4, 21+ /4] for any given
[—2In+ /4, 21+ rr/4] shown in Fig.2(c); while in
Fig. 2(d), starting from =3, J,(z) has 4IN +M
real roots in the interval [~2177+77/4, 21+ /4] .

Hence from Lemma 2, it can be concluded that
J,(z)has 4IN + M roots in the interval [— 2T+ /4,

2lr+ n/4] starting from a large enough value of |,
for k, O (max(~1/k Ko ), Kpup ) -

roots

(@ for a7 150
412

L
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Fig.2. The curve of k, versus z by equation (13)

Let z; denote roots of &(z), then interlacing of
the roots of J,(z) and oJ,(z) is equivalent to
0,(z,) >0 (since k; >0 as derived in step 1),
o,(z,)<0,9,(z,) >0, J,(z;)<0,0,(z,)>0, and so
on. Using this fact and (9), (11) it is obtained

0,(z5)>0 = k>0

5,(1)<0 =k -ki(z2/12)<n,
5,(2,)>0 =k -k(z2/12)>n,
5,(z)<0 =k —ki(z2/12)<h,
5,(2)>0 =k —k(z2/2)>n,

(16)
whereh; =h(z;) for j=123,....

Eq. (16) should be simplified since it includes
infinite inequalities. As shown in Fig.2, z, is

approaching (j—3/2)rr as j increases.

For odd number j,limcos(z;)=0and limsin(z,)
Jaw JA.DO
=-1. Let kg
kd(zf/Lz)=hj and k; =0.Then
L*h, L|b z; 1.
kg =~ - . =—?{Ecos(zj)—(al_—;—? sin(z;) |-

j ]

denotes k, in joints of k, -

Using this fact, ifk, <ky (eis an odd number),
then ky <ky whenj>e.

For even number j, we have limcos(z;)=0 and
Joo

limsin(z;) =1 . Let kg denotes Kk, in joints of

im
ki —kq(22/L2)=h; and K —k,(2?/L2)="h,. Then
hl_hj

2 2
z -1

Lh L 1. _b

| (72)

k, =L

where z, #0.
Using this fact, if ky >kg, (f isan even number),
then kg >k,, when j>f.

In a word, for a controlled plant G(s) described by
(2), the closed-loop system is stable if and only if (12)
is satisfied. [

4. PID CONTROLLER DESIGN

Using Theorem 1, a region in (k;,ky), which is a
convex polygon, can be determined to stabilize a
second-order system with time delay for a feasible
k,. By linear programming, the extremum can be

computed in this region with maximum k; , which is

also a vertex of this convex polygon. Thus the
closed-loop system will possibly be unstable if there
are small perturbations in controller parameters, i.e.,
this controller is fragile. In order to overcome the
drawback problem, a non-fragile PID controller will
be presented. It is given by solving the following
optimization problem

Maximize k;

subject to
K, O(max(-1/k Kyou)+d , Koy —0);
ki=r>0, k,—-r>-b/k,

k +r 1+ W+Kk,)? /a” —k, (1+kk, )/a <b{L+Kk,)/ak,
ki +r\/m-kd(21/|-)z <h,



ki +ry/1+ (Ze—z/l—)4 —kyq (Ze—z/l-)2 <h._,,
ki —ryl+ (Zz/L)4 —kq (Zz/l-)2 >h,,

ki_r\[1+(zf—z/|-)4 _kd(zf—z/l-)z >hi,. 17

Where d denotes an acceptable perturbation size of

k,. rdenotes an acceptable perturbation size of k;

and kg, also is the distance between both borders of
the (k; ,k,) regions given by (12) and (17), for a
feasible k, . Both regions are two similar convex

polygons each other. As a result, the closed-loop
system will be guaranteed to be stable as long as
perturbations in the controller parameters are smaller

than rand d.

5. SIMULATION EXAMPLE

Consider a high-order and heavily oscillatory process

G(S) - ; 1 ; -0.1s

(s +s+1(s+2)

Its second-order model (Wang, 1999) is given by
é(s) - 20222 e_0'837s '

1.256s° +1.101s +1

With the proposed PID controller design procedure,

Kyow =—4.5045, k , =10.0995, then when d =r

=4, the PID controller designed is
C(s) = 4.4485+ 2297 L g 30135 |

plow

Wang’s method (1999) gives rise to
1366 |1 715s.

C'(s) =1.503+

The closed-loop performances of the proposed PID
controller (solid line) and Wang’s PID controller (dot
line) are shown in Fig.3, where a step load
disturbance is introduced to at t=30 sec. Both

controllers parameters k, k,andk, in Fig. 3(a) are

not perturbed, and in Fig. 3(b)-(d) are perturbed, i. e.,
they are deviated -1.5,1.515 in Fig. 3(b),
1.5,-1.366, 1.5in Fig. 3(c), 1.5,1.5,-1.5 in Fig.
3(d) from their design values, respectively. It can be
seen from the results of simulation that the proposed
method is superior to Wang’s method in the rejection
of load disturbances and non-fragility.
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Fig 3. Step responses of the process

6. EXPERIMENT EXAMPLE

The above approach of PID controller design will be
tested on a water level control plant with three tanks.
The plant is described as

G(s) = 139 e 30,

313652 +137.65 +1
With the proposed PID controller design procedure
for this model, k ,,, =-0.7194 , k,,, =3.89 , then

plow
when r =0.05, the PID controller designed is
0.0513

C(s) =2.738 + ———+125.6s.
s
Astrém’s method (1984) gives
C'(s) = 2,09+ 2912 L 905

The step responses with the above two PID
controllers: the proposed PID (up) and Astrém’s PID
(down) are shown in Fig.4, a step load disturbance is
introduced to at t=900 sec. There is a higher
overshoot in the step responses with the proposed
method , but it is superior to Astrém’s method in the
rejection of load disturbances.
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Fig 4. Step responses of the water level control plant

The acceptable perturbation size (as r =0.0513) of
the proposed PID parameters is larger than that (as
r =0.012) of Astrém’s PID parameters. For instance,
when the integral gains (k;) of both controllers are

deviated —0.045 and —0.01 from their design values,
respectively, the step responses with the proposed
PID (up) and Astrém’s PID (down) are shown in
Fig.5. It is obvious that the proposed controller can
tolerate a larger perturbation extent compare with
Astréom’s controller.

cm

8 i — e g — a_

0 200 1200 t(sec)
cm

8 ...................

0 200 1200 t(sec)

Fig 5. Step responses of the process for k; is deviated
from the its design value

7. CONCLUSIONS

Based on an extension of the Hermite-Biehler
Theorem to the quasipolynomial stability problem, a
characterization of the complete set of stabilizing
PID controller have been obtained for a given
second-order plant with dead time. This result opens
up the possibility of designing PID controller to
optimize a given performance criteria. The main
reason to optimize the load disturbance response
instead of the set point response is that load
disturbances are more likely to change during
operation compared to set points, which are usually
kept fixed. A good set point tracking can be achieved
by using the feed forward term of two degrees of

freedom PID controller (Panagopoulos, 1999). The
non-fragile PID controller can tolerate a larger
parameter perturbation extent. Consistent and
satisfactory responses are obtained as shown in
simulation and experiment example results.
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Abstract: A method of controlling general nonlinear processes is presented. Tt is
applicable to stable and unstable processes, whether non-minimum- or minimum-
phase. The control system includes a nonlinear state feedback and a reduced-
order nonlinear state observer. The state feedback induces an approximately linear
response. The application and performance of the control method are shown by
implementing it on a chemical reactor with multiple steady states. The control
gystem is used to operate the reactor at one of the steady states, which is unstable
and non-minimum-phase. The simulation results show that the closed-loop system

is globally asymptotically stable.

Keywords: nonlinear control; unstable systems; feedback linearization;
non-minimum-phase systems; model-based control

1. INTRODUCTION

During the past 20 years, many advances have
been made in nonlinear model-based control,
mainly in the frameworks of model-predictive and
differential-geometric control. In model-predictive
control, the controller action is the solution to a
constrained optimization problem that is solved
on-line. In contrast, differential-geometric con-
trol is a direct synthesis approach in which
the controller is derived by requesting a desired
closed-loop response in the absence of input con-
straints. In other words, model-predictive con-
trol involves numerical model inversion, while
differential-geometric control involves analytical
model inversion. In model-predictive control, non-

I Corresponding author. masoud.soroush@coe.drexel.edu
2 The authors gratefully acknowledge financial support

from the Natinnal Seience Fanndatinn

minimum-phase behavior is handled simply by
increasing prediction horizons, but in differential
geometric control, special treatment is needed.

Differential-geometric controllers were initially de-
veloped for unconstrained, minimum-phase (MP)
processes. During the past two decades, these
controllers were extended to unconstrained, non-
minimum-phase (NMP), nonlinear processes. The
resulting controllers include those developed by
(Kravaris and Daoutidis, 1990; Isidori and Byrnes,
1990; Tsidori and Astolfi, 1992; Wright and Kravaris,
1992; van der Schaft, 1992; Isidori, 1995; Chen
and Paden, 1996; Devasia et al., 1996; Doyle 11T
et al.; 1996; McLain et al., 1996; Hunt and Meyer,
1997; Niemiec and Kravaris, 1998; Kravaris et al.,
1998; Devasia, 1999). Most of these controllers
are applicable only to single-input single-output,
NMP processes. Although controllers of Niemiec
and Kravaris (1998), Isidori and Byrnes (1990),



Isidori and Astolfi (1992), van der Schaft (1992),
Chen and Paden (1996), Hunt and Meyer (1997),
Devasia et al., (1996), Devasia (1999), and Isidori
(1995) are applicable to multi-input multi-output
(MIMO), NMP processes, either sets of partial
differential equations must be solved (Isidori and
Byrnes, 1990; Isidori and Astolfi, 1992; van der
Schaft, 1992), or the controllers are applicable
to a very limited class of processes (Chen and
Paden, 1996; Hunt and Meyer, 1997; Devasia et
al., 1996; Devasia, 1999; Isidori, 1995). Recently
a differential-geometric control law was devel-
oped by Kanter et al. (2002) for stable, nonlinear
processes with input constraints and deadtimes,
whether the delay-free part of the process is non-
minimum- or minimum-phase. This control law
cannot be used to operate a process at an unstable
operating point.

This paper presents a control method that is ap-
plicable to stable or unstable nonlinear processes,
whether minimum- or non-minimum-phase. The
control system includes a nonlinear state feedback
and a reduced-order nonlinear state observer. The
state feedback induces an approximately linear
response. The application and performance of the
control method are shown by implementing it on
a chemical reactor with multiple steady states.

This paper is organized as follows. The scope of
the study and some mathematical preliminaries
are given in Section 2. Section 3 presents the
nonlinear feedback control method. The applica-
tion and performance of the control method are
illustrated by numerical simulation of a chemical
reactor with multiple steady states in Section 4.

2. SCOPE AND MATHEMATICAL
PRELIMINARIES

Consider the general class of multivariable pro-
cesses with a mathematical model in the form:

dx
Y= Jww. 2(0) :m} v
Yy = h(l’)

where 2 = [z;---2,]T € R" is the vec
tor of state variables, u = [uy---un]? €
R™ is the vector of manipulated inputs, y =
[y1---ym]T € R™ is the vector of controlled out-
puts, f(l'l') = [fl(l'u) B fn(l'u)]T and h‘(l') =
[hi(x) -+~ hy(z)]T are smooth. The relative order
(degree) of a state x;, is denoted by r;, where r; is
the smallest integer for which 9[d"z;/dt™]/Ou #
0.

For a given setpoint value, ys,, the corresponing
steady state values of the state variables and
manipulated inputs satisfy:

0= f(l'ss:uss)
1. = hir_ 0

These relations are used to describe the depen-
dence of a nominal steady state, x4, ., on the
setpoint: xssy = F'(ysp).

Let H(z) = z and define the following notation:

dx;
H! = ==
HOE:
drile;
ri—1 _ 2
H’Z (l.) diri—1
- dril'i
Hi@w = 20 @)
. drﬁ_ll'l‘
H;z—i_l(l':u(()):u(l)) = dtrit+l
dPiq;
B (2, u®, 0D, . oo i
1 (l.u "U, u ) dtpz.

where p; > r; and ut® = dfu/dt’.

3. NONLINEAR CONTROL METHOD

A state feedback that induces approximately lin-
ear responses to the state variables, is first de-
rived. A reduced-order state observer is then de-
signed to reconstruct unmeasured state variables
from the output measurements. To add intgeral
action to the state feedback-state observer system,
a dynamic system is finally added.

3.1 State Feedback Design

Let us request a linear response of the following
form for each of the state variable:

(1D + 1)7'xy = Tysy,
: (3)
(EnD + 1)pn$n = Tssy,
where D = d/dt, and €,--- e, are positive

constants that set the speed of the state responses.
The state responses in (3) can be obtained only
when n = m. However, since in many processes
m < n (there are more state variables than
manipulated inputs), the state responses in (3)
cannot be achieved. We relax the request for
the linear responses by trying to obtain state
responses that are as close as possible to the
the linear ones described by (3). To this end, we
solve the following moving-horizon optimization
problem:
m

min Zwi l|zq, (T) — Z:5(T)

w4

2
gis[t, t+Th,” (4)

subject to:

2Om=0 F£>1.



where ¢ represents the present time, and &;(7) and
x4,(7) are predicted values of the state variable a;
and the desired (reference) trajectory of the state
variable, respectivey. [|z:(7) denotes

gis[t, t+Th
the g;-function norm of the scalar function ;(r)
over the finite time interval [¢, ¢ + T},] with T}, >
0:

1

||z:(T) QidT] ;g > 1

t+Th,
G b+ Th, = / |:(7)
t

and wq,--- .w,, are adjustable positive scalar
weights whose values are set according to the
relative importance of the state variables: the
higher the value of w;, the smaller the mismatch
between x4, and x;.

3.1.1. Output Prediction Equation  The future
value of the ith state variable over the time
interval [¢,t + T},] is predicted using a truncated
Taylor series:

dl’l‘(t)

i’i(T) :l’l‘(t)-{— T[T—t]-{-“‘-{—
i K (5)
o) -t
dtp: pil o
where
z;(t) = H;(z(1))
dai(t) _
7 H; (x(t))
d" it _ i1
—rr = Hi (@)
dril'i(t) s
T = H (), w9 (1)
drixi(t) _ P 0 Pi—Ti
dtp: _Hi (l'(t):u (t) :u( )(t))

3.1.2. Reference Trajectory  The reference tra-
jectory of the ith state variable, x4, . describes the
path that the ith state variable, z;, is forced to
follow at time ¢. The reference trajectory is track-
able when the following conditions are satisfied:

zq,(t) = z:(t) = Hi(2(t))

drqg,(t)  dxi(t) 4
F7aR e H; (z(t))

diitzg () da(t)
deri—t dtri—l
Furthermore, every reference trajectory, x4, should

take its corresponding state variable, x;, to its set-
noint valne. ».. .

= H]  a(t)).

as t = oxr. A class of reference

trajectories that has these properties is described
by

(1D + 1)Pray, (1)

: = Tssy
(emD + 1)Pmzy (1)
subject to the “initial” conditions:
g, (t) = Hi(z(t))

dri*ll'dz. (t) . -
e (1)

d g, (t) s

T H (x(t),uO (1))

i=1, m

dpi_ll'dz‘ (t) _ pi—1 (0) (pi—1—r;)
gt = HT (@), (), )

A series solution for the reference trajectory, zg;,,
has the following form:

e [r — ¢

Ea (1) = Hi(x(t)) + D Hi(z(t)
=1 :

= 0 mrey oy [T — 8
+ Z Hi (l'(t)u( )(t) ' :u( z)(t)) Iz

Z:h‘

s, —Hi(x(t))—rﬂef PO mt (2 (1))
z >(7)

€

+

Zf (’2) HE (), u®(0), - ,ult (1)

b=r;

i
€

—t P
X % + higher order terms (6)

7.

3.1.8. State Feedback For a process in the from
of (1), by using the series forms of the output
prediction and reference trajectory equations in
(R and (R). the antimization nroblem in Fa.4 is:



i=1 z
Pi 2
Y e (%)Hf(x,u,(],~~ ,0)
_ b=r;
e
[r —#] |7
I P

(7)

In the case that n = m, the performance index
in (4) takes the value of zero and thus, the linear
closed-loop state responses of (3) are achieved.

The preceding state feedback is represented in a
compact form by:

u=U(x,zs5,) (8)

3.2 Reduced-Order State Observer

In general, measurements of all state variables
are not available. In such cases, estimates of the
unmeasured state variables can be obtained from
the output measurements. Here, we use a reduced-
order nonlinear state observer to reconstruct the
unmeasured state variables. The details and prop-
erties of this estimator can be found in (Soroush,
1997).

For a nonlinear process in the form of (1), the non-
redundancy of the controlled outputs ensures the
existence of a locally invertible state transforma-
tion of the form

HEaH

where n = [1,+++ ,Mn—q]?, and P is a constant
(n —q) x n matrix which for the sake of simplicity,
is chosen such that (i) each row of P has only one
nonzero term equal to one, and (ii) locally

The new variables .-+ ,n,_, are simply (n —
g) state variables of the original model of (1),
which satisfy the preceding rank condition, and
thus the state transformation [n y]* = T(z) is
at least locally invertible. In many cases such as
the process example considered in this article,
the measurable outputs are some of the state
variables. In such cases, the state transformation
is linear and elohallv invertihle.

The system of (1), in terms of the new state

variables 1y, -+ , Mg, y. takes the form
n = Fn(n:y:u)
: 9
{y = Fy(n,y,u) ©)
where

Fy(n.y,w) =Pf [T '(n,y),u];

Fy(my:u):ag—(;) - )f[T_l(my):u]
=T Yy

One can then design a closed-loop, reduced-order
observer of the form:
& =T '(z+ Ly.y)

(10)

where the constant [(n — ¢) x ¢] matrix L is
the observer gain. The observer gain should be
set such that the observer error dynamics are
asymptotically stable (Soroush, 1997).

3.8 Integral Action

To ensure offset-free response of the closed-loop
gystem in the presence of constant disturbances
and model errors, the final control system should
have integral action. The integral action can be
added by using the dynamic system:

(€1D + 1);01&-1 = ¢1(1’,U)

: (11)
(EnD + 1)pn€n = ¢n($u)
where
¢i(z,u) = Zef (%) HE(x)+

=0

pi—1
Z€f<pz>H’f($u(O) :u(l—m)): 7':1 ;M

Z:h‘

3.4 Control System

Combing the equations in (8), (10) and (11) leads
to the following control system that has intgeral
action:

£ = Fy(z+ Ly,y,u) — LFy(z + Ly, y.u)
& =T Hz+ Ly.y)
(1D + 1)) = 1 (z.u)
(enD +1)&n = gn(z,u)
v = F(ysp)_i'+€
u = U(z,v)
(12)
The control system parameters eq,--- . €, set the

speed of the closed-loop state responses; the
smaller the value ¢;, the faster the x; response.

The parameters py, -« - , pn, should be chosen such
that py = r1,---,pn = 7, when the process is
minimum-phase, and p; > 71, -+ ,pn > 7, when

the nracess is non-minimnm-nhage.
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Fig. 1. Closed-loop response of the reactant outlet Fig. 2. Closed-loop response of the outlet stream
concentration for different initial conditions. temperature corresponding to Figure 1.
NOTATION
4. APPLICATION TO A CHEMICAL A= Regetant
REACTOR B = Product
C 4, = Inlet concentration of the reactant,
kmol m=3.
Consider a constant-volume, non-isothermal, C'a= Outlet concentration of the reactant,
continuous-stirred-tank reactor, in which the re- kmol m=>.
action A — B takes place in liquid phase. The D = Differential operator, D = d/dt.
reactor dynamics are represented by the following k = Reaction rate constant, s~
model: m= Number of manipulated inputs and
controlled outputs.
dC s n = Process order.
= = —kCa+ (Ca;, — Ca)u/V r; = Relative order of state variable z;.
dT (13) Ti _ ;r{ime’ " ] K
= 6 -, 13 = Reactor outlet temperature, K.
dat WO+ (R~ D)V +4 T; = Reactor inlet temperature, K.
y=T u = Process input vector.
V' = Reactor volume, m?.
x = Vector of state variables.
where k = 5.0 x 10%exp(—8100/T) s~', v = y = Vector of controlled outputs.
39 m® K kmol™!, ¢ = —2.519 x 1072 K.s7!, ysp = Vector of set-points.
Ca, = 12 kmol m™, T; = 300 K, and V =
0.1 m?3.
Greek
The control method of (13) is applied to the reac-
tor, and the resulting controller is used to operate
the reactor at the unstable, non-minimum-phase €1, , €, = adjustable parameters of controller.
steady state (6.319 .-’c:mol.m_"‘, 302.0 K). The &,---,&, = State variables of the controller.
following controller parameter values are used: v = Reactor model parameter, K m?* kmol~"'.
€, = 360 s, €2 = 360 s, pl = 2, pp = 2, and
L=05

For the two sets of initial conditions, [C'4(0), T'(0)]=
[3.0, 320] and [10.0, 290], the peformance of the
controller is shown in Figures 1-3. As can be seen
from these figures, the controller is capable of
operating the process at the desired steady state,
reeardless of the initial conditions of the nrocess.
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DESIGN OF A SLIDING MODE CONTROL SYSTEM
BASED ON AN IDENTIFIED SOPDT MODEL

Chyi-Tsong Chen" and Shih-Tien Peng

Department of Chemical Engineering
Feng Chia University
Taichung 407, Taiwan

Abstract: Based on an identified SOPDT model, a designed optimal sliding surface and
the use of a delay-ahead predictor, a novel and systematic sliding mode control system
design methodology is proposed for the regulation of chemical processes. The
convergence property of the closed-loop system is guaranteed theoretically through
satisfying a sliding condition and the control system performance is examined with some
typical chemical processes. Besides, with the concept of delay equivalent, a simple
technique is presented such that the proposed sliding mode control scheme can be utilized
directly to handle with the regulation control of non-minimum phase processes.

Keywords: sliding mode control, predictor, optimal sliding surface, non-minimum phase,

SOPDT model.

1. INTRODUCTION

Due to its simplicity and the capability of
representing the process dynamics more accurately
than a first-order plus dead-time (FOPDT) model, the
second-order plus dead-time (SOPDT) model is
widely adopted for process modeling and is then
enhanced for controller design. Up to date, many
identification methods for estimating the SOPDT
model parameters have been proposed in the
literature, and based on SOPDT model various
controller design methodologies have been presented
(Hwang, 1993; Sung et al., 1996; Jahanmiri and
Fallahi, 1997; Wang et al., 2001). Based on a single
closed-loop test, Hwang (1993) presented an
adaptive pole design method for PID controllers.
Sung et al. (1996) presented a relay feedback test
with combining a P controller to identify a SOPDT
model, and then an automatic tuning rule for PID
controller was proposed for on-line application. With
an alternative identification method for SOPDT
model, Jahanmiri snd Fallahi (1997) conveyed the
concept of Internal Model Control (IMC) to improve
the performance of a PID controller. Wang et al.
(2001) proposed a simple closed-loop identification
method for SOPDT and based on the model a PID
auto-tuning strategy is applied.

In general, for on-line control the identification of a
SOPDT model is usually accomplished in a single
test by using either a closed-loop or open-loop
identification method and thereafter the identified
model is directly used for the tuning of a linear
controller, such as PID-type controllers. This kind of

*Author to whom all correspondence should be
addressed. Tel: +886-4-24517250 ext. 3691;
Fax: +886-4-24510890; E-mail: ctchen@fcu.edu.tw

approach is simple and straightforward. However, if
uncertainties exist in the identification phase, an
inaccurate SOPDT model may give rise to a poorly
designed linear controller and therefore may lead to
unsatisfactory control performance. The performance
degradation is mainly due to that the uncertainties in
a process are usually not explicitly considered when
applying the identification-then-tune methods.

Recently, there 1is increasing interest in the
development of robust control system for processes
having uncertainties. The sliding mode control
strategy appears to be one of the most promising
model-based approaches to the control of uncertain
processes. To account for system’s input-delay,
Camacho et al. (1999) and Camacho and Smith
(2000) proposed the synthesis of a sliding mode
controller based on an FOPDT model. Their
approaches resulted in a fixed structure controller
with a set of tuning equations being formulated as a
function of the model’s characteristic parameters. Hu
et al, (2000) adopted linear matrix inequality
technique and a sliding mode control method to
handle a class of uncertain time-delay systems. Based
on the Lyapunov theorem, Chou and Cheng (2001)
proposed an adaptive variable structure control
strategy to stabilize a class of perturbed time-varying
delay systems. Their method does not require the
upper bound of perturbations and the performance of
the system can be obtained by pre-specifying a set of
suitable eigenvalues. Although these approaches
have potential to deal with uncertainties and state
delay, they do not consider the compensation for
input-delay as a whole. For the issue of dealing with
input-delay, Kojima et al. (1994) explored the H

stabilization problem of uncertain input-delay
systems. More recently, Roh and Oh (1999; 2000)
investigated the feasibility of the sliding surface with



including a predictor to compensate for the input
delay of the system.

In this paper, we propose a simple and novel sliding
mode control system for the regulation of chemical
processes. Based on an identified SOPDT model, a
delay-ahead predictor is developed for state
estimation and a correction term from the measured
process output is incorporated to enhance the
prediction accuracy of the process states. With the
help of state predictor and a designed optimal sliding
surface, a sliding mode controller that is able to
account for model uncertainties can be easily
constructed and implemented. The robust stability as
well as the system behavior of the closed-loop
system is analyzed through guaranteeing the sliding
condition. Besides, in this paper the presented
scheme is further extended to one that is able to deal
with the process having inverse response. The
effectiveness and applicability of the proposed
scheme is tested with some typical processes,
including an underdamped process with long dead-
time, an overdamped high order process and a non-
minimum phase one. The performance comparisons
with some existing SOPDT-based techniques are also
included for evaluation.

The remainder of this paper is organized as follows.
In the next section, the predictor design, sliding
mode controller design methodology as well as the
optimal sliding surface design has been presented.
Besides, for extension to non-minimum phase
process, a simple strategy is introduced. The
subsequent section performs extensive simulations to
demonstrate and verify the proposed scheme. Finally
conclusion remarks are made.

2. A SLIDING MODE CONTROL TECHNIQUE

In this section, we devote to develop a sliding mode
control scheme for the regulation of chemical
processes. In essence, the sliding mode control is a
kind of model-based scheme, and the SOPDT model
is the most widely used process model especially for
the underdamped process and the high-order process
which has the same multiple poles. Therefore, in
what follows we shall present a systematic sliding
mode controller design methodology based on an
identified SOPDT model.

2.1 Predictor design based on an identified SOPDT
model.

Consider an identified, stable SOPDT model as
follows:
G(5)=5—D——e M
s*+a,s+a,
In order to deal with the input delay and hence
facilitate the design of a sliding mode control system,
we shall first discuss the development of a delay-
ahead predictor based on the SOPDT model. To
proceed, we convert the above model into an
equivalent state space model as

X,(t) = %,(0) (2a)
X,(0) = —a,%,(t) - a,%, (t) + bu(t - 0) (2b)
3(t) = %,(1) (2¢)

where X, and X, are the states, and ) and u are,

respectively, the model output and control input. By
removing the time-delay from the above model, we
can construct a delay-ahead prediction model as

X%, (1) = x,(1) (3a)
%, (1) = —a,x; () — a,x, (1) + bu(?) (3b)
() =x/) (3¢)

In order to improve the accuracy of the state
prediction, especially in the face with modelling
errors and unmeasured disturbance, the following
correction from the measured process output can be
used for practical implementation

X, (t+6Jt) = x; (1) + y(1) - %, (1) (4a)
and

2,1+ 60 =x0) (4b)
where y(¢#) is the actual process output and
x,(t+ t9|t) is the predicted output at time ¢+ & based
on the information available at time ¢ . By the
comparison of Egs. (2) and (3), it follows that
x"(t)=X(t+6) if the predictor is initialized as
x"(0) = X(@). This initialization can be achieved at
steady state because in this case x(8) =x(0). Hence,

in the absence of plant/model mismatch the
prediction model yields the plant state one time delay

ahead, ie. x(¢t+ 6|t) =X(+6). The presented

prediction model, which is delay free, can facilitate
the design of a sliding controller for SOPDT model.

2.2 Sliding mode controller design.

Having characterized the prediction model, we shall
discuss in this subsection the design of a delay-ahead
sliding mode controller. To account for model
uncertainties in the controller design, we consider the
following uncertain model

/(1) = x, (1) (52)
X, (t)=—(a, +Aa,)x;(t)—(a, + Aa,)x, (1)
+ (b, + Ab))u(t)
where Aa,, Aa, and Ab, are the variations of model

(5b)

parameters. To begin with, we rewrite the uncertain
model as

X (1) = x;(1) (6a)
X, () =—a,x/(t)—a,x,(t) +bu(t) + h(x",t) (6b)
where
h(x',t) =—Aax; (t) — Aa,x,(t) + Abu(t) 7
is the term containing the uncertainties. Let the hard
constraint of the control input be

hu(n)| <@ ®)



and therefore the upper bound function, z__(-), of

max

h(-) can be estimated as
h(x",0)| < (x7,0) )

where
By (X 1) = sup‘Aalxl* (t)‘ + sup‘Aazxz (t)‘ + max|Ab, i
(10)

Next, let’s choose a sliding function as follows:
o=cx/(t)+c,x,(1) (11)

The following theorem presents a sliding mode

controller for the considered uncertain model.

Theorem 1: The following control law
u(?) =b;"'[a,x; (1) +(a, —c,'¢,)x;(1)]
—(bc,) (e +h(x",1))sign(S)
admit the uncertain system of (5) to satisfy the

(12)

sliding condition of %% o' < —a|5| , where «a is the

pre-specified positive constant regarding to the
h, . (X",0)

max

system performance and 4 (x",7) = |c2

Proof: See Appendix A.

The fundamental idea behind the use of the zero
level set of the auxiliary output, denoted by

2={x"|5:0}, as a sliding surface (switching

manifold) is to force the controlled motion to adopt
Y as an integrated manifold. When the system
trajectory is outside the manifold, the strategy forces
the states toward the design sliding surface. Upon
reaching X fast switching takes place in the
immediate vicinity of X , which tries to keep the
trajectory constrained to X . To eliminate the
undesirable switching (chattering phenomena) of the
manipulated variable, it is practical to replace the
sign function in (12) by a saturation function,
sat(5/ ) , which is defined by

5/p, if |0/p]<1
sign(6/p), if [6/p8]=1
where S >0 represents the boundary layer thickness.

Here, it should be noted that the selection of the
sliding function may affect the control performance
since it is involved in the controller. In general, the
selection of S represents the trade-off between the

mmﬂﬂ)={ (13)

high performance and the extent of the chattering
attenuation. To achieve optimal performance, we
discuss in the following subsection the design of an
optimal sliding function for practical application.

2.3 Optimal sliding function design.

Let’s introduce a performance index as follows:

J =J”x*(t)Qx*(t)dt (14)

where x'(8) =[x (1) x, (O], ¢

s

is the beginning

time of the sliding motion, and Q:{q“ q"} is a
qZI q22

positive define, symmetric matrix, i.e. g, = ¢q,, and
4,95 — 495, >0 . Also, let an auxiliary variable, v, be
given by

v=x,(0)+L2x(0)
22

The performance function can thus be rewritten as
J=[ @20+ g ()dt (16)

where ¢, = q,, —q,/q,, - Then, with the definition of

(15)

v, and from Eq. (15), we have
X/(0)=ax () +v a7
where a; =—g,,/q,, . The optimal control law for the

above dynamic equation with the performance index
of (16) is given by (Sage and White, 1977)

v=—"L"x(0)
22

where p is the positive root of the quadratic

(18)

p2—2a1*q22p—q22q1*1 =0, ie.

P =-4,++49,9, - By inserting Eq. (15) into the
above optimal solution, we can conclude that a set of
optimal sliding coefficients, ¢, and c,, are given by

¢ =N919» and € =Gy

2.4 Practical implementation.

polynomial

With the output correction of Eq. (4), the control law
of (12) can be implemented with the replacement of

x(t) by X(t+6|t). Thus, for practical
implementation the control law is formulated as
u(t)=b"[a % (t+0])+(a, —c;'c))%,(t+011)]

_ . 19)
=(be,) (a+h(x(t+0|1),1))sign(6)
where the sliding function 5 is given by
S=ck(+0|0)+c,5(t+0]1) (20)

The schematic diagram of the proposed sliding mode
control system is depicted in Fig. 1.

sliding mode u(t) chemical
1 controller, » process
Eq. (19)
A
£(t + O)r) s
+
* Y ‘ o
optimal sliding prediction nominal
surface, model, process model,
Eq. (2)

Eq. (20) Eq.(3)
A

x'(t) X(1)

(e + 6l

Fig. 1. A schematic diagram of the sliding mode
control system.

2.5 Extension to non-minimum phase processes.
If the process has inverse response, we can identify

the process as a SOPDT model with a right-half-
plane (RHP) zero. For example, we can apply the



identification method of Park et al. (1998) to give a
model of the form
Gs)=—25%h o 21)
s*+a,s+a,
Then, by using the equivalent time-delay concept of
Sung and Lee (1996)

exp(_eequwalents) = l - 0

— (22)
the above non-minimum phase model can be
transformed to a standard SOPDT model as

b,
_(o+l2ys
bl ( B’

s’+a,s+a,
Therefore, based on the above equivalent SOPDT
model, the proposed sliding mode control scheme
can applied directly to non-minimum phase
processes.

G(s)= (23)

3. SIMULATION STUDIES

To verify the effectiveness and applicability of the
proposed approach, we apply it to some typical
chemical processes, including an underdamped
process with long dead time, an overdamped high
order process and a non-minimum phase system. The
performance comparisons with the SOPDT model-
based techniques of Sung et al. (1996) and Jahanmiri
and Fallahi (1997) are included for evaluation. For
the later simulation studies, we assume that the hard

input constraint is |u(t)|£1, ie., u=1. Also, the

parameters of the sliding mode controller are set to
be a=0.1 and f=0.4. To demonstrate the ability

of output regulation by the proposed approach, we
further assume that the system outputs are perturbed
to move away from their steady states with the
magnitude of +1.0 initially in the Examples 3.1 and
3.2, and -0.2 in the Example 3.3.

Example 3.1 Underdamped second-order with long
deadtime process.
1 55
G,(s) 9s* +2.4s+1 ¢
To apply the proposed scheme, we first convey a
system identification technique to this system. With
the closed-loop identification technique of Park et al. -
(1998), the SOPDT model parameters are given by
a,=0.1111, a,=0.2667 , b, =0.1111 and =5 .

For sliding mode controller design, we assume that
each of these model parameters has 25% variations

0.03 O}

24

0 2

then we arrive at a set of optimal sliding coefficients
as ¢, =0.2449 and ¢, =2 . Having previous

information for design, one can easily implemented
a sliding mode control system for this process. Fig. 2
depicts the output regulation results and the
produced control input. The performance of the
proposed scheme with arbitrary sliding coefficients
is also included for comparison. From this figure, it
is shown clearly that the proposed scheme provides a
smoother and faster control performance as
compared with the ISE optimal PID (Sung et al.,

from its estimated values. Also, let Q :[

1996) and an IMC-PID scheme (Jahanmiri and
Fallahi, 1997). The design of an optimal sliding
surface for the sliding controller apparently results in
a better performance than the arbitrary one does.
Also observed is that the IMC-PID scheme of
Jahanmiri and Fallahi (1997) produces more
vigorous control input which violates the hard
constraints and therefore results in a more oscillatory
system output. On the contrary, there is no violation
of the input hard constraint by applying the proposed
technique since the input range can be pre-
considered in the design stage. To verify the ability
of handling with process uncertainties, we assume
that the identified model remains unchanged, while

the dynamics of the actual plant vary to
1 .
G (s)=—————e*. Fig. 3 depicts the system
(5 lls2+2s+le g P Y

performance in the face with this plant/model
mismatch. The simulation results show clearly that
the proposed scheme is still very robust in response
to the plant uncertainties, while the IMC-PID leads
to undesirable oscillation.

system output

rrrrrrrrrrrrr

control input

o
—

0 5 10 15 20 25 30 35 40 45 50
time

Fig. 2. Closed-loop system performance of Example
3.1. the proposed approach with an optimal
sliding surface; ----- the proposed approach with
arbitrary sliding coefficients (¢; =1land ¢, =2) ;

-------- Jahanmiri and Fallahi (1997); Sung et
al. (1996).
1 T T T
— i’goposed approach
E_ 05F /\\ /,—\ f—iSumgeta\
g N /, \ U S Y > PN
5 s Nl N 7 =
2 ost \\'\ A \/ -
[ Ny
N
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05 .y
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a I ~—
=08
£l
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Fig. 3. Closed-loop system performance of Example
3.1 in the face with plant/model mismatch.



Example 3.2 High-order with deadtime process.
1

G, (s)= e” 25

(5 s° +55" +10s +10s” + 55 +1 @)

By using the technique of Park et al. (1998) to this

process, the SOPDT model parameters are identified

as a,=0.2291 , a,=0.8465 , b =0.2291 and

6 =3.3 . Similarly, we consider 25% parameter
variations in the design of the sliding controller. Let

0- 0.3
1o

sliding coefficients of ¢, =0.6 and ¢, =1.2. From

Fig. 4, it is also observed that the closed-loop control
performance by the proposed approach is smoother
than both the methods of Sung et al. (1996) and
Jahanmiri and Fallahi (1997). To evaluate the ability
of handling process uncertainties, we further assume
that the process dynamics change to

1 -2.55

G,(s) S 435 4125 195" 16541

but the identified model remains unchanged. The
simulation results shown in Fig. 5 again corroborate
the effectiveness and robustness of the proposed
scheme in the face with uncertainties.

0 } for this process, we have the optimal
1.2

(26)

T T
—— Proposed approach
——F

rrrrrr Sung etal

system output
~

control input
B b L SN o o
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20 25 30 35 40 45 50
time

IS)
o
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s

Fig. 4. Closed-loop system performance of Example
3.2.
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Fig. 5. Closed-loop system performance of Example
3.2 in the face with plant/model mismatch.
Example 3.3 Non-minimum phase process.

G (s) = — : —s+20.5 .
! s +55°+8.755> +6.255 +1.5

N )

To apply the proposed scheme to this non-minimum
phase process, we first identify the process model as
in the form of Eq. (21). By applying the
identification technique of Park et al. (1998), we
have the model parameters as a, =0.4417

a,=12915 , b =0.1473, b, =0.2249 and
0 =2.5387. Therefore an equivalent SOPDT model
can be given by

_ 0.1473
G, (s)=

s +1.29155+0.4417
Now, by considering 25% parameter variations and

. 1.5
choosing Q = { 0
mode control system for this non-minimum phase
system. From Fig. 6, it is evident that the proposed
scheme rapidly forces the system output back to its
set-point. In contrast, both the approaches of Sung et
al. (1996) and Jahanmiri and Fallahi (1997) results in
serious oscillation in the process output as well as
the produced control input. For the case that the
process dynamics vary to

-1.25+0.5

) = e 1755 4555713
the simulation results shown in Fig. 7 reveal that the
proposed control strategy still gives to robust system
performance, while both the linear techniques of
Sung et al. (1996) and Jahanmiri and Fallahi (1997)
become quite unstable by the influence of this
significant plant/model mismatch.

—4.0655s

(28)

02} , we can construct a sliding
1.
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Fig. 6. Closed-loop system performance of Example
3.3.
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Fig. 7. Closed-loop system performance of Example
3.3 in the face with plant/model mismatch.



4. CONCLUSIONS

This paper has presented a systematic and novel
model-based control system for the regulation of
chemical processes. Based on an identified SOPDT
model, a delay-ahead predictor and a designed
optimal sliding surface, a sliding mode control
scheme has been developed. The stability of the
closed-loop system as well as the control
performance is guaranteed with satisfying a sliding
condition. Besides, with the concept of delay
equivalent, the presented scheme can be -easily
extended to deal with the regulation problem of
processes having inverse response. The effectiveness
and applicability of the proposed sliding mode
control technique has been tested with some typical
plants. Moreover, performance comparisons with
some existing SOPDT-based techniques are included
for further evaluation. Extensive simulation results
reveal that the proposed sliding mode control scheme
appears to be a simple, robust and powerful approach
to the regulation control of chemical processes.
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Appendix A: Proof of the sliding condition

By taking time derivative of the sliding function (11)
and inserting the control law of (12), we have

S=ci () +c,5.(1)
= Clx;(t) +c, {_alxr(t) - azx;(t) + b| [b;] (al'x;(t)

t(a, —cle)x ()~ (be,) (e + h(x, t)sign(s)] AD

+h(x",0)}
=—(a +h(x",0)sign(5) + ¢, h(x",1)

Further, by checking

Ld sio5.6= —a|s|-h(x",0)|5|+ Sc,h(x",1)

T dc,h(x”,

= —als]|- h(x ,t)|5|{1|;|}7((+;))j (A2)
= oc,h(x’,t

= —al5|-n(x ,t)|5|[1|5";|h(—"(x*)t)]

S—a|5|

it is shown obviously that the sliding condition is
satisfied.
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NONLINEAR MIMO ADAPTIVE PREDICTIVE CONTROL BASED ON
WAVELET NETWORK MODEL'

Dexian Huang, Yuhong Wang and Yihui Jin
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ABSTRACT: A MIMO nonlinear adaptive predictive control strategy is presented in
which the wavelet neural network based on a set of orthogonal wavelet functions is
adopted. A nonlinear mapping from the network-input space to the wavelons output
space in the hidden layer is performed firstly. Then, the output layer uses a linear
structure. Its weight coefficients can be estimated by a linear least-squares estimation
method. The excellent statistic properties of the weight parameter estimation can be
obtained. Based on developed recursive algorithm, a MIMO nonlinear adaptive
predictive control strategy is implemented. A simulated MIMO nonlinear process
example shows that the control scheme is effective. Copyright © 2002 IFAC

Keywords: Non-linear MIMO adaptive control, predictive control, wavelet, neural

network.

1. INTRODUCTION'

During the past twenty years, model-predictive control
algorithms (MPC), based on linear process models,
have been widely studied and applied in the chemical
process industries. However, many processes are
highly non-linear, uncertain and MPC algorithms
based on linear process models may result in poor
control performance and as a result, MPC techniques
have recently been extended to these processes during
the last decade( Keerthi, 1990, Proll, 1994). However,
generic nonlinear models is difficult to get and apply.
Neural networks hold the promise of solving the
problems. Feed forward neural networks provide a
connectionist model that performs a mapping from an
input space to an output space. Such networks can
approximate any non-linear functions to an arbitrary
accuracy. However, some network training problems,
such as undesirable local minimum, of multi-layer
perceptrons preclude their wide applications to on-line
nonlinear system identification in adaptive control.

Wavelet is a powerful tool for function approximation
(Daubechies, 1988). Under some mild conditions, the
universal approximation of wavelet networks is
guaranteed (Zhang ,1995). Based on a set of
orthogonal wavelet functions, a least-squares learning
algorithm is adopted to train the wavelet network in
contrast to the non-linear gradient optimization used
in standard feed forward networks (Bakshi and
Stephanopoulos, 1993). In addition, wavelet neural
networks have advantages in their structure, which is
easy to specify in model identification. SISO first-
order and high order non-linear dynamic processes
have been successfully identified by wavelet neural

' The project is supported by National High Tech R&D Project(NO.
863/CIMSAA413130) of China and by National key technologies
R&D program of China(NO. 2001 BA201A04)

networks and SISO non-linear predictive controllers
have been realized. The control performances superior
to a standard PID controller were achieved (Huang,
1997, 1999).

In this paper, a nonlinear adaptive predictive control
strategy based orthogonal wavelet network model is
presented. Based on a set of orthogonal wavelet
functions, wavelet neural network performs a
nonlinear mapping from the network-input space to
the wavelons output space in hidden layer firstly.
Since almost all dynamic processes in the chemical
industries are lowpass systems, they can be
approximated only by scale function terms
Z< f’¢M,n>(pM,n(x) at any accuracy. Therefore, we
n

only use scale function in wavelons. This will
simplifies wavelet network and decreases network
size in online training obviously. Then, the output
layer adopts linear structure. Its weight coefficients,
ie. <f,¢)M”l> , can be estimated by a linear least-

squares estimation algorithm.

Because the solid theory basis and special structure of
wavelet neural network, the wavelet neural network
holds the advantages superior to other neural network.
First, its network structure is easy to specify based on
its theory analysis and intuition. Secondly, network
training do not rely on stochastic gradient type
techniques such as the “back propagation” and can
avoids the problem of poor convergence or
undesirable local minimum, which is more serious for
other neural networks when training data is
contaminated seriously by noise.

The excellent statistic properties of the weight
parameters of wavelet network as linear least-squares
estimation algorithm in system identification can be
proved. In intuition, it can been seen that the wavelet
network is a ideal lowpass filter which passes true

1



dynamic signal of the system identified and sorts the
noise out as excellent frequency property of wavelet.
The theory results are showed by simulation results.
Both the wavelet network and the usual feedforward
neural network are compared in a simulated CSTR
system with serious noise. The long-range predictions
based on trained wavelet network for testing data have
obviously better prediction accuracy than that of he
usual feedforward neural network. The prediction is
very close to true output without noise. Both theory
analysis and simulation study show that the
identification method based on wavelet network is a
robust and reliable identification method for nonlinear
system. In addition, it is also generic method and is
easy to use, instead of a method based on trial and
error.

For online application in adaptive predictive control
strategy, a recursive algorithm is given. The properties
similar to that of recursive linear least-squares
algorithm can be obtained as the recursive algorithm
is completely same as recursive linear least squares
algorithm. In addition, the closed loop-identifiability
can be guaranteed. This is because the different
wavelon outputs in hidden layer are irrelevant each
other as orthogonal wavelet functions are adopted.

With developed recursive algorithm, a single input —
single output nonlinear adaptive predictive control
strategy is implemented. A same simulated CSTR
process as above illustrates the application of the
control scheme. Two methods to start adaptive
controller are realized. Simulation results show two
methods have good control results and expected
performances are attained. When the parameter of
controlled system is changed, online identification
algorithm can track the parameter changing rapidly
and then, still give good control results. The nonlinear
adaptive predictive control strategy based on wavelet
network is superior to the standard PID controller.

2.  APPROXIMATION PRINCIPLE OF
WAVELET NEURAL NETWORKS

According to approximate theory of wavelet
network(Huang, 1997), two  schemes for

decomposing the function f(x) in L*(R) can be
obtained. They are:

S = 2 {1V W ) M

m,n
and
z <f’ Wm, n>'//m, n(x) (2)

mZmO,n

f)= %<f,¢m0,,,>wm0,,,(x)+

where m, is an arbitrary integer and represents the

lowest resolution, i.e. scale, in the decomposition.
Comparing equation (2) with equation (1), the former
is more useful in dynamic process modeling. This is
because most dynamic processes in the process
industries are low-pass systems and, therefore, using

scaling function can obviously decrease wavelet
function terms. Furthermore, it is noted that f(x) can
be closed arbitrarily only in V,, for some integer M.
As long as the wavelet basis satisfies the Frame, there
exists an M sufficiently large for any & >0 (Zhang et
al., 1995), such that

<e 3)

S =2 (S Pat.0 )11, ()

Therefore, it is realistic that a dynamic process can be

approximated only by the scale function terms

Z< f,¢M’n>¢M’"(x) in permitted approximating
n

accuracy. This will decrease approximating function

terms and therefore decrease network size. In addition,

this will also simplify wavelet network application.

The structure of a wavelet neural network is similar to
that of an RBF network. However its structure can be
decided by using wavelet frames. Because only scale
function is used, then

=2 (f 00 )0 (=210, )2 02" x = ) @

=>.0,9(Ra(x~b,))
For multi-input systems Pyn(X) =Py (x, )(/)W2 (x,)

o ¢M,n, (‘xr)'

When the variation domains of the network inputs are
defined, the neuron centers, i.e. b,, are fixed on grids
that are divided equally between each input domain.
R, is an adjustable parameter that changes the width
of the frequency band of V), .For the wavelet network
studied in this paper, we use Shanonn wavelet
function because it is an analytic function and is easy
to use. Its scale function form is: @(x) = s
o
an orthonormal wavelet function. Other wavelet
functions including non-orthonormal wavelet function
can also be used.

Ytk)

!

Wavelet neural network

Y(k-1) Y(K-n,) UK-1-7) U(I(T-nu-r)

Figure 2. Wavelet network structure for dynamic
system modeling

Consider a MIMO non-linear dynamic system
denoted by the following equation:

Y(k)=f(Y(k=1)....¥(k=n,)U(k=1-7), (5
...... U(k—n,—1))



where 7 is the model input-output time delay, (Y,U)
— fiv.U): R X R'>R. The network structure
proposed by Narendra is adopted (Narendra and
Parthasarathy, 1990). It is shown in Figure 2.

The network input and output dimensions are
!

m
Z ny, + Z n,; and [ respectively.

i=1 i=1

The network weights are identified by linear least
squares algorithm as following.

Firstly, we denote the optimum values of all(f,¢,, )

as 0 and allg,,  (x) values at time k as (k). Then

Y(k)= h" (k)0 +n(k) (6)

where both vector Y (k) and n(k) have dimension 1x/,
the dimension of h(k) is Nx1 and the dimension of
6 is N xI[.N is the number of neurons.

For k=1,2,..., L, the above equation constructs a
linear equation group. It can be expressed in matrix
form as following.

Y, =H,0+n, (7
where

Y, =), Y@, v

ny =[n@),n2),.n(L)]"

Hy, =[HQ),HQ), - HL)]

By linear least squares estimation, we can get the
estimates of the weight parameters of the wavelet
network as:

0,5 =(H H,) " H[Y, (8)

The appropriate network structure was found through
cross validation. The data for training neural network
models were partitioned into the training set and
validation set. A neural network was trained on the
training set and tested on the validation set. A
number of network structures were tried and the one
giving the least error on the validation data set is
adopted.

To select a proper network structure and network
parameters Ra and bn, the following method is used:

(1) Determine the variation domains of the network
inputs, X, and Xipex i=1,...,7;

(2) Select neuron number and centres as following:
divide each input domain equally by #; (start from
a small value) and put neurons on grids. The

number of neurons is: N =n,.n,.-+-.n;

7o

(3) Start with a small Ra initial value, estimate
weight parameters with training set by linear least

squares estimation and test the network with
validation set. Increase Ra value until a satisfied
result is obtained. Of cause, the knowledge about
frequency property of process identified is
helpful to estimate Ra.;

(4) Increase n; and repeat steps (2) and (3) until the
best network structure is obtained.

As soon as we get the network structure parameters,
we can train the wavelet network. Because network
structure parameters have a wide adapted ability, we
do not need to search network structure parameters
again in general cases. Afterward, it is only a linear
least squares estimation problem. This will simplify
implementation of wavelet networks and decrease
training time especially in on-line model identification.

For online application in adaptive predictive control
strategy, a recursive LS algorithm with exponential
forgetting algorithm as following is adopted.

O(t)=6(t-1)+a(t)K(t)e(t)

e(1)=y(1)=0" (1)0(1-1) ©
Lrp” (OP(t-1p(t)

P(t-1) _  P(t=Deo(t)p (1)P(t-1)

P(t)= T
A I+ (t)P(t-1)p(t)
+PI-6P(t—1)*
K(t)= 1:(z—l)¢(z) (10)
a+e’ ()P -De(t)

_ P =Dp(t)p" (t)P (-, (11)
a+g" (Pt -Dp(t)

Because the solid theory basis and special structure of
wavelet neural network, wavelet neural network holds
some advantages superior to other types of neural
networks. First, its network structure is easy to specify
based on its theory analysis and intuition. Secondly,
network training do not rely on stochastic gradient
type techniques such as the “back propagation” and
avoids the problem of poor convergence or
undesirable local minimum, which is more serious for
other types of neural networks when training data is
seriously contaminated by noise.

P(r)=$[P(t—1>

The properties similar to that of recursive linear least-
squares algorithm can be obtained as the recursive
algorithm is completely same as recursive linear least
squares algorithm. In addition, the closed loop-
identifiability can be guaranteed. This is because the
different wavelon outputs in hidden layer are
irrelevant each other as orthogonal wavelet functions
are adopted

As soon as we can select appropriate value for M,
there exists (f,p,,,) making S+ @ut ) Pa1 0 (X)

approximating f{Y;, Uy ) with expected accuracy. Then,
we can prove the statistic properties of the weight
parameter estimation of wavelet network as linear LS.



3. WAVELET NETWORK MODELING OF A
MIMO NONLINEAR PROCESS

The wavelet neural network is used to model a MIMO
nonlinear process as following.

Xpg=4X, + f(X,)U, (12)
0.5 -035
A:[—o.ls 0.4 } ()
[0.15(x, (1)+0.1)  0.05x,(2)
f(Xk)‘[ 0.1x, (1) 0.1(x, (2)+0.03) (14

The 1000 data point length’s simulation data are
produced by the system described by equation
(12),(13) and (14). They are split into two set. The
first 500 data points were used as training data while
the remaining 500 data points were used as testing
data.

Throughout the simulation experiment, we will
follow the guidelines listed below:

The trained neural network is evaluated only by long
range prediction for both the training and ‘unseen’
testing data. This is because both have good
accuracy for one-step-ahead predictions and the
dynamic model for control purpose needs to have
better long-rang prediction accuracy.

We select T = [1,1], ny = [1,1] and used 16
hidden neurons according to the experiment. The
simulation results are shown in Figure 5 and Figure
6. Figure 5 is the prediction result of trained wavelet
model for training data. Figure 6 is the prediction
result of trained wavelet model for testing data. both
prediction result for training data. and testing data is
are very good. It is able to satisfy the requirement
for dynamic control completely.
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Figure 5. Predictions on training data

In the figures of output predictions, the true process
output data is plotted as a solid line, the prediction
output data is plotted as a dashed line.

From the simulation result, we observe that, the long
range predictions based on wavelet network for
training data and testing data have obviously very
high prediction accuracy and the curves of both are
almost superposition. Both theoretical analysis and
simulation studies show that the identification method
based on wavelet network is a robust and reliable
identification method for non-linear systems.
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Figure 6. Predictions on testing data

4. Adaptive predictive control based wavelet
network

Model predictive control is widely accepted, primarily
due to its ability in real-time prediction, real-time
optimisation and real-time feedback correction.

In the non-linear adaptive predictive control scheme
shown in Figure 7, a process model, i.e., a wavelet
network , is explicitly used to predict future process
behavior. The same process model is also implicitly
adopted to calculate control actions in such a way as
to optimise the controller specifications at each
sampling step. Furthermore, the difference between
the current-time predicted output and the measured
current-time process output is used to correct the
model error and disturbances so as to improve its
robustness. While predictive control is processed, the
process model is updated by on-line recursive
identification algorithm to enhance its robustness
ulteriorly.

Consider MIMO non-linear dynamic system denoted
by equation (5).

The selection of the control law is based on a
quadratic performance index with a finite time horizon,



resulting in the following quadratic programming
(QP) problem at time k

J(k)

min
Au(k),Au(k+1),--,Au(k+L-1)
(15)
where J (k) is

J(k)= Z

Y5 (k + i) = V(k + i) = Y(k) + T (fle — P - 1)H;

(16)
+ iHAu(k + =10

where P is the prediction horizon, L is the control
horizon, Q and R are weighting matrices.

The process model parameters, i.e. weight parameters
of wavelet network, are updated by recursive
identification algorithm with forgetting factor in
Equation (9),(10) and (11).

Identificat
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Figure 7. Adaptive Predictive Control Scheme based
on Wavelet Network
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Figure 8. Adaptive Predictive Control based on
Wavelet Network

A same simulated MIMO nonlinear process as above
illustrates the application of the control scheme.
Firstly, the control system uses PID control strategy
(in this case, PID control strategy is used in first 50
steps) and then, the adaptive controller based on
wavelet network model is closed after a crude model
is obtained during PID control. The control result is
shown in Figure 8. Simulation results show that
expected performances are attained. The nonlinear
adaptive predictive control strategy based on wavelet
network is superior to the standard PID controller
(The control result is shown in Figure 9. PID
parameter is optimized by minimizing the integral
squared error).
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Figure 9. PID control
5. Conclusions

In this paper, a nonlinear MIMO adaptive predictive
control strategy based orthogonal wavelet network
model is realized. By both theory analysis and
simulation study, The following conclusions can be
educed.

(1) Wavelet network model only by scale function
simplified wavelet network and decreased network
size in online training obviously. Its weight
coefficients can be estimated by a linear least-squares
estimation algorithm. It is different from RBF network
and other feed-forward neural networks, because its
structure parameters are determined according to
wavelet network reconstructing theory, instead of trial
and error. In addition, its weight coefficients are
estimated by a linear least-squares estimation
algorithm, instead of non-linear optimization search
method. Therefore, it can be proven that excellent
statistic properties of its weight parameters as the
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linear least-squares estimation algorithm in system
identification has can be obtained (Huang, 2002). The
identification method based on wavelet network is a
robust and reliable identification method for nonlinear
system. In addition, it is also generic method and is
easy to use, instead of a method based on trial and
error. The long-range predictions based on trained
wavelet network for testing data with serious noise
have obviously better prediction accuracy than that of
the usual feed-forward neural network. The prediction
is very close to true output without noise.

(2)For online application in adaptive predictive
control strategy, a recursive algorithm is given. The
properties similar to that of recursive linear least-
squares algorithm can be obtained as the recursive
algorithm is completely same as recursive linear least
squares algorithm. In addition, the closed-loop
identifiability can be guaranteed. This is because the
different wavelon outputs in hidden layer are
irrelevant each other as orthogonal wavelet functions
are adopted. With developed recursive algorithm, a
nonlinear MIMO adaptive predictive control strategy
is implemented. A same simulated nonlinear process
as above illustrates the application of the control
scheme. The nonlinear MIMO adaptive predictive
control strategy based on wavelet network is superior
to the standard PID controller. Even if the optimal
PID parameter is used, the control result for PID
controller still has larger overshoot for controlled
variable in high operation point and has week
regulation action in low operation point as the
simulated nonlinear system has a serious nonlinear
character. In practice, it is difficult to get the optimal
PID parameter for a large operation region. In contract,
the nonlinear MIMO adaptive predictive controller
can identify the control model on-line and achieve a
satisfactory control effect by self. Because the
controller does not need to be trained before it starts
running, it is able to handle the any operating region.
The nonlinear MIMO adaptive predictive control
strategy is superior to nonlinear controllers in that it
does not need to build non-linear control model by
user and superior to the nonlinear adaptive controllers
based conventional feed-forward neural networks in
that it only need finite fix time to on-line updating
network model in each control period because it is a
recursive linear least squares problem. Besides, it is
generic method for both model identification
algorithm and control algorithm.

REFERENCES

I. Daubechies, “Orthonomal bases of compactly
supported wavelets”, Comm. Pure Applied Math,
Vol.91, pp.909-996, 1988.

D. Huang,, and Jin Y., “The application of wavelet
neural networks to nonlinear predictive control”,
ICNNO97 IEEE, Houston, Texas, US, Vol.2, 1997.

D. Huang,, J. Wang and Y. Jin, “Application research
of wavelet neural networks in process predictive

control”, Journal of Tsinghua University, Vol.39, No.
1, pp. 91-94, 1999.

D. Huang, Y. Jin, J. ZHANG and A. J. Morris
Nonlinear “Chemical Process Modelling and
Application in Epichlorhydrine Production Plant
Using Wavelet Networks”. Chinese Journal of
Chemical Engineering, Vol 10, No.4, 2002.

Maner, R. B., Doyle. III, F. J., Ogunnaike, B. A. and
Pearson, R. K., “ Nonlinear model predictive control
of a simulated multivariable polymerization reactor
using second-order volterra models” Automatica
Vol.32, No.9, pp. 1285-1301, 1996

Bakshi, B. R. and Stephanopoulos, G., “Wave-net: a
multiresolution, hierarchical neural network with
localised learning”, AICHE J., Vol.39, No.1, pp.57-81,
1993.

T. Proll and M. N. Karim, "Real-time design of an
adaptive nonlinear predictive controller", INT. J., Vol.
59, No. 3, pp. 863-889, 1994

J. Zhang,, G. Walter, G. G.,Miao, Y. and Lee, W. N.
W., “Wavelet neural networks for function learning”
IEEE Signal Processing, Vol.43, No.6, pp.1485-
1497,1995.



INPUT-OUTPUT PAIRING OF MULTIVARIABLE PREDICTIVE CONTROL

Ling-Cong Chen”, Pu Yuan*, Gui-Li Zhang*

*University of Petroleum, P.O. Box 902 Beijing 100083, China
*GAIN Tech Co., PO. Box 902ext.79, Beijing 100083, China

Abstract:

Regardless of what predictive control strategy is used, the predictive horizon is the

main design parameter. The stability, control performance and robustness of predictive control
system are mainly depended on it. For multivariable predictive controller, selection of predictive
horizon is an input-output pairing problem. In this paper, Response Index Array, Dynamic
Interaction Index Array and Relative Steady-State Index Array are proposed as the criteria for
the selection of predictive horizon and pairing. The design procedure for multivariable predictive
controller is summed up. As an example, the pairing of a heavy oil fractionator is given. The
design has been successfully implemented on several industrial fractionators. Copyright © 2002

IFAC

Keywords: Predictive control, Input-output pairing, MIMO System

1. INTRODUCTION

During the last two decades, model predictive control
(MPC) has become an attractive control strategy within
the area of process industries. MPC is a successful
strategy for handling multivariable and/or constrained
control problems (Garcia and Morari, 1989). Generally,
the multivariable controller does not need input-output
pairing, which is a main design problem in the
multi-loop control, such as conventional PID control. If
the predictive horizon and control horizon of MPC are
determined, there is no input-output pairing problem.
But, pairing problem will rise during MPC design to
determine predictive horizon.

So far, the MPC presented in the literatures may be
classified into two strategies:

1. MPC based on the input(manipulated variable,
MV)-output (controlled variable, CV) model, such as
MAC (Richalet, J et.al. 1978; Rouhani,R. and R.K.
Mehra 1982), DMC (Cutler, C.R. and B.L. Remaker,
1980), GPC (Clarke, D.W. et.al. 1987,1989), IMC
(Garcia and Morari ,1982,1985). Soeterboek (1992)
proposed predictive control: a unified approach for such
kind of MPC strategies.

2. MPC based on the state space model and state
variable feedback (Yuan, 1993).

Sun and Yuan (1993, 1997) proposed Unified Predictive
Control, which is based on Polynomial Matrix
Description (PMD), for all kinds of the MPC strategies.
Yu and Yuan (2002) proved theoretically that all kinds
of MPC are equivalent, ie., the same control
performance, depends on prediction horizon P, will be
achieved by different MPC strategies as long as there is

no model mismatch and no disturbance. In real world,
there are unknown disturbance and model mismatch. So
different MPC are different in robustness and
disturbance rejection. This topic will not be discussed in
this paper.

For multivariable process, RGA (Bristol, 1966) is
usually used to measure the interaction and the design
of multi-loop control. RGA, based on steady-state gain
of controlled process, is not suitable for the MPC design,
which is based on the dynamic response. In the
literatures, contributions on the design of MPC are
presented as well as the different MPC strategies
mentioned above. The main design issue is how to
determine the predictive horizon. MPC has been widely
used on multivariable systems, yet, by the author’s
knowledge, the discussion in literatures of how to
determine the predictive horizon for multivariable
systems is much less than that of SISO systems.

In this paper, the relationship between predictive
horizon and stability, control performance and
robustness of MPC system, as the basis of system
design, are reviewed in second section. The design of
multivariable MPC is an input-output pairing problem
and dynamic response index, interaction index and
relative steady-state index are proposed as pairing
criteria in third section. MPC system design procedure
was summed up in section IV. As an example, design
of MPC for a heavy oil fractionator is illustrated.

2. PREDICTIVE HORIZON

For multivariable MPC, different CV has different



control demand and different response to MV. A
reasonable design is that every CV has its own
predictive horizon p; The predictive horizon of the
system P is a vector:

T

P= [pl b, pr] -1
where: p; is the predictive horizon (number of discrete
interval) of i controlled variable.

For illustration and without loss of gernalization, MPC
with single prediction algorithm (Yuan, 1992) is used in
the following discussion.

The optimal control move was deduced as:

Au(k) =S (P)[Y;(k)~Y, (k)] (2-2)
where:

u € R"™ Manipulated variable (MV);

Y eR" Controlled variable (CV);
Au(k)=u(k)—u(k-1)
S.(p) S,.(p) S, (p)
521(p2) Szy(pz)
SI(P)] = : _ (2-3)
S.(p,) S (p)

S;(p;) is i" CV response at p! interval instant

after /" MV unit step.
Y (k) = Set point of controlled variable;

Y, (k) =Y (k) + Fy (z HAX (k) + F,(z ) Au(k)
(Prediction of CV while Au(k +i)=0, i>0)
X € R" Measurable state variable (include CV);
AX(k)=X(k)-X(k-1)
F(z)=F+Fz'+-+Fz"
(Feedback polynomial matrix)

Xi (1993), Yuan (1992, 1993, 1994, and 1997) and
others proved some theoretical results (assuming no
model mismatch and r=m) for stability and control
performance of MPC system related to predictive
horizon:

det[S(P)]# 0 (2-4)

is a necessary stability condition for MPC system.

Theorem 1:

Theorem 2: 1f the controlled process is stable and
functionally controllable, then:

det[SP)] _
det[S(0)]

is a necessary stability condition for MPC system,

(2-5)

where: [S(o0)] is the steady-state gain matrix of
controlled process.

Theorem 3: 1f the controlled process is stable and
p;(i=1,2,---,r) is tuned sufficiently large, then the

MPC system is stable.

Theorem 4:1f: p, =0, +1; and Theoreml and

Theorem? are satisfied, then: the /™ CV reaches to
perfect control.

If p=0+1 i=12,---,r (2-6)

And both Theorem 1 and Theorem 2 are satisfied; then:
the MPC system reaches to perfect control (all CV

reach to perfect control), where: O, = 5;1 -0/ -1,

5;1 and 5[.'1 are the orders of denominator and

nominator of /" row in impulse transfer function matrix,
respectively.

Perfect Control is defined as: if CV reaches to its
set-point at every control (sampling) instant after
minimum time delay of set-point or disturbance step
change. It is obvious that perfect control is decoupled
between CV and CV to disturbance.

In real world, perfect control can be reached only for a
class of controlled process with special dynamic
property. In most cases, it is difficult to reach, not only
limited by the above condition, but also limited by
model mismatch and robustness. The control (MV)
move is usually another limit. For same CV’s deviation,
large control move usually lead to fast response and
weaker robustness. If increasing prediction horizon p;
makes smaller control move, then, the sluggish
response and the better robustness; otherwise, if
increasing predictive horizon leads to larger control
move (may be constrained by limit), then, the contrary.

According to above analysis, Yuan (1992) proposed to
use Relative Predictive Horizon (RPH) £ for SISO

system to select predictive horizon and trade-off the
control performance and control move constraints. RPH
is defined as:

S
p=2 2-7)
S()
Where: S(p) is the value of step response at

predictive horizon; S(00)is the steady-state value of
step response.

P =0.3~0.8 is reccommended. Large S leads to

a stronger robustness, less control move and sluggish
response.

If /3 is specified, predictive horizon P can be calculated

from eq.(2-7). Since £ is a float variable and P is an

integer,

S(n-1) S(n)
IfS(0) %0, < ,then: p=n;
IS () SCo) <p S() then: p=n
IfS(0) =0, then: p=00. (2-8)

This result is extended to multivariable system in this
paper.

3. INPUT-OUTPUT PAIRING CRITERIA

For MIMO system, every CV is related to m



manipulated variables, and different MV has different
dynamic response. If § is specified, different MV has
different predictive horizon. Which MV should be used
to determine the corresponding predictive horizon? In
this point, the input-output pairing is still a problem for
multivariable predictive control system as well as
multi-loop control system, but in different content.

For MIMO system, better control performance is
desired as well as SISO system and fast response MV
should be selected. The distinction is the interaction
between CV and MV, and decoupling or less interaction
is always required. More MV than CV or more CV than
MYV made the system more complicated.

The starting point of MPC design is to satisfy the
required control performance, which is related to the
Relative Predictive Horizon RPH as mentioned above.
For MIMO system, the required control performance of

i™ CV and corresponding RPH ﬂi can be specified
previously. But, the predictive horizon p, is different
for different MV. If . is specified, to determine p;
is a problem of input (MV)-output (CV) pairing.

For input-output paring, three Index Arrays are defined.
Definition 1: Response Index Array1; (RIA)

For i" CV, if ﬂi is specified, corresponding predictive
horizon for /" MV is pl.j(j =1,2,---,m),

Lot P, =Minip,}, 7, =2
)
T
A o G3-1)
v ey

is defined as Response Index Array (RIA).

RIA is a criterion of response speed of different MV.
The larger the p; , the faster the response of /" CV to ;"
MV. In order to make /™ CV has better control
performance, by the knowledge of SISO system
mentioned in Section 2, the prediction horizon P; may

be selected as p, = Min{p,} (j=1,2,-,m), and

correspondingly 7 =1. However, for multivariable

system, the interaction must be taken into account.

Definition 2: Dynamic Interaction Index Array
(DIA)

Fori" CV, if B,is specified, it has m possible CV-MV
pairing with corresponding predictive horizon p;. For
every possible pairing, the corresponding Dynamic
Interaction Index is defined as:

s
J g‘sﬂ(pij)‘

The larger the g the weaker the interaction for i
CV-/" MV pairing. It is a possible pairing candidate.
If u; = 1, it implies that i™ CV is affected only by the

/™ MV and has no interaction with other MV in

dynamic. It is a prior pairing candidate. However, the
steady-state property must be considered also.

(3-2)

h

Definition 3: Steady-State Index Array ﬂij (SIA)
S, ()
_ ij
ﬁ“z’f T
Z |Sil (OO)|
I=1

If lﬁ =1, it implies that /™ CV is affected only by the

/™ MV and has no interaction with other MV in

steady-state.

(3-3)

Model predictive control, as showed in eq.(2-2), is a
non-steady-state error control strategy for step input and
decoupled in steady-state, but the control move may be
too large, so, the main consideration of the SIA is the
effectiveness and limit of MV.

The larger the /1ij, the smaller the control move in
steady-state. If /11.]. is near to zero, it means that this

MV is ineffective.

RIA, DIA and SIA should be considered in MIMO
system design. In addition, the optimization, safety and
other requirements of MV should be also considered.
The following pairing index {a;} is suggested.

Definition 4:  Pairing Index

o 0 0
éjll o él.m 01 o. .
Az{aij}= oL : ..2. 0
ézrl T grm 0 e 0 5m
(3-4)
Where: é:l/ =V T+ M}iﬂ’g‘/’ (3-5)

¢; = interaction weighting factor for i CV.
w; = control move weighting factor for " CV.

0, = weighting factor for " MV.
For i CV, pairing MV is:

MV(j): {Max(a;],(j=1,2,---,m)} (3-6)

4. MPC DESIGN PROCEDURE

According to the above results, the design procedures
for predictive horizon and input-output pairing are
summed up as:

1. Give the priority of each CV and corresponding ﬂl.

according to the requirement of control performance.



S,=0.3~0.8 is recommended. Large [ leads to a
stronger robustness, less control move and sluggish
response. Usually, higher priority CV may have
smaller £3; .

2. If the controlled process has more MV than CV, give
the control priority, optimum priority and target for each
MV. If the controlled process has more CV than MV,
give the weighting factor of each CV. These two cases,
which are beyond the scope of this paper, will not be
discussed in detail.

3. Caleulate p;, 1y, My, Ay &5

4. From higher to lower priority of CV, the MV who
made least value in é:l.j should be selected as the
pairing for control. If the selected MV has been used by
higher priority CV, then in the remaining M Vs, the one
who made é:,.j the least value is recommended in order
to have stronger robustness. This procedure results a
predictive horizon for each CV and predictive horizon

vector P=[p, p, p, 1 for MPC.

4. Check stability by Theorem 1, 2. If unsatisfied, tune
J; or p.and return to step 1. According to Theorem 3,

larger ,Bl. or p, may usually lead to a stable MPC system.

5. Check control move: MPC design should meet the
requirement of control move limit. However, the control
move depends on the set-point change, disturbance and
status of controlled process. In order to evaluate the
control move in design phase, assume all set-point has
unit step and initial state equal to zero, check the
control move at first sampling instant and steady-state.

The control move at first sampling instant after
set-point unit step is:

Au=S"(P) (4-1)
The control move at steady-state after unit step is:
Au =S () (4-2)

So the maximum control move is:

A, =max{S/(P).5/(P),+. 5, (P)}  (42)

(] :1,2,"',7’”)
Where:
S/(P) is the i" element of /™ row of S”'(P) or S~ (0);
S(P) = step response matrix [eq.(2-3)]

If Au violates the limit, then tune /3, or p, and

Jjmax
return to step 1. Large [, or p, usually lead to
smaller control move.

6. Simulation. If unsatisfied, choose P again and return
to step 1.

The design procedure may be extended to the case of
more MV than CV or more CV than MV.

5. EXAMPLE

For illustration, consider the pairing of a heavy oil
fractionator, shown in Fig.1. The fractionator has top
and two side-draw products. In order to keep the
product specification, top and two side-draw
temperatures are main controlled variables, as CV1,
CV2 and CV3 in Fig.l. Usually, it has three PID
controllers TC to keep the temperatures at their
set-points.
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Fig. 1 Heavy Oil Fractionator

The fractionator may have seven manipulated variables:
MV1: Top Reflux Flow rate (PID set point)
MV2: Top Heat Remove Circulation Flow rate
(PID set point)
MV3: Set Point of Top Temperature PID Controller
(Three-way valve)
MV4: First Heat Remove Circulation Flow rate
(PID set point)
MVS: Set Point of first draw Temperature PID
Controller (Three-way valve)
MV6: Second Heat Remove Circulation Flow rate
(PID set point)
MV7: Set Point of second draw Temperature PID
Controller (Three-way valve)

All of the MV has high and low limit as well as
corresponding valve opening. If one MV is limited, the
controller will select other unlimited MV. So, all of the
possible CV-MV pairing and corresponding predictive
horizon should be given. For the 3 CV and 7 MV of a
fractionator, it has 21 possible pairings. But, if the
it is not

pairing has too small value of pairing index a;,

suitable for control, which will be illustrated below. If a
CV has more suitable MV, the priority of MV should be



specified according to the value of a; and optimization

requirement.

Since fractionator has more MV than CV, it is able to
push some MV to its optimum value while keep the
control performance by other suitable MVs. Usually the
optimization targets are minimum heat remove flowrate
or minimum open of by-pass (three-way) valve of heat
exchanger or steam generator.

The step responses of CV1, CV2 and CV3 to the 7 MVs
are given in Fig.2, Fig.3 and Fig.4 respectively.

The priority of CV is specified as: CV1, CV2 and CV3
from higher to lower. The relative predictive horizon is
specified as:

B=18, 5,51 =106 0.6 0.6]

CV1 Top Temperature

Tite X Y
M1 288 0776
i T - W2 299 0320
0.000 - W3 299 0102
7] M4 299 -0.287
= W\E 299 00623
= MVE 299.00827
2z 7] - MW7 299 00287
0400
0600
RIE I
i i T ; T ; |
0 &0 100 160 200 250 300
Fig.2 CVI1 Unit Step Response
CV2—First Draw Temperature
Title X Y
MV 293 0487
- MV2 239 -0.201
- MV3 2390.0638
MV4 293 0966
= MVS 233 0.210
= MVE 233 0279
= MV7 25900968
0,40
060
0.80
.00
; i T T T T )
0 50 100 150 200 250 300
Fig. 3 CV2 Unit Step Response
CV3—Second Draw Temperature
0.2004 Title X Y

M1 283 00743
= Mv2 239 -0.0309
= MY3 239000932

M4 253 0206
= MVE 238 00GE3
= M¥E 239 -D.580
= MY7 239 0202
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Fig. 4 CV3 Unit Step Response

According to the unit step responses, the predictive
horizon, RIA, DIA and SIA are calculated as:

22 17 41 43 64 67 85
{p;}=[52 48 70 22 44 47 66
87 83 104 50 66 21 42

0775 10 0415 0395 0266 0254 02
{yij}z 0424 0459 0315 10 05 0467 0333
0241 0253 0202 042 0318 100 05

0568 029 006 0147 0027 0035 0.009
{Hj}z 0181 0077 002 0715 0085 0.112 0032
0044 0018 0005 0151 0038 0855 0.169

(0467 0193 0061 0173 0037 005 0017
{xﬁ}z 0211 0087 0028 042 0091 0121 0032
0064 0027 0008 0185 005 05 0174

O =W =diag[l]=1
5=03, 8,==8 =10
the pairing index @, is:
0548 1489 0637 0712 033 0339 0226
{aij}: 0288 0623 0363 2135 0676 0.7 0407
0105 0298 0316 0.85% 0406 2355 0.843

Assuming:

According to the value of &, e pairing is determined.

For CV1: MV1, MV2, MV3, MV4 are suitable pairings.
MVS5, MV6, MV7 have smaller pairing index, so they
are not suitable pairings. But MV4 is a better pairing
candidate to CV2, so the final pairings for CV1 are
MV1, MV2 and MV3. The priority is: MV2, MV3, and
MV1 from higher to lower. (MV1 has lower value of
pairing index, however it is mainly required to reach its
optimum value.)

For CV2: MV4 and MVS5 are suitable pairings, and the
priority is MV4, MV5 from higher to lower.

For CV3: MV6 and MV7 are suitable pairings, and the
priority is MV4, MV5 from higher to lower.

These results show that among the 21 possible pairings
only seven pairings are suitable. Each CV has fewer
pairings than whole MV. Nevertheless, the control
system is multivariable according to the eq.(2-2). These
pairings have been applied to several industrial heavy
oil fractionators.

For heavy oil fractionator, Final Boiling Point (FBP) of
top product and 95% ASTM of first draw product are
more important controlled variables. They are depended
on the top temperature and first draw temperature
respectively. They have the same step responses and use
same manipulated variables of temperature control, and,



the same predictive horizon as well as pairings.

FBP and 95%ASTM should be keep on specified
setpoint since they are designed as set point controlled
variable. Top and first draw temperatures are designed
as zone controlled variables. If the predicted
temperatures do not violate their high or low limits, no
control is required. The number of CV need to control
and the number of available MV are depended on the
operation situation. So, the structure of the fractionator
as a controlled process is varied. A varied structure
predictive coordinated control system based on above
design and control requirements for the fractionator was
implemented in several industrial plants.

The application shows that the pairing design is suitable
for the multivariable control. Fig.5 is a real-time trend
acquired from the industrial plant. Set-point of 95%
ASTM (D) has been decreased at 9:17 and first heat
remove exchanger (steam generator) by-pass valve (F)
has been gradually closed to its optimum value. FBP is

nearly decoupled to the set-point change of 95% ASTM.

Both FBP and 95% ASTM are running with less
deviation to their setpoints. MV 1 is kept at its optimum
value (not showed in Fig.5).
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Fig.5 Real time trend of fractionatotr
1,2,7: top temperature and its set-point(CV1)
3,4: Final Boiling Point and its setpoint
5,6,9: first draw temperature and its set-point(CV2)
8,D:  95% ASTM of first draw its set-point
B: first heat remove flowrate(MV4)
C: top heat remover exchanger by-pass valve(MV3)
E: top heat remover circulation flowrate(MV2)
F: first heat remover exchanger by-pass valve(MV5)

6. CONCLUSION

Input-output pairing is a basic problem for
multivariable control system design as well as the
model predictive control regardless of multivariable or
multi-loop structure. Pairing based on dynamics of
controlled process is better than that based on
steady-state gain. Response index and interaction index
proposed in this paper catch on the dynamics and main
control system design problems. They are effective
criteria for the design of multivariable predictive
control systems. The pairing problem should be
developed comprehensively.
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GENERALIZED PREDICTIVE CONTROL FOR A CLASSOF BILINEAR
SYSTEMS
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Abstract: A new generalized predictive control agorithm for a kind of input-output
bilinear system is proposed in the paper (BGPC). The agorithm combines bilinear and
linear terms of 1/O bilinear system, and constitutes an ARIMA model analogousto linear
systems. Using optimization predictive information fully, the algorithm carries out
multi-step predictions by recursive approximation. The heavy computation of generic
nonlinear optimization is avoided with control law of anaytical form being used to the
non-minimum phase bilinear systems. Simulation results show the effectiveness of the
algorithm and the performance of the algorithm is better than linear generalized

predictive control (LGPC).

Key words: bilinear systems; bilinear generalized predictive control (BGPC); recursive
approaches; non-minimum phase systems; analytical control laws

1. INTRODUCTION

Most of practical production processes are nonlinear
systems. Nonlinear systems are usually described as
I/0 form with the expression of polynomia and
rational fraction (Korenberg, et a., 1988). Until now,
the research of nonlinear system control is very
effective. Bilinear system is a kind of nonlinear
system with simple structure. The practical processes,
such as project, social economy, zoology and biology
etc, can be widely described by bilinear systems, and
it can include a large class of dynamic characteristics
of strong nonlinear system within a bigger area of a
steady operating point. Its approximation precision is
still higher than that of traditional linear model.
Bilinearization provides an effective approach for the
analysis and design of nonlinear systems. Therefore,
the research for bilinear system (Svoronos,
Stephanopoulos and Aris, 1981;Eaton and Rawlings,
1990; Hua Xiangming, 1990; Akihiro and Toru, 2001)
has been largely performed since the late of 1960s.

As a new computer control agorithm, model
predictive control originated directly from industrial
process control in the anaphase of 1970s.1t has made
quite great progress in the past twenty years. More
atention has been given to GPC, since GPC
algorithm (Clarke, et a., 1987) was proposed by
Clarke etc in 1987. Predictive control technology of
linear models has been widely developed (Doyle Ill,
1995) and predictive control research of nonlinear
model has aready made great progress. When a
generic nonlinear model for model predictive control
is adopted, nonlinear optimization will be involved,
and on-line disposal is very difficult. While bigger
error is brought using linear approximate model.
Therefore predictive control with bilinear model
describing original nonlinear system is meaningful to
practical application and academic research. Model
prediction is introduced to bilinear systems (Adhemar,
et. a., 2002; Liu, 1996; Yao, 1997; Jiang, 1998,1999;
He, 1999), and good effect is achieved. A new
approach of bilinear generalized predictive control
(Adhemar, et al., 2002) is presented. Bilinear model



is handled, described as the time-step quasi-linearzed
NARIMAX model and aso improved, which
overcomes the disadvantage that predictive error
increases with the predictive horizon. Weighted
adaptive predictive control is introduced to 1/O
discrete bilinear systems (Liu, 1996). The approach
of point-by-point linearization approximation is
introduced to 1/O bilinear systems (Yao, et al., 1997).
One-step and two-step predictive control (Jiang, 1998,
1999) are introduced to generic bilinear systems.
Predictive model of generalized bilinear system based
on Volterra series (Hemet al., 1999) is presented, and
solving high order equation with one step prediction
gains the optimal control law.

Apparently, the research on bilinear systems is
inadequate by comparison to linear system predictive
control. Even if there are some problems on the
research mentioned above, such as it need try further
to simplify Volterra series kernels identification. It
needs the process's variety isn't very rapid in the
approach of point-by-point linearization
approximation. In conclusion, the existing result keep
some distance with practicality and it need more
perfect and develop. A multi-step GPC agorithm
based on 1/0O discrete bilinear system is presented in
this paper (BGPC). Bilinear and linear terms in the
bilinear model are combined and the ARIMA model
analogous to linear system is constituted. Making full
use of optima predictive control information, and
carrying out multi-step prediction by recursive
approximation, we obtain GPC agorithm with
analytic form. The simulation results show the
effectiveness of the algorithm.

2. REPRESENTATION OF BILINEAR SYSTEM

Consider a kind of SISO time-invariant bilinear
systems

A(Z ) y(t) = B(z Hu(t- 1)
+D(z YHu(t- y(t- 1) +C(z He(t)/D

Ny .
where A(z'l):1+é_ az',
i=1

B(z'1)=éb bz,

i=0

Fo
C(zh=acz'

i=0
N, Ny R .
Dzh)=q 4 dz' =’
i=0 j=0
bilinear term

D(2Qu(t- Dy(t-1) =

gb Ny

[*) . .
a a dju(t-1-iy(t-1- j)
i=0 j=0
for the sake of simplicity, this paper will mainly
discuss under the condition of it j, d”- =0, here

M
D(zY)=q d;z' <",
=0

Ny
D(2)u(t- Dy(t- 1) =g dyu(t- )y(t- i)

i=1
while the common condition of i* j,d;* 0 may
perform analogy. {u(t)}and{y(t)} are the input and
output sequences respectively. D=1- z'! is the
difference operator, {e(t)} is a zero-mean white
noise sequence. The equation (1) can be written as

Az Hy(t) =[B(z' 1) +D(z ) y(t- 1]

) @
u(t- ) +C(z He(t) /D

3. GPC ALGORITHM OF BILINEAR SYSTEM

The controlled object (2) is assumed to satisfy:
@i ny, n, n. and ny areknown.

(ii)C(z'!) isstable polynomial.

The cost function has the following form

N
I=E(Q (Wt+])- v t+ )2+
j=1

" ©)
o .
la (Du(t+]-1)*
=1
Where N and N, are the prediction and control

horizon, whereas | is a weighting constant. In
order to make the future outputs of system to track
the set value y, as smooth as possble, the

reference trajectory is:
Y, () = y()

y (t+j)=ay (t+j-D+d-a)y, (4
where a isasmoothing factor.
To obtain j -step-ahead optimizing predictions,
consider the following Diophantine equations:
C(zY)=E;(zY)Az YD+ 7z 'F(z") (5)
B(z HE;(z ) =C(z1)Gy (z 1)+

_ 6

Lz ©

D(z HE;(zY)=C(z )N (z 1)+ ,
z IR (2"

where j =12,L_,N,



- 1 (-1
EBj=eo+enz +L+ey;.y2

- -1 -n
Fj=fjo+fuz +L+f,z

Gyj = Gijo + GyjaZ P HL+0yy52 7Y

= -1 -(i-9
N] —njo+nle +L+nj(j_l)Z

Lj =ljo+jz b+ 4l 2™
Ry =rjg+rpz t+L+r, 2™
dso degE; =j-1, degF;=n, degG;;=j-1
degN; =j-1 , degL;=m
n:max(navnc' )] ) rn_l.:max(nb' Ln- 1)
m, =max(ny - Ln, -1 .For the purpose of

dgR;j=m,

simplicity, then A(z 1) is written asA, and B(z %) is
written asB . Others are the same. Furthermore, the
lowercases express polynomia coefficients relative
to their capital letters, for example: njis the ith

coefficient of N]- .

From equation 2 and equation 5 - 7 ,the j-step
model predictive output can be written as
Ym(t+]) =(Gyj +Gyj)Du(t+ -+

Pl vt +bugt- 1)+ puge- 1 ®
?)’()? (')E (t-9)
i.e
Ym{t+])=G;Dut+j-D+M; 9
where
g
Gy =Njy(t+j-1)=Q g2 (10)
i=0
. _
P =Rjyt-)=q p;z" (12)
i=0
In equation (10)and (11),
Upji =nyt+j-i-1 (12)
Pji =ryt-i-1 (13)

where y(t+ j- 1) in eguation (12) is unknown, it is
substituted by model predictive value y,(t+j- 1)
after time t. The value at time t and before time
t can be substituted by its true value. The equation
(9) can be written in the vector form
Y, =GU +M (14
F L P
M=—y(t)+—=Du(t- ) +—=Du(t - 1 15
SYO+SDut-D+oDut-)  (15)
where
Yo =[Ymt+ )Lyt +N)T,
U =[Du(t) L.Du(t + N, - )],
M=[M;LM]",

F=[FRLFI,
L=[LLLy]",
P=[RLP]".

€ Jo

01 Yo

L L L L

L On-w

(16)

ey e eny eny enid

%n:» @ D> D

N-1 In-2 By N
Define y, =[y, (t+)Ly, (t+N)"
From the above definition, the cost function (3) can
be written as

I=E{(Yp - v) (V- y)+IUTU) (@)
Substituting equation (14) into equation (17), and
minimize the cost function (17), we get

U=G'G+I1)'G(y, - M) (18)
The real-time optimal control law is given by
u)=u(t-H+g' (y, - M) (19)

Where g' is the first row of matrix

G'G+l1)GT.

4. SIMULATION RESEARCH

Consider the following bilinear system of
non-minimum phase
y(®) - y(t-D=u(t-)+1.3u(t- 2)+
0.3u(t- Dy(t- D+ (20)
0.5u(t- 2)y(t- 2)+e(t)/D
Where e(t) is normal school white noise signal with

covariance 0.1. The each parameter of the paper’'s
control algorithm (BGPC) is asfollows:

The parameters of model: n, =n, =ny =1,n, =0
The parameters of controller: N=5 N, =5
a=08 | =1.

Using linear GPC (LGPC) control system, we can
make linearization to work point of the object

y(t) =8
y(t)- y(t-1) =34u(t- ) +53u(t- 2) (12

The parameters of controller are the same as the
every parameter of BGPC.

The simulation curve of the output and control are
shown in the following figures.

The output response and control curve using BGPC is
shown in figure 1 and figure 2, where the solid line is
system output, and the dashed lineis set point.
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The set point is changed by step amplitude 8. The
output response and control curve using LGPC is
shown in figure 3 and figure 4, comparing figure 1
with figure 3. It is obvious that the BGPC describes
its dynamic characteristic in a biggish scope of set
point because of the BGPC using nonlinear model
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predictive, but the LGPC algorithm only makes
linearization to nonlinear object’s one set point, it

just is stable in a baby-size scope of set point. The
performance of LGPC algorithm is worse than the
paper’'s BGPC agorithm, and the system’s output can
quickly track the variety of set point, BGPC
algorithm’s overflow in this paper is obviousy more
depressed than the LGPC algorithm’s, and it can
reject the noise well.

5. CONCLUSION

A GPC algorithm is applied to a kind of 1/0
bilinear systems. The anadytic control law, being
analogous to linear GPC, is obtained. It makes full
use of optimal predictive information, and avoids
the difficulty brought by generic nonlinear
optimization. The simulation result proves that this
algorithm is effective.
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NONLINEAR MODEL PREDICTIVE CONTROL USING A NEURAL
NETWORK

Ridong Zhang PingLi

(School of Information Engineering, Liaoning University of Petroleum &
Chemical Technology, Liaoning, Fushun 113001, P.R.China)

Abstract A neura network model-based generalized predictive control for a class of
nonlinear discrete-time systems is presented with the loca linearization of nonlinear
activation function. The method converts the nonlinear multi-step predictions into a
series of local linear multi-step predictions and uses linear GPC method to gain the
control law. The method avoids the shortcomings of some past predictive agorithms , it
doesn’'t need any assumptions and give a direct and effective multi-step predictive
method. It also avoids the complicated nonlinear optimization and computation burden is

not serious. A simulation result is presented in the article.

Keywords:
linearization; adaptive control.

1. INTRODUCTION

Generalized Predictive Control (Clacke D W et
al.,1987) has been greatly used in the control of many
industrial processes because of its excellent control
performance and robustness due to its three basic
features: predictive model, feedback correction and
rolling optimization. However, for a nonlinear system,
it is not easy to apply GPC because of the difficulty
of getting an accurate nonlinear model. Since the
mid-1980s, neural networks have been internationally
studied to model and control nonlinear systems, and
there are more and more neural network based
predictive control agorithms, too. K Chao-Chee and
Y L Kang(1995) presented a diagona recurrent
neural network based control strategy for dynamic
systems. Among the results of nonlinear predictive
control, an analytical predictive control law was
presented (Furong Gao et a., 2000). A control
strategy based on two assumptions was presented
(Jian Guo ¢ a., 2001). Two neural networks with an
algorithm using the reverse dynamic technique was
given (Qibing Jin et a., 1999), it avoids the nonlinear
optimization, however, both the two networks need

neural-network models, generalized predictive control;

nonlinearity;

training and therefore its algorithm is complicated.
Saint Donat J et a (1991) presented a neura net
based model predictive control agorithm. A neural
network predictive control strategy assuming that the
process can be described as a linear part plus a
nonlinear part was given (Yupu Yang et al., 1999), it
uses a dynamic recurrent network to model the two
parts of the system.Thereis also an algorithm using a
global linearized model (Jun Liu et al., 2000).

The above results show that it needs to solve the
following problems when applying neural networks
based predictive control agorithms to nonlinear
systems: (1) give a direct and effective method of
multi-step prediction. (2) try to avoid the complicated
nonlinear optimization. (3) reduce the sum of neural
networks so as to cut down computation burden.

In this paper, using the loca linearization of
nonlinear activation function, a new control strategy
is presented. The method converts the nonlinear
multi-step predictions into a series of loca linear
multi-step predictions and uses linear GPC method to
gain the control law. A simulation result is also given



in the paper, evidencing that the controller presents a
fairly good performance.

2. NONLINEAR SYSTEMS AND THEIR
REPRESENTATION

Consider the following SISO nonlinear discrete-time
system described by the following model:

y(t) = f(y(t-D,..., y(t- n),u(t-1D,.,ut- m) (1)

where n,m are the orders of its output and input
respectively.

The system can be described by a three-layer BP
neural network asfollows:

| m
y(t) = ofQ we(i)alg w, jut- j)

i=1 =1
+ Q w2, j)yt+m- )} )
j=m+1

where W3(i),w2(i, j) (i =1,...,1 j=1...m+n) are
the linking weights, N+ m is the sum of input

nodes, | the sum of hidden nodes and there is one
output node. And “g” isthe activation function:

1
1+e*

g(x) = &)

In order to get a multi-step predictor, the following
method is used:

Let

| m
S3(t) = § wa)alQ wad, j)u(t- j)
i=1 =1

+ Q w2, j)yt+m- j)] (4)

j=m+1

sy (1) = @ w2, ju(t- j)
j=1

+ Q w2, j)y+m- ) )

j=m+l
where i=1..,1 .Andthen y(t) = g[s;(t)] .and

|

S;(t)= g Wa()glsy ()] Using the Taylor
i=1

expansion technique:

y(t) = 9(S) + 9 (S)[S5(t) - Sl + RO (1))

= g (S)S(t) +9(sy) - 9 (S)sy + RO (1))

= 9(5)8 wali)als, (1)

(6)
+9(Sy) - g (S)sy RO (1))

whered (t) refersto

[yt-D,..,yt- n,ut-1,.,ut-m], F is a
function symbol, and s;, is the center of the
expansion . Also defined (t +i) as:
[yt+i-12),.,yt+i-n,ut+i-2,.,ut+i- m).
In general, let the center sy, =0. The same technique
can also be employed on s (t) , likewise, it derives:

als, (1] = 9(sy) +9 (Sy)[S, (1) - S,]

+F, 00) ")

where s, (i =1...,1) arealsothecenters, alsolet
S, =0(i =1...,1),and F, (i =1,...,1) arefunction
symbols. Substitute eg.(7) into eq.(6) and combine
the nonlinear parts F, (6 (t)) and

F, @ (t)) (i =1...,1) into one nonlinear part

F,(@ (1)) leads to the following:

y) = éll W3(1)g (53){9(sz) + 9 (8,)[85 (1) - 8,41}
+I£;J(831) - g (Sy)s +F0 1)
= é W3(1)g (5319 (S5)Sz (1)

8 WA (5:0)[9(5) - 9(55)351]
+9(Su)- 9 (Sa)su} +F; @0 (1) €S)

where F,@(t) is the nonlinear  part:

F0(1) =g'9;_1 w3(i)g (su)F @) +F O ) (9
For simplicity , let
M; =w3(i)g (S)9 (Sy) (i =1..,1), and represent

the second part in eg.(8) as N, substitute eq.(5) into
€g.(8) and gives:



y) = él. M;sy (1) + N +F5(0 (1))

i=1

= & M,[A waGi, putt- ) (10)

=1 j=1

+ @ w2, )y(t- j+m)]+N+F @)

j=m+1

The discrete differential equation of y(t) can be
written as:

y(t) =a,y(t- D+...+a,y(t- n)
+bou(t- D +...+b, u(t- m)
(11)
+N+F;(0(1)

Compare eq.(10) with eg.(11) leads to:

| |

a, = Q Mw2(i,m+1) by = § M w20
i=1 i=1
| |

a, =g Mw2(i,m+2) b, = g M,w2(i,2)
i=1 i=1

| |
a, :é_ M;w2(i,m+n) b4 :é_ M;w2(3i,m) (12)
i=1 i=1
Now the system model has been divided into two
parts a linear part and a nonlinear part. The
coefficients of the linear part are calculated by

eq.(12).
3. CONTROL SYSTEM DESIGN

Note that N is a constant, eg.(11)can be written as
follows:

yO) = Ayt-D+..+A,yt-n-1)

+B,oDu(t- 1) +...+B, . ,Du(t- m)
(13)
+DF; (0 (1)

where:

Al :1+a1’Ai =g - ai-l(i :21'"vn)!An+1 =-ay,

By =b; (i=0,.,m-1),andD isthe differencing
operator 1- q 1.

Now, divide the optimal predictions into three parts,
one is determined by past inputs and outputs, thisis
represented byY , another is determined by present

and future inputs, it is represented by GU , the other
is the prediction error, it consists of the nonlinear
eror E, and the eror caused by externd

disturbances E, , then it derives:

Y:Yp+GU+E

€T
=Y, +GU +E, +E,
where:

Y =[y(t+1/1), y(t+2/t),... yt+p/t)]"
Yo =[Y,(t+D), v, (t+2),., y, (t+ p)”

U =[Du(t), Du(t +1),...,Du(t + p- 1"
E,=le@t+D).e @(t+2),...e @t+p)]’

E, =[y®)- Yt), yO - Yt). yO) - YOI

S’Bw U

B B 0 u

_ @ 20 1,0 ]
G : . ) ; (15)

e u

@B p,0 Bp- 1,0 . Bl,O

Here the control horizon and prediction horizon are
L

both p, y(t) is the output of the system, y(t)is the

output of its neural network model.

SinceY, isthe “free response” of the system, it can

be caculated by the neura network model. The
elementsin G are calculated asfollows:

Bio =hy
k1
Bio =b1+taA AjBkjo. kK=2...p (16)
j=1

Moreover, let the reference trgjectory be as follows:

yr (1) = y(©)
y (t+k)=a yt)+@-a¥)y,

an

where Yy isthe set-point,al (0) .

Let the vector form of the reference trgjectory and the
cost function be the follows respectively:



Y, =ly t+D,y, (t+2),... y, t+ P’ (18)

J=min{(Y, - Y)" (Y, - Y)+b°U U}
whereb 2 isthe weighting factor.

Note that because the system is nonlinear andE; is
function of @ , hee O refers  to
e @@t+D),..e@t+p)]", so E, isnotknown.
So the control law cannot be calculated by eq.(14).

However, the following method is used to get the
control law:

First, let E,, =0, whereE,, istheinitial valueof E,,

then, from 1}1—3:0, U, can becalculated:

U, =(GTG+b*1)'GT(Y, - Y, - E,- Ey) (19)

And U,istheinitia value of U . Define the vector

form of the multi-step predictions based on neura
network model as Y, :

Y, =[y, t+1/t),y, t+2/t),..,y, {t+p/t)]
And its value of step | istj , the value of Y of
step j isY,;, the value of U of step jisU |, the value
of E,of step jisE, . Thus the optimal U can be
gained by the following method:

Y, =Y, +GU, +E, +E;; j=12,.. (20)

Substitute U, into its neural network model eq.(2)
and Y, can be gained, then:

Eyu =F(Ey)=Ey +dY, - Y] (21)
U, =(G'G+b?1)'G" (Y, - Y, - E,- Ey.;) (22)
where E,, =0, dI (0)) . Note that if the

function F(-) is compressed mapping, the above

iterative process is convergent. And when Y equals
Y,, » the control sequence U gained based on eg.(22)

is the optimal one. However, if ||Elj+1- E, ||< a
desired tolerance , U ,,; can be thought of as the
optimal control law, defineq" as the first row of
(G"G+b%1)*G" ,then thecontrol law is:

u) =u(t- D+q' (Y, - Y, - E,- Ey,y) (23)

Hence, the algorithm for the nonlinear predictive
control method can be summarized as follows:

Step 1. Use BP dgorithm to train the weights of the

network and gain an initial estimate of their
values.

Step 2. Pick the output y(t) and give the network an
on-line training so as to adjust the weights
adaptively.

Step 3. Divide eq.(2) into two parts using the method
of the second section.

Step 4. Compuite the free responseY,  of the system.

Step 5. Get the reference trgjectory using eq.(18).

Step 6. Gain the optimal u(t) by using eq.(23).

Step 7. Return to step 2.

4. SSMULATION RESULT

In this section, an example is given to illustrate the
above method. The system is represented by the
following model:

_091y(t- D) +u(t-1
v = 1+ y(t - 2u(t- 2) +e)/D

Also white noise was added to the output. Its
amplitude is tenth of the set-point. The control
parameters are selected as follows:

p=5 b?=1, a =0.65, the system response can be
seeninFig.1.

1
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Fig. 1. Output response

5. CONCLUDING REMARKS

In this work, a new neural network based nonlinear
predictive control agorithm is conducted and applied
to a nonlinear system. It gives a direct and effective
predictive method and avoids nonlinear optimization.
In the agorithm, only one neura network is used, so
the computation burden is not serious.
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Abstract: We propose to use chance constrained programming for process optimization
and control under uncertainty. The stochastic property of the uncertaintiesisincluded in
the problem formulation. The output constraints are to be ensured with a predefined
confidence level. The problem is then transformed to an equivalent deterministic NLP
problem. The solution of the problem has the feature of prediction, robustness and being
closed-loop. In this paper, the basic concepts and solution strategies are discussed to
illustrate the potentia for optimization and control under uncertainty.

Keywords: uncertainty, chance constraints, linear, nonlinear, optimization, control

1. INTRODUCTION

It is a well-known fact that uncertainties exist in
every chemical process. In most previous studies on
process optimization and control, the stochastic
properties of uncertainties have not been taken into
account. In the industrial practice, uncertainties are
compensated for by using conservative operating
strategies, which may lead to considerably more
costs than necessary. In addition, feedback control is
used to compensate for uncertainties. However,
compensation without considering the uncertainty
propertiesis in fact the wait-and-see strategy and has
several drawbacks. First, it is aways a posteriori.
Second, the system propagates the disturbances to
connecting systems. Third, a feedback can not
ensure constraints on open-loop variables. In many
cases it is impossible to on-line measure some
variables which describe product properties (e.g.
composition, viscosity, density). These variables
have to be open-loop under the uncertainties but
they should be confined to a specified region
corresponding to the product specifications.

To overcome these drawbacks, we have recently
proposed and studied a new framework for process
optimization and control under uncertainty. The
uncertainty properties are to be included in the
problem formulation. These properties can be gained
by statistical analysis of historical data. A stochastic
programming problem under chance constraints is

formulated for both optimization and control. It will
be relaxed to an equivalent deterministic NLP
problem. The essential challenge lies in the
computation of the probabilities of holding the
constraints as well as their gradients. Approaches of
chance constrained programming to linear, nonlinear
and dynamic problems have been developed and
applied to different process engineering problems.
The method of moving horizon is employed for
solving dynamic optimization and control problems
under uncertainty.

While chance constrained programming has been
applied in many disciplines like finance and
management (Prekopa, 1995; Uryasev, 2000), few
applications have been made in chemical process
operations (Henrion et a., 2001). It has been used
for batch process planning (Petkov and Maranas,
1997). Several studies on model predictive control
using chance constrained programming have been
carried out for linear processes (Schwarm and
Nikolaou, 1999; Li et al. 2000 and 2002ab).
Recently, a method to nonlinear chance constrained
problems was introduced for process optimization
under uncertainty (Wendt et al., 2002). It has been
extended to nonlinear dynamic optimization
problems under uncertainty (Arellano-Garcia et al.,
2003). In this paper, the basic principles of chance
congtrained programming and its applications to
process optimization and control are discussed to
illustrate its potential and limitation.



2. UNCERTAINTY ANALYSIS

In process operation, there are two genera types of
uncertainties. External uncertainties are from
outside but have impacts on the process. They can
be the rate and/or composition of feed and recycle
flows as well as flows of utilities, the temperature
and pressure of the coupled operating units or
market conditions. Internal uncertainties represent
the unavailability of knowledge of the process. For a
determined model structure, they are uncertain
model parameters often regressed from a limited
number of experimental data. We call both of these
uncertain inputs. Due to these uncertainties,
conservative or aggressive decisions may be made.
While internal uncertainties have been well studied
in the framework of robust control in the past
(Morari and Zafiriou, 1989; Kothare et a., 1996;
Bemporad et d. 2002), externa uncertainties have not
been much emphasi zed.

As shown in Fig. 1, an uncertain input & can be

constant (e.g. model parameters) or time-dependent
(e.g. atmospheric temperature) in the future horizon
tO[t,,t,]. They are undetermined before their

realization. The “redlization” means either the
measurable uncertain variables have been measured
or parameters newly estimated. The distribution of
the variables may have different forms. Very often
normal (Gaussian) distribution is considered as an
adequate assumption for many uncertain variablesin
the engineering practice. The basic justification of
this statement is embodied in the central limit
theorem (Maybeck, 1994). The values of mean and
variance are usually available. The uncertain
variables may be correlated or uncorrelated.

Fig. 1: Two different uncertain variables

These uncertain inputs will propagate through the
process to output variables (e.g. temperature,
composition). This makes the outputs also uncertain.
A continuous process with constant uncertain inputs
leads to a steady-state problem, while such a process
with time-dependent uncertain inputs or a batch
process is a dynamic problem under uncertainty. For
anonlinear process it is very difficult to analytically
describe the distribution of the outputs. A scheme of
simulation with sampling can address this problem.
According to their distributions, random values are
generated. After many runs of simulation with the
sampled data, the probability distribution of the
outputs can be gained. Besides Monte-Carlo, some
efficient sampling strategies have been proposed
(Diwekar and Kalagnanam, 1997). Obvioudy, the
wait-and-see strategy can not result in satisfactory

operations under these uncertainties. Thus we are
confronted with making decisions a priori for the
future operation (i.e. the here-and-now strategy).
Under the uncertainties, a stochastic programming
problem has to be defined and solved to answer
these questions: 1) how to achieve an economically
optimal operation? 2) how to ensure the constraints
of the output variables? 3) how to prevent the
propagation of the uncertainties to downstream
processes? and 4) how to design a proper feedback
control system?

3. CHANCE CONSTRAINED PROBLEMS

A genera optimization or control problem under
uncertainty can be formulated as

min f(x,u,&)
st g(x,xu,g) =0, x(t,)=x,
h(x,x,u,&) = 0,

u,, Sus<u

)

ot Stst,
where f is the objective function, g and h are the
vectors of equality and inequality constraints. x, u

and & are the vectors of state, control and uncertain
inputs, respectively. x, is the known initial state.
This dynamic nonlinear optimization problem has to
be descretized with time intervals into a dstatic
problem so that it can be solved with the method of
stochastic programming. Time-dependent uncertain
inputs will be approximated as discretized uncertain
variables in individua time intervas. In this work,
they are assumed to have a correlated multivariate
normal distribution.

There have been two general stochastic approaches
(Kall and Wallace, 1994) to solve such problems.
The two-stage programming uses recourse to deal
with inequality constraints. The first-stage decision
variables are determined and fixed before the
redlization of the uncertain variables, while the
second-stage variables are decided after their
redlization. The violation of constraints is
compensated for by some penalty functions and
leads to additional costs for the second stage
decisions. Since a proper penalty function is usually
not available, the application of this method to
operation and control may be not appropriate.

The other method is the chance constrained
programming. Its unique feature is that the resulting
solution ensures a predefined probability of
satisfying the constraints. The solution will lead to
an expected optimal value of the objective function
by searching for the decision in a feasible region to
hold a given confidence level, denoted as
a(0<a<l).Since a can be defined by the user,
it is possible to select different levels and make a

compromise between the function value and risk of
constraint violation. It should be noted that with both



solution strategies there have been, until now, no
suitable approaches to nonlinear problems.

Recently, we have studied chance constrained
programming for process optimization and control
under uncertainty (Li et a. 2000 and 2002a,b;
Henrion et a., 2001; Wendt et a., 2002). In
engineering practice, a very popular form of
inequality constraints is to specify or restrict some of
output variablesy (notey is part of x):

sy g sy™ =Ll )

y™, y™ are the required lower and upper bound of

an output, such as a pressure or a temperature
restriction of a plant. Holding these constraints is
usualy critical for the production and safety. For
tO[t,,t, ] aprobabilistic form of (2) is

Ply™ <y (ue<y™i=1-l}=a (3

With this representation, all inequalities are included
in the probability computation. It means that they
should be satisfied simultaneously with the given
probability. Thisis called joint probabilistic (chance)
congtraint. Another form is single chance constraint,
where individual probabilities of ensuring each
inequality will be held:

Py <y e sy=}za,i=1-1 @

It should be noted that in deterministic approaches
the expected values of the uncertain variables are
usually employed. In readlity, however, the uncertain
variables will deviate from their expected values.
Thus the implementation of the results from a
deterministic approach will violate the inequality
constraints with a probability of around 50%. The
difference between (3) and (4) is that a joint chance
constraint requires the reliability in the output
feasible region as a whole, while single chance
constraints demands the reliability in the individual
output feasible region. If the congtraints are related
to the safety consideration of a process operation, a
joint chance constraint may be preferred. Single
chance constraints may be used when some output
constraints are more critical than the other ones. The
equalities in (1) are the model equations of the
process. They have to be satisfied with any
redlization of the uncertain variables. In fact, the
effect of the model equations is a projection of the
space of the random variables ¢ as inputs to a space

of state variables x, with given controls u. Thus the
equalities will be eliminated if an integration of the
equations in the space of the uncertain variables is
made. It implies that a sequential approach is
suitable for solving stochastic problems with
equality constraints. To treat the objective function
in (1), minimizing the expected value and the
variance of the objective function has usually been
adopted (Darlington et al. 1999):

min E[f (x,u,&)] +w D[ f (x,u,&) (5)

E and D are the operators of expectation and
variation, respectively. « is a weighting factor
between the two terms. In the sense of relaxation the
objective function in (1) is now a deterministic
function through these two operators. Now a general
chance constrained problem is formulated with (5)
as objective function and (3) or (4) with constraints.

process | uncertainty constraint

i Steady : Single

Linear Constant g

j ? state j ! iy ;z

| . | i
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Fig. 2: Classification of chance constrained
problems

As shown in Fig. 2, such problems can be classified
based on the properties of processes, uncertainties
and congtraint forms. Thus there are 16 different
formulations. We can use the initial letters to denote
the problems. For example, a steady state process
with constant uncertainties under single chance
congtraint is caled an LSCS problem. It is
interesting to note that LSTS and NSTS can be
solved separately for each interval, while for LSTJ
and NSTJ (a quasi-dynamic problem) the whole time
horizon should be considered. To solve such
problems with an existing optimization routine, the
probability of holding the constraints has to be
computed. Moreover, the gradients of the probability
function to the controls are required. Different
problems have different degrees of complexity for
computing these values, which will be discussed in
the following two sections.

4. APPROACH TOLINEAR SYSTEMS

Chance constrained linear problems can be relatively
easily treated and have some nice properties.
Theoretical results show that the feasible region of
linear problems with quasi-concavely distributed
uncertain variables is convex (Prekopa, 1995).
Another merit property is that linear transformations
of multivariate normally distributed variables have
the same distribution. Optimization of linear steady
state systems (LSCS and LSCJ) under constant
uncertain variables has been well studied (see Kall
and Wallace). It can be applied in process design
and planning under uncertainty.

We consider linear dynamic systems with time
dependent uncertain inputs (LDTS and LDTJ). The
outputs in the future horizon depend on the current
state, the future and past controls as well as
uncertain inputs. The uncertain inputs include both
uncertain parameters (e.g. step response coefficients)
and disturbances. The controls in the horizon will be
decided to optimize some objective function and



ensure the chance constraints for the outputs. A
quadratic objective function leads to a chance
constrained model predictive control, as shown in
Fig. 3. One can easily notice that the novelty of this
controller, compared with the conventional MPC, is
it includes the uncertainties explicitly in the problem
formulation. Moreover, it is worth noting that the
objective function may only include the quadratic
terms of controls, since the outputs are confined in
the chance constraints, e.g.

min Y Y wlut+)-ut+j-0° ()

For linear MPC with single chance constraints
(LDTS), the chance constraints can easily be
transformed to linear deterministic inequalities. It
leads to a QP problem and thus the solution can be
derived analytically (Schwarm and Nikolaou, 1999).

max

|
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Fig. 3: Chance constrained MPC

In cases of problems with a joint chance constraint
(LDTJ), an explicit solution cannot be obtained,
since the calculation of a joint probability of
multivariate uncertain variables is needed. Although
one chance congtraint for al outputs and all time
points can be formulated, it is natural to constrain
each output separately, i.e. for i =1,---,1

Ply™(t+ )<yt + D y™+i) i =1\ 2
(6)
Note that even if the wuncertain inputs are
uncorrelated, the outputs are correlated through the
linear propagation. With some linear transformation,
(6) can be described as the following form

Pri¢ <Au+b}=za, @)

& is an N-dimensional uncertain vector. The joint

probability makes (7) nonlinear constraints and the
stochastic MPC becomes an NLP problem.
Unfortunately, it is not possible to easily compute
those probability values even numericaly, if the
dimension is larger than 3. A simulation scheme to
estimate joint probabilities was proposed (Prekopa
(1995). The first and second term of the inclusion-
exclusion formula are computed exactly and the rest
terms are evaluated by sampling. Moreover, the
gradient calculation is required to solve the problem
with an NLP solver, which is more difficult. We

used this simulation scheme for the probability
computation and proposed a reduced gradient
computation strategy (Li et al., 2000, 2002a). The
efficient sampling by Diwekar and Kaagnanam
(1997) is used. SQP is used for the optimization and
the control proceeds by moving horizon. After the
control of the first time interval is implemented,
together with the realization of the uncertain inputs
in this interval, the system moves to the new state,
and the control policy in the new horizon will be
computed. The tuning parameters of this algorithm
are the length N of the time horizon and the
confidence level a. As a kind of predictive
controller a large N is desired, but the computation
time will be greater. The major computation load is
due to sampling of the uncertain variables to
evaluate the probabilities and their gradients. A
larger N means more uncertain variables are
included in the problem formulation.

Tuning the value of a is an issue of the relation
between feasibility and profitability. Of course a
high confidence level to ensure the constraints is
aways preferred. The solution of a defined problem,
however, is only able to arrive at a maximum value

a™ which is dependent on the properties of the
uncertain inputs and the restriction of the controls

and outputs. The knowledge of a™ is crucid; if a

value greater than o™ is chosen, the feasible region
will be empty. An easy-to-use method was proposed
to compute this maximum value for SISO systems
(Li et al., 2002b) which can be extended to MIMO
systems. The basic idea is to map the stochastic
inputs to outputs and analyze the property of the
outputs. It can be proved that the joint probability
has the maximum value if the mean values of the
outputs are at the middle of their restricted region

[y™,y™]. Thus a™ can be obtained via a

simulation run. The profitability of the stochastic
MPC means the achievability of the objective
function value, which is adso a function of the
confidence level. They have a monotone relation:
the value of objective function will be degraded if a
is increased. One can analyze the profile of the
function value with changing @ and decide on a
suitable trade-off between profitability and
reliability.

5. APPROACH TO NONLINEAR SYSTEMS

The motivation to consider nonlinear chance
congtrained problems is to find systematic ways to
compensate for uncertainties so as to avoid intuitive
or empirical decisions. Recently we proposed a
solution method to nonlinear steady state problems
under single chance congraints (NSCS), in which
direct computation of the probability of holding the
output constraints is avoided (Wendt et al., 2002).
The basic idea is to map the chance constrained
region of the outputs back to a bounded region of the
uncertain inputs. This can be done by a monotone



relationship between an input &, (assuming there
are Suncertain variables) and the constrained output
y, . Thus the output probability can be computed by
integration of the density function of the uncertain
inputs, eg. if & 1=y, 1 ,then

Prly, <y} =Pf
o &g (8)
:J' J’p(fu"'vfs)dfs“'dfl

Sé’g}axv D{u{sl

For the multivariate integration, collocation on finite
elements is used to discretize the bounded region of
the uncertain inputs. The input boundary &I is
computed inversely by the Newton-Raphson method
based on the output value of y™. Since this
boundary depends on the realization of the uncertain
variables (&,,--- £, ), it has to be computed on each
collocation point of these variables. In this way, the
equality constraints (model equations) are eliminated
by expressing the state variables in terms of decision
and uncertain variables. Again, a sequential solution
approach is used. It can principally be described
with Fig. 4. Due to the uncertainty, three different
controls will result in three different output
distributions: 1) too conservative (e.g. resulting in
great operation costs), 2) acceptable and 3) too
aggressive (resulting a high probability of constraint
violation). Due to the monotony, the bound values
(&m0 gm@ gmx@y of the uncertain variable can

be determined and thus the probabilities of holding
the constraint can be computed.
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Fig. 4: Approach to nonlinear constrained problems

Principally, this approach can solve problems under
uncertainties with any kind of distributions, provided
the density function and a monotone relationship
between the constrained variable and one of the
uncertain inputs are avalable. A numerical
integration scheme for problems with correlated
Gaussian inputs is developed. It should be noted that
for norma distributions the boundaries of the
infinite integrals in (8) can be chosen as [-30,30] .
A nested computational scheme to the multivariate
integration is proposed based on the fact that the S
dimensional integration can be computed by an (S
1)-dimensional integration. The gradients of the
probabilities to the controls can be computed in the
same way. To address the issue of feasibility, one
can first define the objective function as
maximization of the achievable probability. The

problem is then solved for the value of a™ . For
some practical processes, one may gain this value
through simulation. For example, if the control is
monotone with the constrained variable, then o™
corresponds to the confidence level with the lower
or upper bound of this control variable. This
approach can straightforwardly be extended to
multiple single probabilistic constraints. For each
constraint a probability computation will be made in
the form of (8). In this case, different confidence
levels can be sdected for different output
constraints. The extension of the approach to a joint
chance constrained problem (NSCJ) is not a trivial
task, since it may be difficult to find an uncertain
variable which is monotone with the joint
probability. It may be possible to find such a
variable by carefully analyzing the relations between
the uncertain inputs and constrained outputs. This
can be done with process simulation by perturbing
the uncertain variables.

This approach has been extended to solve NDCS
problems of nonlinear dynamic optimization under
uncertainty (Arellano-Garcia et a., 2003). We
consider dynamic problems with constrained outputs
at selected time points and with constant uncertain
inputs. The control policy u(t) for the entire
operation time will be developed to optimize the
objective function subject to single chance
congtraints of holding the point restrictions. Thisis a
suitable formulation to optimize batch process
operations under model parameter uncertainty. Two
difficulties have to be overcome in solving such
dynamic problems. First, since multiple time
intervals are considered, the reverse projection of the
output feasible region to aregion of uncertain inputs
is not trivial. The method of bisection through
simulation seems to be efficient to address this
problem. This is because it is a oneto-one
projection. Second, since the controls have different
impacts on the outputs in different time intervals, the
gradients of the uncertain input to the controls in
each interval have to be computed and passed to the
time points from interval to interval in order to
compute the gradients of the probability.

6. OPEN-CLOSED FRAMEWORK

A closed-loop control requires on-line measured
values of controlled variables. However, many
variables in the engineering practice can not be
measured on-line (e.g. concentration, viscosity,
density etc.). These variables represent the qualities
of products and their control is desired. To address
this problem, measurable variables (temperature,
pressure) are chosen as controlled variables to
indirectly control the product quality. This concept
can be described with Fig. 5. y will be controlled at

their setpoints y¥ by using controls u. Control of

y© is desired, but due to the lack of on-line
measurement it has to be open-loop. In these cases,

C



y© needs to be constrained but y is not constrained.

To ensure the product quality, the present solution in
the industrial practice is to choose an extremely
conservative setpoint value. This leads to the fact
that the product quality will unnecessarily be much
higher than specified and, due to the greater flow
rates of the controls, the operation costs will be
much higher than necessary.

Therefore, it is necessary to choose an optimal set of
setpoints for the controllers. This can be gained by
chance constrained optimization, i.e. the costs will

be minimized and the congtraints to y© satisfied

with a desired confidence level. This leads to a new
concept of control: to control open loop processes by
closed-loop control. Unlike the above problem
definitions where controls are decision variables, in
the closed framework the setpoints of the
measurable outputs should be defined as decision
variables. Moreover, controller equations have to be
included in the problem formulation. It is normally a
complicated NDTS or NDTJ problem. In practice,
many continuous processes have constant uncertain
inputs, and their impact on the controlled variables y
can easily be compensated for by the controllers.
Then the problem is reduced to a NSCS or NSCJ
problem which can be solved by the approach
discussed in the last section.
oy

yT u >
—)O ControllersF—>»| Process | Y

1 T

Fig. 5: The open-closed framework

The approach has been applied in a pilot digtillation
column to separate a methanol-water mixture with
uncertain feed flow and composition as well as
column pressure (Li et a. 2003). The operating
energy is to be minimized subject to a rigorous
model composed of component and energy balances,
vapor-liquid equilibrium and tray hydraulics for
each tray. The temperatures on the sensitive trays are
selected as the controlled variables, while the bottom
and top product purity are probabilisticaly
constrained. The optimization results provide the
profiles of the objective function value and the
corresponding controller setpoints along with the
confidence level to hold the product specification.

7. CONCLUSIONS

We have discussed the concepts, solution strategies
and perspectives of chance constrained optimization
and control. Since the uncertainty properties are
taken into account, the solution of the problem is a
decision a priori. A predefined probability to satisfy
the constraints will be held under the uncertainty and
thus the decision is robust. Moreover, the solution
provides a comprehensive relationship between the

performance criterion and the probability level of
satisfying the constraints. Thus one can decide on
proper actions which will result in a desired
compromise between profitability and reiability. In
this way, conservative or aggressive decisions,
which may have been made so far, can be prevented.
We have solved LDTJ, NSCS and NDCS problems
and applied these approaches to several optimization
and control applications. Development of more
efficient methods to address high dimension NDTJ
problems remains a challenge for future work.
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Abstract: In this paper, we present an adaptive extremum seeking control scheme for non-
isothermal continuous stirred tank reactors. We assume limited knowledge of the reaction
kinetics. An adaptive learning technique is introduced to construct an optimum seeking
algorithm that drives the system states to optimal equilibrium concentrations of the reaction
mixture. Lyapunov’s stability theorem is used in the design of the extremum seeking con-
troller structure and the development of the parameter learning laws. Under mild assumptions,
the resulting controller is an output-feedback controller. the performance of the technique is

demonstrated with the van de Vusse reaction.

Keywords: Extremum seeking, Lyapunov function, adaptive learning, persistence of

excitation

1. INTRODUCTION

The task of extremum seeking is to find the operating set-
points that maximize or minimize an objective function.
Since the early research work on extremum control in the
1920’s (Leblanc 1922), many successful applications of
extremum control approaches have been reported (e.g.,
(Vasu 1957), (Astrom and Wittenmark 1995), (Sternby
1980) and (Drkunov et al. 1995)). Recently, Krstic et.
al ((Krstic 2000), (Krstic and Deng 1998)) presented
several extremum control schemes and stability analysis
for extremum-seeking of linear unknown systems and a
class of general nonlinear systems ((Krstic 2000) and

1 Work support by the Natural Sciences and Engineering Council of
Canada

2 To whom correspondence should be
guaym@chee.queensu.ca

addressed;

(Krstic and Deng 1998)). An alternative Lyapunov-based
adaptive extremum-seeking technique is developed in
(Guay and Zhang 2002) in which the function to be
optimized is not available for measurement.

In this study, we investigate an alternative extremum
seeking scheme for nonisothermal continuous stirred tank
reactors. Only limited knowledge of the reaction kinet-
ics are assumed. A Lyapunov-based adaptive learning
control technique is used to approximate the unknown
kinetics and to steer the system to its unknown extremum.
The technique ensures convergence of the system to an
adjustable neighbourhood of its unknown optimum that
depends on the approximation error. We also show that a
certain level of persistence of excitation (PE) condition is
necessary to guarantee the convergence of the extremum-
seeking mechanism. The paper is organized as follows.
Section 2 presents some notations and the problem for-



mulation. Section 3 presents the adaptive extremum seek-
ing controller and the stability and convergence of the
closed-loop extremum seeking system. A numerical sim-
ulation is shown in Section 4 followed by brief conclu-
sions in Section 5.

2. PROBLEM

We focus on a class of nonisothermal continuous stirred-
tank reactor models described by

t=-Dx+ KC(z,T) + U, €))]
T=-DT+\'C(z,T) +u (2)

where x € S, C R"™ denote the concentration of chem-
ical components in the reaction mixture taking value in
compact subset S, of R™. The temperature is denoted
by T, it takes values on a compact subset S; of R,
the positive reals. K € R™*" is the n x r matrix of
stoechiometric coefficients for each n components on r
chemical reactions. The vector C(z,T) € R" summa-
rizes the temperature dependent chemical kinetics for r
chemical reactions of the reaction network under study.
D is the CSTR dilution rate. U;,, € R"™ gives the rate
of addition of each n components. The vector A € R"
provide the heats of reaction for each reaction. The con-
trol input u is assumed to be the rate of heating and
cooling. The control objective is to design a controller,
u, such that the function y = Hx, where H € R*™,
achieves its maximum at steady-state. We consider the
extremum-seeking problem for the nonisothermal CSTR
with unknown chemical reaction kinetics, C'(z,T)). It is
assumed that the stoechiometry of the reaction network
(summarized by the matrix K) and the heats of reaction,
A, are known. The nonisothermal CSTR is initially as-
sumed to operate at constant flowrate.

The problem is solved by first expressing the equilibrium
concentrations in the reaction mixture as function of
temperature, T. We assume that there exists a vector-
valued function, = ("), that solves the following equation

—Dn(T)+ KC(n(T),T) + U;n, =0. 3)

The solution 7(7T') is assumed to be continuous on Sr.
More specifically, we require the following.

Assumption 2.1. The function H=(T) is continuously
differentiable and it admits a maximum on ¥, =
{z € Sylz =n(T)}.

By Assumption 2.1, we consider only cases where
Hmr(T) is a continuously differentiable convex function
of T

We consider systems where the isothermal reaction kinet-
ics are stable. We state this requirement as follows.

Assumption 2.2. Consider the reaction kinetics dynamics
eqg.(1). There exists a positive definite function V' (z) €
C' such that

allz* < V(@) < cafl2]

and

V < —esllz = m(T)I| + calllll=(T)]

for positive nonzero constants ¢y, co, c3 and c¢4.

Assumption 2.2 provides a minimum-phase property of
the reaction kinetics that guarantees converge of the com-
positions, x, to a neighbourhood of the equilibrium x =
7(T).

The temperature dynamics eq.(2) subject to the equilib-
rium condition eq.(3) are written as

T =-DT + )\TK+D7T(T) — )\TK+U7?7L
+u+ A (C(z,T) - C(x(T),T)) (4

We assume that the following holds.

Assumption 2.3. Vo € S, and VI' € S, 3 a positive
nonzero constant L, such that

1C(,T) = C(x(T), T)[| < L[l = =(T).  (5)

The strategy developed in this paper consists in ap-
proximating the steady-state, or equilibrium, composi-
tion w(T") using a linear approximation technique such
as neural networks. Radial basis function (RBF) neural
networks presented in (Sanner and Slotine 1992) and
(Seshagiri and Khalil 2000) shall be used to approximate
a continuous function ¢ : RP — R as

¢(2) =W*'S(2) + pult) (6)

with NN approximation error y;(t), and basis function
vector

S(2) = [s1(2), 82(2), -, si(2)]"

A — o (5 — 0
Si(z):exp ( Solo)_g( SDZ) )

i=1,2,..(7)

where ¢; is the center of the receptive field, and o; is the
width of the Gaussian function. The ideal weight W* in
(6) is defined as



W* :=arg min {sup WTS(z) — d)(z)’} 8

WeQw (2e0

where Q is a compact subset of R? and

0, = {W ‘ W]l < wm}

with positive constant w,, to be chosen at the de-
sign stage. Universal approximation results stated in
(Funahashi 1989) (Kosmatopoulos et al. 1995) indicate
that, if [ is chosen sufficiently large, then W71 S(z) can
approximate any continuous function to any desired ac-
curacy on a compact set.

We apply eq.(6) to develop an approximation of the
objective function y = Hn(T) given by

Hr(T) = W3 S(T) + (1) ©)

where W, and S are as defined in egs.(7)-(8). Since it is
assumed that the reaction kinetics are unknown, we need
to approximate the term DAT K+ #(T'). To allow for the
simultaneous approximation of the objective function and
the regulation of the system temperature, we breakdown
the heat of reaction term as follows,

N K r(T) = NTKTH"WTS(T) + Wit S(T) + ().

We make the following assumption about the approxima-
tion error terms 11, () and p;(t).

Assumption 2.4. The NN approximation errors satisfies
leep(t)] < fip and | (t)| < [y with constants &, > 0 and
i > 0 over the compact set 2., x Sr.

3. CONTROLLER DESIGN

In this section, we design a control strategy that tracts the
unknown optimum of y. We first develop the parameter
estimation algorithm for the unknown parameter vector
W*. Let W denote the estimate of the true parameter WW*
and let 7" the predictions of 7. Using egs.(9)-(10) and
eq.(4), the temperature dynamics are written as,

T=—-DT + F(T)W* + Dy (t) = ATK Uy, +u
+A(C(z, T) - C(n(T),T)) (20)

where F(T) = [DS(T)Y,DANTK*HTS(T)T] and
W = Wt Wit

The predicted state 7" is generated by

T=—DT + F(T)W — ATK* Uy, + u
+kp(T = T) 4 e ()W (11)

vyith gain function k7 > 0 and prediction errorer = T —
T'. The vector-valued time-varying function ¢, (¢) is to be
assigned. It follows from (2)-(11) that

ér = F(T)W + Du(t) — krer
FAT(Cz,T) — C(x(T),T)) — e1()W(12)
where W = W* — W.

The objective of the extremum-seeking control is sta-
bilize the closed-loop system around a point where the
gradient of y = Hn(T) with respect to T vanishes while
attenuating the effect of the modelling uncertainty y;(¢).

Using the approximation eq.(9), the objective function
given by

y = Hr(T) = W; " S(T) + pp(t)
is approximated by
Ye = WES(T)

where Wp is an estimate of the optimal weight ;. The
estimated gradient of y. with respect to 7' is given by

_ 0ye
= ar

= WdS(T) (13)

where dS(T) = 25U The Hessian of y. with respect to
T is given by

0*ye
o712

=WId*S(T) =T, (14)

2°s
where d>S(T) = %

Define

zg = WEdS(T) — d(t) (15)

where d(t) € C! is an excitation signal to be assigned.
In the remainder, the dependence of the radial basis
functions S on the temperature is implied and we write
S, dS and d?8S.

To address the controller design, we define the following
auxiliary signals

m=er—ci(t)TW (16)
Ny = 25 — co(t)TW (17)

where c»(¢) is a time-varying vector valued function to be
assigned in the design.

We propose the Lyapunov function candidate



1
5773- (18)

The following dynamic controller is considered

1

d(t) = cx()TW — k2 — ka|T|d(t) — Daa(t) (19)
w=DT — F(T)W + \TK*U,,

— kgsgn(T'2)d(t) — a(t) (20)
where k, > 0and kg > 0 are gain function to be assigned
in the sequel, sgn is the sign function. The signal a(¢)
acts as a secondary dither signal that is used to generate
information about the unknown nonlinearities associated

with the reaction kinetics. The dynamics of the time-
varying functions ¢; (¢) and c,(¢) are assigned as follows

o)t = —kpe ()T + F(T) (21)
()T = —k,co(t)T + ToF(T) (22)

Taking the time derivative of V' and substitution of
egs.(19)-(22) gives

V = —krn? — k.ni + (m1 + Tang)
% [Dpu(t) + AT (€, T) — C(x(T), T))] 23)

From Assumption 2.2 it follows that

sup  |lz —w(T)|| = C4
z€S,, TEST

exists and is finite. By Assumption 2.3, we get

V < —krnt — kan3 + (m + Tanp) Dy (t)
+ (Im |+ [Tellln2) A L1CA (24)

Completing the squares and applying the gain functions

k k

kr = kro + 5402 + 55||A||2, (25)
k

kz == kzO + 77||/\||2F§a (26)

we obtain the following inequality

. 1 1
V < —kpon; — kzoms + <m + ka}) pu(t)?

1 1
(g, ) Mt n

where krg > 0, k.o > 0, kg > 0, ks > 0, kg > 0
and k7 > 0 are constants. Eq.(27) establishes that the
state, ), converges to a small neighborhood of the origin.
It remains to show that the original state variables, e
and z, and the parameter estimation errors W converge
to a small neighborhood of the origin. To this end, we de-
rive a persistency of excitation condition that guarantees

the convergence of the parameter estimates to the ideal
weights, W*.

Consider the following matrix,

C1 (t)T

T = [Cz(t)T}

By construction, this matrix solves the matrix differential
equation

T(t) = —K(t)Y(t) + B(t) (28)

where

o[ ] o0 [

A bound on the parameter estimates 7/ can be ensured by
choosing the following parameter update law.

Yol if |W]| < wy, or
: if || = w,, and WIT <0

W= W T (29)
Yo | I — === | T" otherwise
WTWwW

where I' = T(t)TeAEq.(ZQ) is a projection algorithm
which ensures that |W|| < w,,. The convergence of the
parameter estimation scheme is considered in the sequel.

By the property of the projection algorithm and for the
specific choice of basis function it is possible to show
that the norm of B(t) is bounded. Using the bound on
B(t), an explicit bound for the solution of eq.(28) can be
obtained as follows,

B
YOI < Cae 0700 1020 (30)
2

where Cy = ||T(¢o)|| > 0 and Ay > O is a positive
constant. Next, we want to show that the parameter es-
timation error W converges to a neighborhood of the
origin.
Substituting for e = 7 4+ Y ()1 we obtain the perturbed
dynamics

W = =3 X6 TOW — 7117
0 if |W]| < wy, or
if |W|| = w,, and WIT(H)Te <0
vl (32)
o Ww~ (T(t)TT(t)W - T(t)%) otherwise
CWTw
To establish the convergence of the parameter estimation,
we make the following persistency of excitation assump-
tion.



Assumption 3.1. The solution of eq.(28) is such that there
exists positive constants 7" > 0 and kn > 0 such that

t+T
/ ()Y (r)dr > knIy (32)

where Iy is the N-dimensional identity matrix.

By a standard adaptive control argument, the persistency
of excitation condition guarantees that the origin of the
differential equation

W = 7 T(6)TT ()W (33)

is an exponentially stable equilibrium. Since B(t) is a
bounded function, it is shown that the parameter estima-
tion error is guaranteed to decay exponentially as

)y A+ LG

17 < age a0
2kmes

(34)
Hence the parameter estimation error and the redefined
state variables, n, converge exponentially fast to an ad-
justable neighbourhood of the origin. By definition, con-
vergence of 1 and W to a neighbourhood of the origin
implies that [le]| < ||n]| + ||X(#)||||"||. Substituting for
Imll, [ (2)|| and W, we obtain

lle]| < agerstt0) 4 g (35)

where a5 > 0 and 85 > 0 are computable positive
constants. The convergence of the error vector, e, implies
that the convergence of the prediction error, e and the
exponential convergence of the closed-loop system to an
adjustable neighbourhood of the unknown steady-state
optimum. We summarize the result of the above analysis
as follows.

Theorem 3.1. Consider the nonisothermal continuous stirred

tank reactor model egs.(1)-(2) in closed-loop with the
state prediction eq.(11), the controller eq.(20), the dither
signal eqg.(19) and the adaptive learning law eq.(29). As-
sume that the signal a(¢) is such that

t+T
Y(r)'Y(r)dr > knIy (36)
t

for positive constants 77 > 0 and kx > 0 where Y(t) is
the solution of eq.(28). Then

e the error dynamics eq.(12) converge exponentially
to a small neighbourhood of the origin

o the parameter estimation errors 1% converge expo-
nentially to a small neighbourhood of the origin

Parameter Value

k10, E1 | 1.287 x1012, 9758.3
koo, Eo | 1.287 x10'2, 9578.3
k30, E3 | 9.043 x10?, 8560.0

Table 4.1. Kinetic Parameters of the van de
Vusse reactor

e the tracking error from the unknown steady-state,
zs, converges exponentially to a small neighbour-
hood of the origin.

4. SIMULATION RESULTS

In this section, we demonstrate the effectiveness in simu-
lation of the proposed adaptive extremum-seeking con-
trol. We consider the standard van de Vusse chemical
reaction. The reaction scheme for this reactor is given by

A— B
2A— D

The reaction kinetics are summarized by

By

1 0-1 e )y
— — E

h= [ 1-1 0} , Cl@,T) = | kage™ (F)ay
E3

kgoe_(T)$%

where x;, and x4 are the concentrations of components
A and B, respectively, T' is the reactor temperature, k1,
koo and k3o are the pre-exponential factors, £y, > and
E5 are the activation energies. The numerical values used
for simulation are listed in Table 4.1.

The dilution rate, D, is 14.19 hr~!. The latent heat of
reaction is given by AT = [-4.2, 11.0, — 41.85]/p/C,
where p = 0.9342 and C}, = 3.01. The pseudo-inverse of
K is given by

—-0.333 0.333
Kt =|-0.333 —0.667
—0.667 —0.333

The objective is to steer the system to the maximum
steady-state concentration of B, that is H = [0, 1].

We consider the initial conditions, z1(0) = 1, z2(0) = 0,
T(0) = 25. The centers of the linear approximation are
evenly spaced points on the interval [75,125], 02 = 10
for 1 << [. The six(6) centers, w;, are picked evenly at
spaced points on that interval. The dither signal was set
to

6
a(t) = exp(—0.1t) Z (sin((0.54)t) + cos((0.51)t))

i=1



The simulation results are shown in Figures 1 to 3. The
concentration of component B is shown in Figure 1. Fig-
ure 2 shows the reactor temperature profile. The required
control action is given in Figure 3. The true optimum con-
centration of B is 1.09. As shown in Figure 1, the adaptive
controller recovers the unknown optimum is a relatively
short time. The control profile and the temperature profile
demonstrate that the control is physically realizable.

5. CONCLUSION

We have solved a class of extremum seeking control
problems for continuous stirred tank reactors represented
by an unknown growth kinetic model. It has been shown
that when the external dither signal is designed such that a
persistent of excitation condition is satisfied, the proposed
adaptive extremum seeking controller guarantees the ex-
ponential convergence to an adjustable neighborhood of
its optimum.
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Abstract: This paper explores some issues pertaining to the use of Q-
parametrization in the optimal design of dynamically operable plants. An
optimization—based plant design formulation in which a discrete-time implemen-
tation of the controller parametrization is embedded, is described. Its application
is demonstrated through a reactor case study in which the resulting design is
compared against that obtained using PI control. Differences in results obtained
are discussed and related to the design problem formulation. The impact of other
assumptions, such as the disturbance dynamics, is also discussed.
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1. INTRODUCTION

The impact that the design of a plant can have
on its ability to be satisfactorily controlled has
led to a significant research effort both in the de-
velopment of techniques for dynamic operability
assessment and in the incorporation of dynamic
operability criteria directly within plant design
calculations. Reviews of work in this area include
those of Walsh and Perkins [1996], van Schijndel
and Pistikopoulos [2000], and Pistikopoulos and
Sakizlis [2002].

Optimization-based approaches are particularly
effective both for the quantitative assessment of
dynamic operability, and for the design of plants
that are both economically optimal and dynami-
cally operable. This framework enables the plant-
inherent control performance limitations of non-
minimum phase characteristics, input constraints
and uncertainty [Morari, 1983] to be simultane-
ously accounted for, and offers considerable flex-
ibility in the problem formulation. Inclusion of
various controller types is possible, including no

control [Bahri et al., 1996], perfect control, and
controllers of specified type such as multi-loop PI
control [Mohideen et al., 1996; Bansal et al., 2002].
Swartz [1996] utilized Q-parametrization within
an optimization-based framework to provide a
controller-independent measure of operability for
alternative designs; its extension to plant design
formulations is described in Swartz et al. [2000].

In this paper, we outline the general optimization-
based approach to integrated plant and control
system design, focusing in particular on the use
of Q—parametrization and PI control as the reg-
ulatory control strategy. These strategies are im-
plemented on a comprehensive reactor case study,
and the results compared. We show that the con-
trol performance metric induced by the economic
objective function coupled with path constraints
explains much of the similarity in the results ob-
tained. This issue, along with other features of the
optimization-based formulation, are discussed.



2. PROBLEM FORMULATION

The optimal design formulation considered here is
as follows:

Mazimize: objective function

subject to: e dynamic process model;

e operating constraints;

e and controller equations
for all disturbances within a
specified set

To provide: e an optimal design;
e an optimal operating point;

e and optimal controller tuning.

Each aspect of this formulation will now be briefly
described.

2.1 Objective function

The objectives in process design vary widely,
are multifaceted and are frequently conflicting.
A strategy that is widely adopted is to use an
economic-based objective function, as is typically
followed in steady-state design. This single mea-
sure is not likely to completely and accurately
encapsulate all features of interest, such as ease
of operation. These remaining features are incor-
porated as constraints.

The objective function in the case study that
follows is formulated in terms of a physical design
variable and steady-state values of certain oper-
ating variables. The optimal steady-state must be
such that the operation remains feasible over a
specified time horizon for all disturbances within
a specified set.

2.2 The dynamic process model equations

Continuous time processes with a differential and
algebraic equation (DAE) model description are
considered in this formulation. As a simultaneous
solution strategy is employed in this work, the dif-
ferential equation elements of the model are con-
verted to algebraic equations by using orthogonal
collocation on finite elements. The complete set of
algebraic, equality equations is then incorporated
into the problem as constraints.

Discrete time controllers are used in this study
and it is important to align their sampling time
with the finite element representation of the pro-
cess model. Many finite elements per sampling pe-
riod are used in the model discretization strategy
to capture the range of process dynamics that may
occur within one sampling interval.

2.8 Operating constraints

The process operating constraints define desirable
and feasible process behaviour. Collectively they
define the required dynamic operability and also
aide in the the solution of the optimization prob-
lem by limiting the search space.

2.4 Disturbances

Step-like disturbances will be used in this paper,
going from nominal to upper or lower bound val-
ues. Combinations of disturbances are handled by
using a set of parallel process models — one for
each disturbance combination. All these parallel
models are constrained to use the same physi-
cal design, operating point and controller tuning,
thereby increasing the problem’s size, but main-
taining the same degrees of freedom.

2.5 Controller equations

Two feedback controller types are considered here:
PI control and Q—parametrization.

2.5.1. PI control The velocity form of the digi-
tal PI controller is given by

At
Au, = K. |ey —ep—1 + ?ek (1)
I

where:  Aup = up — Up—1

Two controller tuning variables, K. and 71, are
introduced for every PI loop added to the process.

2.5.2. Q—parametrization is an established part
of control theory and provides a convenient mech-
anism for representing and parameterizing all sta-
ble closed-loop maps from a set of exogenous
inputs to regulated outputs in a linear feedback
system [Francis, 1987; Green and Limebeer, 1995].
The IMC controller [Garcia and Morari, 1982;
Morari and Zafiriou, 1989] shown in Figure 1
yields a parametrization of this type for stable
plants. The feedback system is stable if @) is stable.

The significance of this representation in the
present operable design application is that by
including a finite dimensional approximation of
@ in the decision space, a design is obtained that
represents an optimum for linear control indepen-
dent of controller type or tuning.

A finite impulse representation is used for @,
which for SISO systems takes the form,

L
Q=" L=(t;—to)/At (2)
=0

The controller decision variables are the coeffi-
cients ¢;, © =0, 1, ..., L.
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Fig. 1. The Q—parametrization structure used

Asymptotic tracking may be achieved by requiring

where Gy, is the model gain. In addition, this con-
dition yields an initial guess strategy for ¢(z2~!) by
setting gy = 1/G, and ¢; = 0 for the remaining
coeflicients.

In the case study that follows, the optimization is
carried out on the nonlinear dynamic model. The
linear model required for the QQ—parametrization
is obtained by linearizing the nonlinear model
around the current iterate of the steady-state op-
erating variables. Upon convergence of the op-
timization, the @Q—parametrization is consistent
with the optimal steady-state operating point.

2.6 Solution Strategy

Cervantes and Biegler [2001] review solution
methods for dynamic optimization problems and
divide them into two major classes, Direct and
Indirect methods. The Direct methods are widely
used and are again divided into two categories:
the sequential and simultaneous methods. In this
paper a simultaneous solution strategy is used and
since no integer variables are present, it results in
a nonlinear programming (NLP) problem.

3. CASE STUDY

The case study presented here considers the inte-
grated design and control of a stirred tank reactor
in which an irreversible, exothermic reaction takes
place. The study is based, in part, on the work of
Loeblein and Perkins [1998].

The objectives of this study are to:

e find a design that is dynamically operable
with respect to the given process constraints;

e determine the difference between designs us-
ing PI control and designs using a controller
described by Q—parametrization;

e analyze the design by investigating the as-
sumptions and constraints.

3.1 Process description

The process model is given by the equations in (3)
with parameter values in Table 1. Values in the

lower half of this table represent the values of the
variables at the steady—state economic optimum,
with the objective function given by Equation (3f)
and constraints in Equation (4).

The disturbances are taken to be step changes
from the nominal value, in parentheses, of the
following two variables to their upper and lower
bounds:

o 18 < Cin(t) <22 kmol/m® (20 kmol/m?)

e 290 < Tin(t) < 310 K (300 K)
dC  Fy _E
— = (G = C) —koe 71 C (3a)
dlI'  F, AHg _ B
— =—Tn-T — ki c
dt 4 ( )+ ( pCp ) o
Qcool
- 3b
o (30)
Qcool =Ux (T - Tmean) (3(3)
Qcool = Fc(Tcool - Tcool,in) (3d)
Tmean = 0'5<TC001 + Tcool,in) (36)
¢econ = 1OFim (Cin - U) - O°01§cool
—0.1F;, — 0.075V°7 (3f)
T(t) < 350 K (4a)
0.05 < Fiu(t) < 0.8 m®/s (4b)
Tooo(t) < 330 K (4c)
Tooo(t) < T(t) (4d)
C(t) < 0.1 kmol/m* (4e)
V <10 m3. (4f)

Table 1. Nomenclature and value for the
process model

Variable Nominal Units Lagrange
Name Values Multiplier
Cin 20 kmol/m3 -
T 300 K -
Tcool,in 300 K -
Fe 0.7 m3 /s —
ko 2.7x108 st -
E/R 6000 K —
Ua 0.35 m3 /s -
7(?—;3‘ 5 m3.K/kmol -
C 0.1 kmol/m3 4.6437
T 350 K 2.2603
F 0.2828 m3 /s 0
1% 5.808 m? 0
Teool 320 K 0
Tmean 310 K 0
Qcool 14 mS'K/S 0
d)ccon 55.86 $/h1‘ —

3.2 Integrated design and control

The steady—state economic optimum presented in
Table 1 is not dynamically operable, even with
feedback control, since a disturbance could cause



Table 2. Steady-state values for open—
loop operation

Name Value Name Value

C 0.07146 kmol/m3 Q.o  11.65 m3.K/s
T 341.6 K Tmean  308.3 K

Fin 0.2007 m3/s Toool 316.6 K

\% 8.803 m? Gecon 39.52 $/hr

C and/or T to violate their respective active
constraints. The process operating point must
be changed to achieve dynamic operability. An
analysis of the design degrees of freedom shows
that two independent variables may be selected
in order to fix the remaining variables. Of the
seven variables in the lower half of Table 1, one
is a design variable, V', while the remaining are
constrained operating variables, such as C, T, Fi,
and Tcool-

3.2.1. No feedback control: ~ An operating point
can be found for this particular example which
does not require feedback control. This operating
point is within the permanent feasible region,
so that no constraint violation occurs when the
given disturbances impact on the process either
separately or together. This operating point is
found by using the formulation described above
without controllers where the search variables are
then the tank volume and the steady state inlet
flowrate, Fip.

The design summary is given in Table 2 which
shows that a sacrifice in the profit has to be
made in order to operate at this point — the price
to be paid to remain operable without feedback
control. This design has all variability appearing
in the process outputs, with the process inputs
remaining constant.

3.2.2. With feedback control: ~ The sacrifice in
process profit can be reduced by implementing
feedback control, but the aim of this study is to
investigate how much improvement is to be had
by using either PI control or ()—parametrization.

The tank temperature with a 10 second measure-
ment delay is selected as the controlled variable;
the inlet flowrate is chosen to be the manipulated
variable in this study, as was done in the work
of Loeblein and Perkins [1998]. The search space
now counsists of the process design and operating
variables from the lower half of Table 1 as well
as the controller tuning variables of the two con-
troller types.

Solving the design problem with PI control re-
sults in the operating point given in Table 3. An
improvement of $ 6.62 per hour is achieved com-
pared to the profit with open—loop operation. The
integral square error (ISE) values are computed
from Equation 5 with ¥ = 0, the weighted ISE

(wISE) values have ¥ = 30 000 for all possible
disturbance combinations, J, over a time horizon

with £; = 500 s.

J L-1

wISE = Z Z {(T - Tk,j)2 + 9 (AFn )’ | At
J=1 k=0
(5)

L=(t;—to)/At J=8 (6)

Table 3. Design with PI control

Name Value Name Value

C 0.06054 kmol/m3 Qo1 12.71 m3.K/s
T 345.4 K Tmean  309.1 K

Fin 0.2341 m3/s Toool 3182 K

1% 10.00 m3 ¢econ 46.14 $/hr
K. 0.01511 T 28.50

ISE 1586 wISE 1885

Solving the same design problem using (Q—para-
metrization yields an improvement of $ 7.26 per
hour when using 2 or more coefficients for g(z1).
Table 4 shows the values at the nominal operating
point, which do not change after two coeflicients
for Q(z71). Only the integral squared error met-
rics are reduced by adding further coefficients, as
seen in Table 5.

Table 4. Design with Q—parametrization

Name Value Name Value

C 0.06034 kmol/m3 Q.o 12.80 m3.K/s
T 345.7 K Tmean  309.1 K

Fin 0.2372 m3/s Toool 318.3 K

Vv 10.00 m3 Gecon 46.78 $/hr
ISE 877 wISE 1571

Table 5. Varying the number of FIR
coefficients in Q(z71)

Q(zil) (z’econ ($/hr) ISE wISE
0.009336 45.51 3236 3306
0.07148 — 0.06191z 1 46.78 1400 2184
go+...+quz"?t 46.78 878 1620
o+ ...+ qoz" 1 46.78 904 1584
q+ ...+ quoz ! 46.78 877 1571

Figures 2 and 3 show trajectories for the de-
sign under PI control and for design with Q-
parametrization. These trajectories represent the
closed—loop response and manipulated variable
inputs respectively for the case when both dis-
turbances are stepped to their upper limits simul-
taneously at ¢ = 20. These figures also serve to
illustrate the difference between using 2 and 20
coefficients for Q(z~!) and contrast to PI control.

3.8 Design Analysis

The above results indicate that there is not much
difference, in this case study, between using PI
control or the more advanced Q—parametrization
strategy to maintain dynamically operable pro-
cess behaviour while still remaining economically



Fig. 2. Controlled variable trajectories
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optimal. This occurs because the distance from
the constraints for both controller types is ap-
proximately the same. The integral squared error
is however less for the more advanced controller
and unless this has a significant economic benefit
the standard PI controller would be economically
acceptable.

Two aspects of the study require some further
analysis and discussion for completion. The first
aspect is the volume constraint that is active in
all of the above designs and the second is the
assumption of disturbance type and its dynamics.

3.3.1. The volume constraint:  Table 6 shows
the result of using the formulation to relax the vol-
ume constraint in Equation 4. It is understandable
that a larger tank volume would attenuate the
initial deviation for the controlled variable when
the disturbance impacts the process. This allows
for T to be closer to the constraints of 350 K,
resulting in increased profit in @econ-

Note that if the volume constraint is completely
removed, the economically optimal tank volume
is calculated as 114 m?3. Increasing the volume to
such a large value may be considered as down-
grading the process equipment, but it is necessary
to maintain an operable system at the calculated

Table 6. Effect of the volume constraint
on the process design and operation

Variable PI Control
V<10 V<20 VL8 V<o
T (K) 345.4 347.0 349.0 349.3
VvV (m3) 10.00 20.00 80.00 114.0
Pecon ($/hr)  46.14 48.93 52.07 52.19
wISE 1885 1255 686 600

set point. A point to also note is that assumptions
of perfect mixing may not be valid at such high
tank residence times and the model may need to
be adjusted.

3.3.2. The disturbance dynamics: The PI con-
troller design of Table 3 was used, but the step
disturbance input was replaced with the following
disturbance model:

Cin(t) = 25in(0.01¢) 4 20 t € [to: te]
Tin(t) = 10sin(0.01¢ + ) + 300 ¢ € [0;27]

Figure 4 shows the output of the two constrained
state variables at 10 equally spaced points in the
range of ¢. This ball of process operation can
be seen to lie well within the constrained region,
indicating that the nominal operating point of the
current design could well be moved closer to the
upper temperature and concentration constraints
of 350 K and 0.1 kmol/m? respectively.

350

w
Y
[ee]
T
I

Temperature
w
D
=

344r

0.04 0.06 0.08 0.10
Concentration

Fig. 4. The effect of sinusoidal disturbances on
process variability with PI control

In summary, the effect of varying the process
constraints can be understood and quantified us-
ing this formulation. It allows for more informed
economic and operability trade—off when process
parameters are to be investigated. Furthermore,
the assumption of step-like disturbance dynamics
was shown to lead to a conservative design and
improved profit could be had if the disturbance
dynamics were known more accurately.

4. CONCLUSIONS

An implementation of an integrated plant and
control system design formulation is described,



focusing in particular on the use of PI control
and a parametrization of all linear stabilizing con-
trollers. The integrated design strategy is illus-
trated through an application to a reactor case
study. Various scenarios are considered — steady-
state optimal design; dynamic optimization with-
out control; the inclusion of PI control; controller
parametrization; relaxation of the maximum vol-
ume constraint and the effect of disturbance dy-
namics.

The difference between PI control and the re-
sult using controller parametrization was found
to be slight. One reason for this is that the con-
trol performance metric induced by the objective
function and path constraints is the distance of
the steady-state operating point to active con-
straints, and PI control appears to be essentially
as good as the best linear controller in minimizing
the peak output variation in the direction of the
active constraints. While the difference between
the closed-loop performance as measured by the
integral square error is significant, this measure
is incorporated neither into the objective function
nor constraints. This illustrates the importance
of accurately capturing the desired design and
operational objectives.
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IMPROVED PERFORMANCE OF ROBUST MPC
WITH FEEDBACK MODEL UNCERTAINTY
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Abstract: Robust model-predictive controllers use an estimate of model uncertainty in the
on-line controller calculation and can be overly conservative for some uncertainty

descriptions.

This paper discusses the various causes of conservative control with

particular emphasis given to the concept of ‘closed-loop’ probabilistic predictions. A
multi-input-multi-output MPC is proposed in which an off-line, non-convex calculation is
used to characterize the closed-loop uncertainty a priori. This uncertainty information is
incorporated into a convex, quadratic program resulting in a MPC formulation that can be
efficiently solved on-line. A distillation column case study demonstrates the benefits of
the proposed robust MPC. Copyright © 2003 IFAC

Keywords: Robust control, Control algorithms, Closed-loop, Convex optimization.

1. INTRODUCTION

Model-predictive control (MPC) systems have found
widespread success in the process industries. The
vast majority of these controllers rely upon nominal
models, i.e. model uncertainty is not explicitly
considered in the on-line controller calculation.
Extensive simulation studies and tuning are often
required to ensure that these nominal-MPC systems
are appropriately robust (Qin and Badgwell, 1996).

Since this situation is not desirable, techniques to
create robust MPC systems have been investigated
since the late 1980’s (see (Badgwell, 1997) for a
review). Many of the initial robust MPC systems,
such as min-max MPC (Zheng and Morari, 1993),
achieved robust stability at the expense of dynamic
performance. There are several causes of overly
conservative control in robust MPC:

1) Min-max control strategy - Min-max
controllers are inherently conservative, because
they optimize the performance for only the
worst-case plant/model mismatch (Bemporad
and Morari, 1999).

2) Time-varying  descriptions  of  process
uncertainty — Several robust MPC systems
assume that the process is time-varying (Zheng
and Morari, 1993). However, in the process
industries many of the processes can be
assumed to be time-invariant within the
prediction horizon. A time-varying description
will lead to control that is often too

conservative if the actual process is time-
invariant.

3) Open-loop predictions of future system
behavior — An open-loop prediction is one in
which the effect of future controller actions is
not modeled. An open-loop prediction often
overestimates the uncertainty in future process
outputs because it does not consider that future
controller actions that will respond to
plant/model mismatch. This over-estimation of
output uncertainty leads to conservative control
when the system is near constraints (Mayne,
2000; Kothare et al., 1996).

The controller proposed in this paper addresses these
issues by basing the MPC on a closed-loop, time-
invariant model of future system behavior.  The
conservativeness inherent to min-max control is
avoided by maintaining the nominal value of the
process output near its setpoint while using
probabilistic models to avoid output-constraint
violations. In addition, the proposed controller uses
engineering knowledge of the structure of the process
uncertainty to avoid overly conservative uncertainty
descriptions. As will be shown in case study, the
resulting MPC is robust with respect to output-
constraints while avoiding excess conservativeness.

In order to remain computationally feasible for on-
line use, the proposed controller is implemented in
two stages. In the first stage, the effect of
plant/model mismatch on system behavior is
captured in off-line studies involving non-convex



optimizations. In the second stage, an on-line,
convex quadratic program uses the results calculated
off-line to predict and to optimize the behavior of the
uncertain, closed-loop system. The proposed
controller is intended for processes well modeled by
multi-input-multi-output  (MIMO) linear, time-
invariant (LTT) models with no input-constraints.

The remainder of the paper is organized as follows.
In Section 2, the rationale behind the various
characteristics of the proposed controller will be
discussed. This section will outline the derivation of
the proposed MPC. Section 3 discusses a method for
using Principal Component Analysis (PCA) to
improve the uncertainty description of the closed-
loop system. Finally, the performance of this new
MPC system is explored via a distillation column
case study in Section 4.

2. ROBUST MPC UNDER CLOSED-LOOP
UNCERTAINTY

2.1 Open-loop vs. Closed-loop Prediction

In unconstrained model-predictive control, the
following optimization is solved at each controller
execution (Garcia and Morshedi, 1986).

min{(y_ySP)TW(y_ySp)+AuTQAM} (1)

Au

st. y.=f(Au,N)  Vi=l...n (1a)

Herey,y e R",Aue R",WeR""andQe R"".

The process setpoint is represented by y,,. The
matrices, W and Q, are positive definite matrices,
typically with the tuning parameters, w and ¢, on
their respective diagonals. These tuning parameters
are chosen to achieve the desired compromise
between dynamic performance and robustness.
Equation (1a) represents a deterministic model of the

process with N a vector of the predicted value of the
process disturbances. In this paper, a linear step-
weight model is used and the process is assumed to
be open-loop stable or a pure integrator.

The result of this optimization is a vector of input
moves, Au, of which only the first is implemented.
At the next controller execution, an updated estimate

of the unmeasured disturbance, N , 18 calculated, the
output prediction is updated, and the procedure
begins again.

In an open-loop prediction of uncertainty, the entire
vector of Au is assumed to be known in the
prediction of future output uncertainty. This is not
an accurate description of a closed-loop, probabilistic
system. Through the controller, uncertainty in the
future outputs leads to uncertainty in future inputs as
the future control actions react to plant/model
mismatch. Because open-loop predictions neglect
this characteristic of a closed-loop system, such

predictions often overestimate the uncertainty in
future process outputs and lead to robust MPC that
are overly conservative.

In order to perform the required closed-loop
prediction, a robust MPC needs a model of the
process and a model of the future controller actions.
In general, the structure of the future control law
need not be specified. In this case, the robust MPC
problem becomes a special case of the dynamic
programming problem. (See Rawlings (1994) for a
complete discussion of the relationship between
robust MPC and dynamic programming.)

In this paper, the computational issues associated
with dynamic programming problem are avoided by
assuming that the future control actions are well
modeled by the MPC shown in equation (1).

2.2 Overview of Control Strategy

Figure 1 illustrates the general control scheme
proposed in this paper.

Robust MPC

Ul Plant Yy

L
L Nominal +

Model

A

C-L
Model

Fig. 1. Conceptual Design for Robust MPC

The controller block depicts the MPC using a closed-
loop model of the system to predict the future
expected value and upper and lower uncertainty
bounds for the inputs, «, and outputs, y. These values
are determined by an internal reference trajectory, r.
The robust MPC does not directly calculate a vector
of input moves as is done in nominal MPC. Instead,
it calculates the vector, r. This internal reference
trajectory is analogous to a setpoint and by changing
this value the robust MPC predicts how a
probabilistic closed-loop system will behave in
response to a setpoint move. The internal reference
trajectory is not a true system setpoint, but represents
the desired movement in the future closed-loop
system. The term internal refers to the fact that it is a
variable used internally by the controller.

The proposed MPC will be implemented as an
optimization of the following form.

min {(y_ySP)TW(y_ySp)+ AuTQAu} )

ryAuy, y.uu

st y= lAyC[ Jm,mim[ r, Au= lAuC[ Jnomina[ r (2)



YA S, y<A“(S), VoeA (2b)
B>A"(0), u<A (8, VéeA (2c)

Vooin SV Y5V S Vi 2d)
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Here Ay”l( o) and A, () represent the closed-loop
models of the system that relate » to y and u. These
matrices are functions of the model-mismatch, o.
The nominal inputs and outputs as predicted by a
closed-loop model with no plant-model mismatch
(i.e. &=0) are calculated in equation (2a). The upper
and lower uncertainty bounds of y and u are
represented by the vectors Yy, yand by u, u,

respectively. Equations (2b) and (2c) force these
values to represent the uncertainty bounds for the
worst-case mismatch, assuming JEA where A
represents the uncertainty set of . Section 3 will
discuss how this uncertainty set is defined. Equation
(2d) ensures that the nominal and uncertainty bounds
for y do not violate the desired output constraints.
The proposed controller assumes no input-
constraints.

The rest of this section will discuss how the various
aspects of this control strategy are implemented.

2.3 Closed-loop Predictions

The MPC shown in equation (1) is a natural choice
for the model of future controller actions. The
Karush-Kuhn-Tucker (KKT) conditions for this
unconstrained MPC are linear and can be written as:

(AW A+ 0" Wu— AW (yy, - K)=0 3)

Here the matrix, A, represents a step-weight model of
the plant. The linear process model is given by:

y=AAu+1(7 4

To create a closed-loop model, equations (3) and (4)
are written for each time step within the prediction
horizon.  This linear set of equations can be
combined to derive the closed-loop models, A,” and
A, shown in equations (2a) through (2c).

Conceptually, these closed-loop models could be
used to determine the predicted uncertainty limits of
the future process inputs and outputs (equation (2b)
and (2c)). For example, the upper bound in the
uncertainty of y for a given r vector could be
calculated as:

max V. =LA )y  Vk=l.n
s ‘ (5)

st.oe A

Here 1, is a matrix that selects the k™ element in the
vector y. This maximization would find the amount

of model-mismatch, &, that results in the largest
possible y at a given time period, k, in the future.

If this optimization could be calculated on-line, the
robust MPC could use the calculated uncertainty
limit to determine how best to maintain the system at
set point while avoiding output-constraints.
However, the situation is complicated by the fact that
A(8) and A,”(9) are highly non-linear functions of
the amount of plant/model mismatch, 8. Therefore,
the optimization shown in equation (5) is non-convex
and impractical for on-line implementation. As will
be described in the next section, this situation can be
avoided if this non-convex minimization is
performed off-line a priori.

2.4 Off-line Optimization

The goal of the non-convex optimization is to
determine the relationship between the predicted r
and the closed-loop uncertainty limits in y and u.
These relationships must be summarized so that an
on-line, convex optimization can make decisions
based on this information.

Given an estimate of the model uncertainty, the off-
line optimization solves the non-convex optimization
problems similar to the one shown in equation (5)
and uses the resulting J'to calculate the ‘worst-case’
Ay”l( 0 and A,“(9). Since local optima may be found,
several starting points must be used and any results
must be checked against Monte-Carlo simulations.

For a MIMO system, the effect of a given J on future
system uncertainty is a function of the direction of r
and the directionality of the process. Therefore, the
‘worst-case’ Ay”l( o) and A,(6) can be different for
different r-directions. Since an infinite number of -
directions exist for any MIMO system, the proposed
method uses a representative sampling to estimate
this set. For example, for the 2x2 system considered
in this paper, 60-different r-directions were
considered, each six ‘degrees’ from another, if one
visualizes the set of all possible r-directions as a unit-
circle in r/r, space.

2.5 On-Line Optimization

Naturally, the desired direction of the internal
reference trajectory, r, is not known beforehand.
Therefore, the on-line optimization must be able to
determine the ‘worst-case’ Ay”l( 0) and A,“(6) for any
possible r-direction.

The information given in the sampled A,"(d) and
A,'(6) matrices can be included in the constraints of



a convex optimization using the following technique.
Assuming a single step change in r at time k=0, the
minimization shown in equation (6) can be used to
find the largest uncertainty bound for y at given time,
regardless of the direction of r.

min y (6)
(62)

Here A,"(6), relates r to the largest uncertainty
bound of y for a given r-direction. The constraints
given in (6a) account for m different directions of r.
Each direction could result in a different A,"(J),.
For a system with 60 different sampled r-directions,
m could be as large as 60. However, this is usually
not the case, because the Ay”l( 9),, are identical for
many r-directions. For example, it is very unlikely
that the worst-case plant/model mismatch will be
different for a change in r of [0 1] and a change of
[0.03 0.99]. In case study discussed in Section 4,
fewer than 20 different Ay”l( 9), captured the
uncertainty limits for all of the tested r-directions.

Within the prediction horizon, the desired direction
of r may change several times. Equation (6) can be
used to calculate the upper uncertainty bound on y at
a given time for a single change in . In order to
calculate the uncertainty bounds for y for a sequence
of r-moves, this type of equation must be repeated
for each change in the direction of r and the resulting
partial uncertainty bounds must be added to give the
actual uncertainty bounds. For a system with an
input and output horizon of two, these equations
would have the following form:

y,2A,"(5), r(1) (7)

2 A,%(8), r(1)

2 Yo+

<l <l

Here r(0) represents the change in r at time, =0,
and y, is a vector representing the upper uncertainty

bound for y due to the change in #(0). The true upper
limit on the uncertainty of y must be greater than the

sum of y andy, as is shown in the final inequality

constraint.

With these linear inequalities, equation (2) can be
rewritten as a convex quadratic program.

‘ {(y - ySP)TW(y - ysp)+ AMTQAM}

3
s.t. Equation (7) and similar equations for
= (8a)
y.u,andu
y = lA) ! Jn()minal T AM = lAM . Jn()mina[ r (8b)
yminsyhyvzsymax (8C)

All output constraints are ‘softened’ to avoid
feasibility and stability issues (Zafiriou, 1990). This
quadratic program is solved at each controller
execution. The first input move is then applied in a
rolling-horizon fashion.

Implementation issues: This optimization is convex,
but the size of the problem can create some
computational issues. For the 2x2 case study
discussed in Section 4, the problem has 1134
decision variables and 3317 inequality constraints.

The size of this QP poses a problem for active set
method such as the quadprog program found in
Matlab (Coleman et al., 1999). Fortunately, recent
progress in the field of interior-point (IP) methods
provides a solution. While the theoretical worst-case
number of iterations for IP methods is bounded by
O(n’) (Lobo et al., 1998), these methods have been
shown to be much more efficient in practice
(Andersen and Ye, 1999). Using Andersen’s
MOSEK interior-point algorithm, the average
solution time for our quadratic program averaged
only 1.35 seconds on a Pentium IV, 1.8 GHz.

As the number of inputs, outputs, and length of the
prediction horizon grows, the set of equations
represented by constraint (8a) will reach a point
where even interior-point methods will require
excessive computing time. Future work will explore
how the dimensionality of this problem can be
reduced.

3. CLOSED-LOOP UNCERTIANTY
DESCRIPTION

The performance of the robust MPC described above
depends strongly on the uncertainty description used
by the controller. A poor description of the system
uncertainty may lead to conservative control.

For example, consider a typical non-linear, binary
distillation column from Marlin (2000). This process
can be modeled by the following linear system,
where Xp and Xjp represent the distillate and bottoms
compositions of the light key. These variables are



controlled by the reflux rate, Fk, and the amount
vaporized in the reboiler, F).

Kp11679“ Kp1267912
Xp| | 7ys+1  1,s+1 || Fr
|:Xg:|_ Kp,e ™  Kpe™ |:Fv:| ®
T,s+1 T,s+1

Assume that this linear model is used to represent a
non-linear distillation column in which the feed rate,
F, is unmeasured and not constant. Changes in the
feed rate will affect the model parameters and
uncertainty in the feed rate leads to uncertainty in
these parameters. The feed rate has a nominal value
of 10 kmol/min and varies very slowly (with respect
to the closed-loop settling time) between 8.5 and 11
kmol/min. Table 1 summarizes the coefficients of
the linear model fit at various feed rates with a
sampling rate of 2 min™.

Table 1: Effect of Feed Rate Changes on Model

(kmol/min)  (%/kmol min") (min) (min)
0.088 -0.079 20.8 22.0 2.60 3.76
8.5 [0.14 70.15} {215 212} {310 234}
0.075 -0.067 17.7 18.7 2.50 349
10.0 {0.12 70.13} {183 1&0} {297 233}
0.065 —0.058 153 16.1 242 333
11.5 [o.m 70.11} {159 ISJ {239 232}
0.057 -0.051 13.5 142 2.35 3.18
13.0 {0.09 —O.IOJ {140 137} Lsa sz

One possible uncertainty description for this process
is a set of equation such as:

0.057< Kp,, <0.088,...~0.15< Kp,, <—0.10
135<7,, <2038, 142<7,<220  (10)
2.35<6,, <2.60, 231<6, <234

However, these box-type uncertainty descriptions are
inappropriate. No linear controller will be able to
stabilize all of the plants described by equations (10)
because the systems do not meet the integral
stabilizability test of Grosdidier et al. (1985).

Even if integral stabilizability is not an issue for a
given system, the box-type description is
unsatisfactory because it ignores the steady-state and
dynamic relationships set by the physics of the
system. For example, a process uncertainty that
affects the process dead-time often also affects the
process time-constant and gain. Likewise, there
usually exists a relationship between steady-state
gains of a MIMO system.

3.1 PCA Uncertainty Description

These structured uncertainty relationships can be
captured using the Principal Component Analysis
(PCA) technique. PCA is a multivariate statistical
method that summarizes the variation within a data
set, X, in the fewest possible dimensions, d (Wold,

1987). A score vector, ¢, a loading vector, p, and a
residual matrix, & summarize the data as shown in
equation (11), where X,,.., is the column-wise mean
of the data.

X=X, + 2 1p+E (1N

If the information in Table 1 is summarized using
PCA where each row of the data matrix represents a
different flow rate and each column one of the 12
model coefficients, the majority of the variability can
be summarized using a single #-variable. This
illustrates the fact that there is one main source of
variability within the data set (i.e. the column feed
rate.) Using this PCA description, the uncertainty in
the process can be summarized as:

X = 0’ +Xoneans -13<¢<13 (12)

Here p is a 12x1 constant loading vector and the
inequality represents a component-wise 95%-
confidence interval for z. The uncertainty in this
example is summarized in a single score space, but
higher dimensional descriptions are possible. In such
cases, the inequality constraint shown in equation
(12) expands to a multi-dimensional ellipsoid.

This PCA description of uncertainty has several
advantages. The dimensionality of the non-convex
optimization discussed in section 2.4 is greatly
reduced. In addition, the loading and score vectors
can be helpful in deciding which sources of
uncertainty are important and which can be
eliminated from the model.

4. CASE STUDY

The following case study illustrates the ability of the
proposed MPC to robustly avoid output-constraint
violations while maintaining acceptable dynamic
performance. The distillation column discussed
above is to be controlled by the proposed robust
MPC found in equations (8). The case studies
assume that uncertainty is caused by plant/model
mismatch only and no disturbances are affecting the
plant. This assumption can be relaxed by applying
the techniques discussed in Warren (2003).

Figure 2 below shows the performance of the
unconstrained system responding to a setpoint
change of [1 0] mole percent at time, =1, from an
initial condition of [98 2]. The nominal plant model
is given by F; of 10 kmol/min in Table 1 and the
MPC shown in equation (1) is used in the closed-
loop model with the following tuning parameters;
n=20, m=5, w=[1 1], ¢=[0.02 0.02].

The thick solid lines in Figure 2 represent the
uncertainty limits of the inputs and outputs predicted
from time, =0, using equations similar to equation
(7). The dashed lines in Figure 1 represent the
closed-loop response of the distillation column at



feed rates of 7, 8, 9, 11, 12, 13, and 14 kmol/min.
Even though some of these feed flow rates fall
outside of the original range for which the robust
MPC was designed, the predicted uncertainty bounds
are quite accurate. Notice that the closed-loop
uncertainty predictions accurately predict that the
uncertainty in y will approach zero due to the integral
action of the controller and the fact that the closed-
loop system is stable.

995 24;
29
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Fig. 2. Closed-Loop Uncertainty Prediction

The proposed robust MPC is able to use these
uncertainty predictions to avoid output-constraints.
For example, consider the case where the bottoms
composition must remain below 2.5 mole percent
light key. Figure 3 compares the performance of
proposed robust MPC to that of a nominal MPC with
softened output-constraints.  In this example, the
process model used by the controllers is given by Fy
of 10 kmol/min in Table 1 while the true process is
operating at Fy of 8.5 kmol/min. The robust system
successfully avoids the output constraint without
becoming overly conservative.

X, Constraint
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Time Time
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Fig 3. Comparison of Robust and Nominal MPC

5. CONCLUSIONS

This paper has discussed the importance of using an
accurate  closed-loop description of system
uncertainty in robust MPC. A robust MPC system
based on a closed-loop system description has been
proposed and shown to outperform nominal MPC
systems when plant/model mismatch is present.
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Abstract: An adaptive extremum seeking controller is presented for the optimiza-
tion of the production rate of a continuous stirred tank bioreactor. This controller
is saturated outside a domain of interest and a reduced-order high-gain observer
is designed to estimate the substrate concentration of the bioreactor. Semiglobal
asymptotic stability is proved and recovery of the performance achieved under
state feedback is shown when the speed of the high gain observer is sufficiently
high. Simulation experiment is given to illustrate the proposed approach.

Keywords: Adaptive extremum seeking, parameter estimation, persistence of
excitation, output feedback, separation principle.

1. INTRODUCTION

Adaptive extremum seeking control of nonlin-
ear systems has received the attention of many
researchers. The potential benefits of extremum
seeking techniques in the maximization of the pro-
duction rate in a continuous stirred tank bioreac-
tor has been demonstrated by (Wang et al., 1999)
and (Zhang et al., 2001). Practical implementa-
tion of the controller scheme designed in (Zhang
et al., 2001) requires the measurement of sub-
strate concentration and production rate. How-
ever, knowledge of the substrate concentration is
not always possible. The extension of these results
to the output feedback requires the construction
of an observer to estimate the unmeasured state
of the system from its output.

Owing to nonlinearity (Lee and Khalil, 1997), a
separation principle cannot be applied in the de-
sign of output feedback control as in linear control
theory, but a certain degree of separation can be
achieved by designing high-gain observers. High-

1 Supported by Ontario Graduate Scholarships (OGS).

gain observers, however, exhibit peaking in their
transient behavior (Esfandiari and Khalil, 1992).
Fortunately, this peaking phenomenon in certain
classes of systems.

In this work, an adaptive extremum-seeking out-
put feedback controller is designed by the applica-
tion of a similar separation principle. The design
is achieved in two steps. First, we saturate the
controller scheme and the right hand side of the
adaptation rules designed in (Zhang et al., 2001)
for the continuous stirred tank bioreactor. Second,
we use an high-gain observer to estimate the sub-
strate concentration, based on the measurement of
the production rate. Using Lyapunov theory, we
prove that the output feedback controller recovers
the performance achieved under state feedback
when the gain of the observer is large enough. The
rest of the paper is organized as follows. Section
2 presents some notation and the problem formu-
lation for the state feedback case. In Section 3,
the reduced order high gain observer is designed.
The performance recovery is shown in Section 4,



followed by simulation results in Section 5 and a
brief conclusion in Section 6.

2. STATE FEEDBACK CONTROL

We consider the following microbial growth mod-
els for a continuous stirred tank bioreactor (Zhang
et al., 2001)

0/L52y - 9k92 + (SO - S)Uy (1)
s(1+6;s)
$=—0ky +u(so — ) (2)

y=—uy+

where the states s > 0 and y > 0 denote the
substrate concentration, and the production rate
of the reaction product, respectively. The input
of the system is the dilution rate v > 0, and sg
denotes the concentration of the substrate in the
feed.

The constant parameter ) is known, while the
constant parameters 6, 6, are unknown. How-
ever, the vector § = [0, 6,]T belongs to €, a
known compact convex subset of R2. Let Q) be
a convex subset of R? which contains ) in its
interior.

The adaptive extremum seeking controller and the
adaptation rules for the parameters of the system
are designed in (Zhang et al., 2001) for the state
feedback case. The state feedback controller is

1

(s0 —5)

u= (Ory —a(t) +d — k,zs) (3)
where a(t) and zg corresponds to the dither signal
(to be designed later) and the error in the set-
point s*, respectively

Let 6 denote the estimate of the true parameter
f and let § be the prediction of the state y by
using the estimated parameters és and GA/L. The
predicted state ¢y and d are generated by

0,52y — Ory® + (so — s)

) - —u uy e
ymmw s(1+0,s) T Fyeds)
d=—0,8(0,) +a(t) — d (6)

where e, =y — 9.
We suppose Q; and 2, are convex hypercubes,
(see (Khalil, 1996)) Omega; = {0 | a; < 6; < b;}
fori = s, u. Let

Qs_i={0]a;—06;<0; <b;+6;} fori=supu

where d, > 0 and J, > 0 are chosen such that
Qs_s C Qg and Qs_, C Q..

The parameter adaptation rule for 6, with i =
s, W, is taken as

Fi if a; S éz S bl or
if6; >b; and I'; <0 or
9;4: if0; <a; and IT'; >0 (7)
(1 — cl(éz))Fz if él >b; and I'; > 0 or
lfél <a;and I'; <0

for éi >b;and I'; >0

i

and for él <ag;and I'; <0

Hifaz-

(0= ( ) sign(Ts) ()

Equation (7) is a smooth projection algorithm
(Pomet and Praly, 1992).

The nominal value for éz is I'; where

i

T, — 'Vs(bs%/ey 7 _ ’Yu(buiyey
(1+65s) (1+6ss)

with ¢, = —u(so — 5) — 0,,5% + Oy and ¢, = (1 +
0,5)s. It can be seen from equations (8) and (9)
that 0 < ci(éi) <1 and ci(éi) =0 for 6, =T};.
Equations (1)-(10) represent the system under
state feedback. Let the vector ¢y = [s y d § 0, éM]T
represent the trajectories of the closed loop sys-
tem. Then considering x = [z, 05 0, e,]7, we
have

n (10)

Za s=8+d] T

. .Ns _ _és _ f2(11[})

A 0 Rl S Bl B 100 R
€y y_g fa(¥)

For simplicity, we can define

fr(w) = [f1(¥) f2(4) f5(¥) fa(w)]"

and express equation (11) as

X=rfr(¥) (12)

For the system (12) we consider the following
Lyapunov function

1. 02 6 2
V(x,t)= I 7—5 + o + (1 + Oss)e;, | (13)
s iz

The rate of change of the Lyapunov function (13)
is

.oV ov .
V= afr(i/’) + B8 ° < -Us(x) (14)

where Us(x) = k.22 + kyoe;.



Remark 1. The functions f1(v), f2(¢), f3(¢), and
fa(1) are locally Lipschitz in their arguments over
the domain of interest.

Remark 2. Assuming that the persistency of exci-
tation condition developed in (Zhang et al., 2001)
is met, the origin (z = 0,0, = 07@ =0,e, =0)
is an equilibrium point of the closed loop system.
The asymptotic stability of the origin for the state
feedback system (12) was proved in (Zhang et
al., 2001).

3. OUTPUT FEEDBACK CONTROL

We consider the case where only y is measurable,
the substrate concentration s is not available for
feedback control. By the locally observability con-
dition (Marino and Tomei, 1995), the system is
observable for y > 0. To implement the state
feedback adaptive controller (3), we need to es-
timate the unmeasured state s. The estimation
of the states y and s are given by gops and S,ps.
We use the reduced-order high-gain observer & =

[z}obs §obs]T

?)bsy - Hkyg + (30 - §obs)uy
§obs(1 + asgobs)

. 0,5
Yobs = —UY + &

(0%
+9 (15)
X A Qs .
Sobs = _0ky + u(SO - Sobs) + 672:1/ (16)

where 7, § are defined as § = y — Jops and § = s —
Sobs and ag, oy, € are positive constants.
For the output feedback, the dynamics for the pro-
duction rate is represented by (1) and the dynam-
ics of the substrate concentration is represented by
(2). The controller for the output feedback system
is
1 0 t)+d—k 17

U (g T ARz (D)
In order to avoid the singularity that may hap-
pen in the controller when the estimation of the
substrate concentration increases, we bound the
state 3,55 below and above by the positive bounds
Sobs—min and 0.99sy respectively.
To overcome the peaking phenomenon associated
with the high gain observer, we saturate the con-
troller and the rate of change of ¥, d, 9;, and F);L
outside the domain of interest. The rate of change
of g and d are

d=—0,6(0,) +a(t) - d (18)

0,82,y — Oky® + (S0 — Bobs)uy
<§0b3(1 + gsgobs)

+kyey (19)

)=—uy+

The parameter adaptation rule for the output
feedback case is the same as that for the state
feedback case. However, the nominal updating

laws for és and éu are

VsPsyey

DebsYey  p o Pl ()
(1 + esgobs)

r, = /
(1 + Gusobs)

with

¢s = _U(SO - §obs) - éuégbs + ka (21)
(bp, = (1 + ésgobs)éobs (22)

The error dynamics for the observer are

- Yy F
P y o _? 1 g 1
4| oe D B+ [o]e e
2
€
where F] m@lj and G~ is de-
— Yy a s _
fined as G = (1+95;)(1+és§obs) [GNGSsobjs—kH#sobs
2 A —0,y“+(s0o—s)u —0ky +(s0—80bs)U
Oubsdonss] + —Eiegs "~ b

We scale the observer dynamics as y = £; and
5§ = % Replacing equation (23) by its scaled
equivalent, we get

€ = A(t)E + eBG (24)

—Qy Fl
—Qg —UE

where £ = [§
B=[1 0]T.

&IT, At) = { } and

4. PERFORMANCE RECOVERY

In this section, we follow the procedure used
in (Atassi and Khalil, 1999) and (Khalil, 1996)
to show semi-global asymptotic stability of the
origin.

1. BOUNDEDNESS

Considering the equations (1), (2), (18), (19) and
the parameter updating laws (7) with nominal
updating laws (20), the rate of change of the
vector x for the output feedback becomes

Zs §—8+ d
= LS = _;s = Jr »D 25
|y G| - oee
€y y—y
and also

The initial conditions for equation (25) are x(0) =

(Zs (0), és(0)7 éu(o)a €y (0)) = (Z807 9507 9M0a eyO) €
U. Related to the set U there is U’ which is the
set of initial conditions for the states . In other



words, 9 (0) = (s(0),4(0), d(0), §(0), 05(0), 6,,(0)) €
U’. The initial states for the estimated parameters
are #(0) = (fons (0), 305 (0)) = &0 € Q.

The system (24), (25) and (26) is a standard
singularly perturbed one. It can be noticed that
¢ = 0 is the unique solution of (24) when e = 0. If
we substitute e = 0 in (25) we get the closed-loop
system under state feedback, equation (12). Then,
the reduced system is given by

).(:fr(d)vo) (27)

The boundary-layer system obtained by applying
to (24) the change of time variable 7 = t/e then
setting ¢ = 0, is given by

¢

dr
We denote (x(t,¢€),&(t,€)) the trajectory of sys-
tem (24) and (25) starting from (x(0),£(0)). The
recovery of the boundedness of trajectories is sum-
marized in the following theorem.

A(t)¢ (28)

Theorem 3. Let Remark 1 and Remark 2 hold,
then there exists e} > 0 such that, for every
0 < e < €}, the trajectories (x, &) of system (25)
and (24), starting in U x Q are bounded for all
t>0.

PROOF. The origin of (12) is asymptotically
stable with a region of attraction R. Based on
equations (13), and (14) there are three positive
functions Uy (x), Uz2(x) and Us(x), all defined and
continuous on R such that

Ui(x) < V(x.t) < U2(x) (29)
Jim Ui (x) = oo (30)
- g—‘;fr(lﬁ) + Ds< 0 6)

where Us(x) is defined above. The functions Uy (x)
and Us(x) are

62 02
Ur(x) =k |23 + = + 2= + e
Vs T

Ua(x) = ku2

22+§§ +9‘2‘ + (14 0ss0)e?
A T 0%y
with 0 < ky1 < 1/2 and 1/2 < kyu2. Equations
(29), (30) and (31) are satisfied for all x € R.
The properness of V(x,t) in R guarantees that
with any finite ¢ > mazycu, sewV(x,t), the set
Y={xeR:V(x,t) <c}isacompact subset of
R and U is in the interior of X. Similarly, we can
prove that there exists a compact set ¥’ which is
a subset of R and W is in the interior of ¥'.

For the boundary layer system we define the
Lyapunov function

W () =£" Po¢ (32)

where Py = P{ is the positive definite solution
of the Lyapunov equation PyA(t) + A(t)T Py =
—Q(t). The matrix Q(t) is symmetric and positive
definite. This function satisfies

Amin(PO)HfHQ < W({) < )‘mam(PO)HfHQ(?’?’)
ow

5, = sQE= “Amin(QW)[IEN* (34)

Let A = % x {W(€) < pe?}. Due to Remarks 1-2
we have, for all Y € 3, all ¢ € ¥’ and all £ € R?

1fr (b, D()E)]| < (35)
IG(@, D()E)] < ko (36)
[ (4, D(€)E)[| < ks (37)

where k1, ks and k3 are positive constants inde-
pendent of €. Moreover, for any 0 < € < 1, there
is L1, independent of €, such that, for all (y, &) € A
and every 0 < € < €, we have

1+, D(€)§) = fr(, 0)| < Laligll (38)
[ (10, D(€)8) = he (¥, 0)|| < Lol€]] (39

Proceeding as in (Atassi and Khalil, 1999), we
show that there exists 0 < e < €] such that
the trajectory (x(t,€),&(t,€)) enters A during the
interval [0, T'(¢)] and remains there for all ¢ > T'(e)
where

€ g9

T(e)= ln(p€4> <Tp. (40)
Thus the trajectory is bounded for all t > T'(e).
On the other hand, for ¢ € [0, T'(¢)], the trajectory
(x(t,€),&(t,€)) is bounded.
2. ULTIMATE BOUNDEDNESS
Next, we show that the trajectories of system (25)
and (24), starting in U x Q, come arbitrarily close
to the origin as time progresses. This is summa-
rized in the following theorem.

Theorem 4. Under the conditions of Theorem 1,
given any n > 0, there exists €5 = e3(n) > 0 and
Ty = Ti(n) such that, for every 0 < € < €, we
have

Ix(t Ol + 1€t el <n, ¥V t =T (41)

PROOF. Due to space restrictions we omit the
proof which proceeds as in (Atassi and Khalil,
1999).

3. TRAJECTORY CONVERGENCE



Let x,(t) be the solution of (27) starting from
x(0). In this section we follow the procedure used
in (Atassi and Khalil, 1999) to prove that x(t,€)
converges to x,(t) as € — 0 uniformly in ¢, for all
t > 0. As in (Atassi and Khalil, 1999), we divide
the interval [0,00] into three intervals [0,T(€)],
[T(€),T5] and [Ty, 0], and based on Theorem 1
and Theorem 2, we show ||x(¢,€) — x»(t)|| < n for
each interval.

4. ASYMPTOTIC STABILITY

We define FJ = [W

. where where
(14655)(140530p5)

T =[ps  ¢.),0=1[0s 60,]and Fj is a function
1. From equations (1) and (19),

Cy = —]fyey + FzTeé"_ (F2 - F2e)Té+ F3‘§(42)

The subscript e indicates that the function is
evaluated at steady state. From the projection
algorithms (7) with the nominal updating laws
(20) we define new state variables

FT
o 5)2;9) = —Fy RcNeey — Foo(RN — R.N.)e, +
OFe\T ~
() 7 )
. s¥s 1- Cs(é))
e e )
(14+0s50bs) m(bu(l - Cu(e))

Re-arranging equations (42) and (43) in a matrix
form, we get

W =C(tyw + E(t) + Fe3 (44)
where w = [e, FLO)T, C(t) = ]
voTEen e —F3.R.N, 0]
(Fy — Fpo)T0
E(t) T 8-F2e T
—FL(RN = ReNoJey + ( = ) a

and Fg = [1 0]TF3 Equation (44) is a linear
time variant system. It can be noticed that when
time— oo, E(t) — 0. Matrix C(t) is Hurwitz if
and only if F.LR.N, > 0.

In equation (24), the function G can be written
as G = F40 + F53, where F, and Fs are functions
of ¢. Then equation (24) becomes

£= %A(t)f + BF,0 + BF33 (45)

For the system (44) and (45), we define a new
Lyapunov function

Ve =V + W (46)

where V,, = w? Myw, and W corresponds to
the Lyapunov function for the boundary layer
system,equation (32). The constant matrix M
is positive definite and symmetric. We select the
matrix L(t), a positive definite and symmetric

matrix such that C(t)T My + MoC(t) = —L(t).
It can be verified that the rate of change of the
Lyapunov function V7 is

V < —Kllw|| — Kall€]| + Kal|2B(t)T Mol| (47)

where K3 and K, are positive bounds for the
states over the domain of interest. Let K5 =
min(Ks, Ky4), and let

K¢ = Ks(max(\//\mam(M())y \/)\max(PO)))

then equation (47) becomes

Vr < KoV + K| 2E(t)" My (48)

Integration of equation (48), yields

Vi (t) < Vip(to)e HKolt=to) 4 (49)

t
/ e~ Kolt=") [, 12B(r)T My | dr
to

When time— oo, E(7) — 0. Then inequality (49)
vanishes as time— oo. This means that Vpr =
Vi+Ws: —0or

lwll=llfey,  Feb)T — 0 (50)
lgll =D~ g &% =0 (51)

where D(e) is a two dimensional diagonal matrix
with the first element D(e)1; = 1 and the second
element D(€)a2 = 1/e.

Remark 5. Equation (50) implies that e, — 0 and
FQCQO~ — 0 when time— oco. Under a Persistence of
Excitation condition for the output feedback case,
0 = 0 when time — oo.

Remark 6. It can be easily proved from equations
(50), and (51), that z; under output feedback
approaches z; under state feedback as time — oo.
From the asymptotic stability of the origin under
state feedback, z; — 0 as time — oco. As a result,
zs under output feedback converges to zero as time
— 00.

From equations (50), (51) and Remarks 7 and
8, the origin of (x(t,€),&(t,€)) is asymptotically
stable.

5. SIMULATION RESULTS

A simulation study is performed using the experi-
mental conditions provided in (Wang et al., 1999).
The following parameters and initial states are
used in the simulation experiment.

e =001 a, =1, ay = 50, Ky = 0.2, pi, = 1,
]fl = 27 kQ = ]., So = 10, S(O) = ].7 y(O) = 03,

505 (0) = 5, Yops(0) = 0.1, y(0) = 1.5, 6,(0) = 3,



0,(0) = 5.5.

The dither signal is chosen as a(t) = 0.01(sin(0.01¢)+

sin(0.05t)). Figure 1 represents the simulation
result of the substrate concentration (s), the esti-
mation of the substrate concentration (S,ps), the
production rate (y) and the estimation of the
production rate (§ops). Figure 2 shows that both
95 and éu converge to their true value 6, = 6,, = 5.
From Figure 3, the trajectories under output feed-
back recover the trajectories under state feedback
for the high gain observer with sufficiently large
gain (e = 0.01). Furthermore, the maximum value
for the production rate y = 3.77 is achieved
under output and state feedback which confirms
the effectiveness of the adaptive extremum seeking
scheme.

6. CONCLUSION

An adaptive output-feedback extremum-seeking
control was developed for a class of stirred tank
bioreactors governed by Monod growth kinetics.
The controller allows the stabilization of the sys-
tem to its unknown optimal production rate.

REFERENCES

Atassi, A.N. and H. K. Khalil (1999). A Separa-
tion Principle for the Stabilization of a Class
of Nonlinear Systems. IEEE Transactions on
Automatic Control 44(9), 1672-1687.

Esfandiari, F. and H. K. Khalil (1992). Out-
put Feedback Stabilization of Fully Lineariz-
able Systems. International Journal of Con-
trol 56(5), 1007-1037.

Khalil, H. K. (1996). Adaptive Output Feedback
Control of Nonlinear Systems Represented by
Input-Output Models. IEEE Transactions on
Automatic Control 41(2), 177-188.

Lee, K. W. and H. K. Khalil (1997). Adaptive
Output Feedback Control of Robot Manip-
ulators using High-gain Observer. Interna-
tional Journal of Control 67(6), 869-886.

Marino, R. and P. Tomei (1995). Nonlinear Con-
trol Design. Prentice Hall.

Pomet, J.-B. and L. Praly (1992). Adaptive Non-
linear Regulation: Estimation from the Lya-
punov Equation. IEEE Transactions on Au-
tomatic Control 37, 729-740.

Wang, H.H., M. Krstic and G. Bastin (1999).
Optimizing Bioreactors by Extremum Seek-
ing. Int. Journal Adaptive Control and Signal
Processing 13, 651-669.

Zhang, T., M. Guay and D. Dochain (2001).
Adaptive Extremum Seeking Control of Con-
tinuous Stirred Tank Bioreactors. AICHE
Journal 2(40), 10-20.

Fig.

Fig.

Fig.

1. Substrate concentration s(“..”) and its
estimate $,ps(“—"), production rate y and its
estimate Jops (“- -7)

t(hr)
-?) and its estimate

2. Parameter 0,(“-
6,(“-), parameter 0,(“ -”) and its estimate
6

S(““”)

o 5 10 15 20 25 30

t(hr)

3. y under state feedback (“-”) and y un-
der output feedback (“- -”), s under output
feedback(“-.”) and s under state feedback (“-

)
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Abstract: This paper provides a design method for two-degrees-of-freedom PID
controllers including switched PD compensator based on bilinear matrix inequal-
ities (BMIs). Two design specifications based on Hs norm are formulated in
BMIs, and PID parameters can be exactly obtained by solving the BMI problems
via branch and bound algorithms. A set of PD compensators can be obtained
simultaneously using proposing design method. The most effective parameter is
selected out of the set of PD compensator based on the switching criterion which
obtained from estimated system conditions using recursive least square algorithms.

Numerical example is also shown.

Keywords: PID controllers

1. INTRODUCTION

PID controllers play a critical role in 80-90 per-
cent of chemical process systems [1]. They are
widely used because of their simple structures
which consist of only three parameters, that is,
proportional parameter, integral parameter, and
derivative parameter. It is, however, difficult to
tune those parameters practically since the pro-
cess dynamics often change due to changes in
operating conditions or various disturbances. We
have to design controllers such that they have
both robustness for changes in conditions of the
systems and good tracking properties. PID con-
trollers with one-degree-of-freedom can not have

robustness and good tracking properties since
they are contrary properties. In order to design
the controller with robustness and good tracking
properties, this paper deals with two-degrees-of-
freedom PID control systems, which have a PID
control system and a PD compensator.

The design of many conventional control systems
has resulted in an optimization problem, which
can be solved by numerical computation based
on powerful computer support. One of the most
useful tools is bilinear matrix inequality (BMI),
which is a flexible framework for analysis and
synthesis of control systems. Although checking
the solvability of BMI problems is NP hard [2], it



is not hard to obtain an exact solution of a BMI
problem via branch and bound algorithms if it has
a few parameters. Fortunately, a design problem
of PID controller has only three parameters, so
that we can design PID controller based on BMI.

This paper formulates the design problem of PID
controllers with two-degrees-of-freedom as a BMI
problem. The aim of the control design is to
make the control system has both robustness and
good tracking properties. In order to reduce the
conservativeness of the control system, this paper
deal with PD compensator which has switching
structure. This switching structure is constructed
from a system estimator using recursive least
squares algorithms, the switching criterion based
on stationary gain of the estimated system and a
set of pre-specified PD parameters corresponding
to the switching criterion.

This paper is organized as follows. The system
description, problem formulations and the design
method of PID controller with two-degrees-of-
freedom based on BMI are given in Section 2.
In Section 3, for more effective PD compensator,
a switching structure based on adaptive control
method is constructed. Section 4 provides branch
and bound algorithms in order to obtain an ex-
act solution of BMI problems. Finally, numerical
simulation examples are presented in Section 5.

2. CONTROLLER DESIGN BESED ON BMI
2.1 System description

Consider a system described by the following
continuous-time model:

K, —Ls
G(s) = 1+OTse L (1)

where K expresses the system gain, T is the time-
constant and L refers to the delay. By using the
first order Padé approximation of the delay, the
system is approximated as

K 1-%
1+Ts 1+4

1%

G(s)

(2)

Here, utilizing multiples of the sampling time
period T in the equation (2), the continuous-time
model is transformed to the following discrete-
time model:

A0 == B ult) + 160 ()
where

Az =14 a2 + agz? (4)
B(z™Y) = by + b1zt

Fig. 1. Closed-loop system with two-degrees-of-
freedom.

and u(t), y(t) and £(t) denote the control input
signal, the corresponding output signal and the
stochastic noise, respectively. The operator z ™!
denotes a backward shift, that is, z7ly(t) =
y(t — 1), and A denotes the differencing operator
defined as 1 — z~1. This paper deals with the
descrete-time model (3) as the control object
instead of the continuous-model (1).

Next, consider the control system represented by
the PID controller with two-degrees-of-freedom in
Fig.1, where r(t) and e(t) refer to the reference
signal and the control error, respectively. H(z~1)
and R(z~!) denote a low pass filter, and where
C1(z71) and Cy(27 1) denote the PID controller
and the PD compensator, respectively. And they
are given by

k;
01(2_1) =k.+ Z + Aky (5)

Co(zY) = —ko — Akg (6)

The two-degrees-of-freedom PID controller in (5)
and (6) includes five parameters: propotional
gains k. and k,, integral gain k; and derivative
gains k4 and kg. The one-degree-of-freedom PID
controller C (27 1) is required to satisfy the design
specification for the system perturbation and the
stochastic noise by using fixed PID parameters
which are obtained from the BMI solution dis-
cussed in Section 4. And the PD compensator
Cs(271) which has a set of pre-specified PD pa-
rameters corresponding to the divided small per-
turbations, is required to satisfy the good tracking
property by using switching structure based on
the estimator discussed in Section 3.

2.2 Problem fomulation

This paper deals with the 5 norms which rep-
resent the integral squared errors (ISE) of the
control system. They can evaluate the two design
specifications which require the robustness for the
control system and the tracking property for the
reference signal. Moreover these evaluation mea-
sures result in the optimization problem which is
represented by matrix inequalities.



First, we consider the error transfer function of
the control system in Fig.1. In order to evaluate
the tracking property for the step reference signal,
E.(z71) is defined as the transfer function from
r(t) to e(t). Since a step input is given by r(z71) =
1/(1 — z71) and &(271) = 0, E.(27!) can be
expressed as

1y _AGETH =27 Bz (27
B = mae e naae )

Similarly, in order to evaluate the influence of the
stochastic noise £(t), Eq(z7 1) is defined as the
transfer function from &£(t) to e(t). We assume
that £(z71) is a white noise which is represented
by é(271) =1 and r(27!) = 0, then E4(z7!) can
be expressed as follows.

- AA(z7Y) + 27 1B(2z7 1) AC (7)) (®)

Ed(z_l)

The ISE is described as
1 [ .
7= | EUw)E(=jw) dw 9)
™

1
=%/WWWW<7<M

where F = E,. or E; and 7 is positive constant.
Because the Ho-norm of E(z71) is defined as

1

2

— 1 f ; 2
1Ele= {5 [ 1BGoP 0] ()

the performance measure based on ISE results in
the following two inequalities.

| Erll2 </ (12)
| Eall2 <+v7a (13)

The purpose of this paper is to minimize 7, in
(12) for a given ,/74.

In this paper, the error systems (7) and (8)
are realized in the controllable canonical form as
following equations.

=
3
—~
N
~
~
Il

Cer(zl - Aer)_lBer + De, (14)
Ed(Z_l) = Ced(zl - Aed)_lBed 4 Deq (15)

where A;, B;, C; and D; (i = er or ed) are given
by the following matrices.

Ai = Ao+ kcAer +kiAco + kgAes

B;=[0 0 0 1)

Oer = Cero + kccerl + kioer2 + kdoer3
+kacer4 + kﬁcert') (16)

Ced = CedO + chedl + kiced2 + kdced3

D, =1

Deg=-1

where A; = Aer = Aeq, Bi = Ber = Beg and
where Aqg thru A.3, Cerg thru C.,.5 and C.49 thru
C.q3 are given by constant matrices.

According to papers [3], the ISE criterions which
are represented by Hs norm in (12) and (13) equal
to following matrix inequality,

beo (P71, k1) 0 0
o= 0 Pea(P™1 k1,74) 0
0 0 ¢er(P_17k2777‘)
=0 (17)

where '® > 0’ denotes that & is positive definite

matrix, and where

Pt plB,, P A,

beo(P~1 k1) = | BL,Pp~T 1 0
AT p~T 0 p!
(18)
and
Ya Ded Ced
$ea(P ki, va) = | Dy 10 (19)
ct, o P!
and
Yr Der Cer
¢er(P~ ko) = | DS 1 0 (20)
cr o p!

and where ky = [k, ki, kq] and ko := [k, ks, kg,
kq, kg] are the parameter vectors of the controller
and P is a 4 x 4 positive symmetric matrix.

Since the continuous system (1) is perturbed, the
four parameters ap, as, by and by in realized sys-
tems have perturbations. In order to treat these
perturbations of the control system, we assume
here that 4 parameters belong to a perturbation
set ), and the problem is formulated as



Minimize -, (21)

subject to g < A4 (21 —a)
k, € QD (21 —b)

a

az
® >~ 0 for all bo €N (21 —c¢)

b1

where 74 is a constant given in advance, Qp is a
given hyper-rectangle in R3, and Q denotes the
set of perturbations as following equation.

ai Q1min S ai S A1max
Q= az c R4 . 2min < 02 < A2maz
bO bOmin S bO S bOmax
bl blmin S bl S blmaw

(22)
Because any [a1, as, bg, bi]T in the set Q can
be described by linear combinations of 2% vertex
vectors, the matrix inequalitiy (21-c) can be de-
scribed by 24 BMIs. Although it is hard to solve
BMI problems, which are NP hard in general, we
can obtain the exact solution of BMI problem (21)
via branch and bound algorithms discussing in
Section 4 because it has only five parameters.

3. SWITCHING STRUCTURE BASED ON
ADAPTIVE CONTROL METHOD

In order to reduce the conservativeness of the
proposed controller, the switching structure for
PD compensator is designed based on the adap-
tive control method in this section. This switch-
ing structure includes a system estimator, the
switching criterion and a set of pre-specified PD
parameters.

First, we construct the estimator in Figl base on
recursive least square algorithms. To remove the
influence of the stochastic noise £(¢) from system
output y(t), consider the low pass filter H(z71)
which can effectively remove the high frequency
noise. H(z71) is given by:

u(t) = H(z"")y(t) (23)

Similarly, consider the effective low pass filter
R(z71) for the control input signal. This filter is
added for more accurate estimating, that is given
by the following equation.

w(t) = R(z™Hu(t) (24)

Here, consider the following discrete-time model:

A(z"Yo(t) = 27 Bz Yu(t) (25)

where

Az =1+ a27  + ag2?

B(z™') = by + b1z7! (26)

Then, the following extended least squares esti-
mation is employed:

T(t — 1)p(t — 1)e(t)
1+ T (t— )I(t— Dt — 1)

0(t)=0(t — 1)+

eR! (27)
D(t)=T(t—1)
T =Dyt - )"t - DIt - 1) AT
1+9T(t— DI(t — 1)t — 1) 0
€ R4 (28)

e(t) = Av(t) =0Tt -1yt —1) eR  (29)

where &(t) denotes prediction errors. () and
(t — 1) are the unknown parameter vector and
the data vector of the form:

G(t) = [le,dz,i)o,i)l]T S R4 (30)

Pt —1):=[-Av(t—-1), —Av(t — 2),
Aw(t — 1), Aw(t — 2)]7 € R*(31)

By using (27) thru (31), The state of the system
can be estimated recursively.

Next, we consider the switching criterion based on
the estimated system condition. This paper deals
with the stationary gain of the system (25) as the
switching criterion. Let us define K.:

Koo = —— (32)

and let PD compensator C3(271) be switched
based on the following detection rule.

0V KR < Kie < K

1 052)(2_1) Kﬁf) < Ko < Kﬁi)
Ca(277) = . .

(=) K < Koo < KEHY
(33)

where Kg) (j=1---p+1) are given and where

Céq)(z_l) (g = 1---p) are PD compensators
defined for each sector.

Here we consider the design method of C{? (z71).

From (32) and (33), the gain range K¢ < K,. <
K§Z+1) is expressed as the set of [a1, as, by, b1]T
as follows.



aq Kgg)(l—I—CLl +CL2)
—(bo+b1) <0
A= 921 c R4 (bo !
bo —K{@™ (14 a; + ap)
bl +b0 + bl < 0

(34)

Then the design problem of the PD compen-

sator C4? (2~1) corresponding to the pre-specified

small-ranged system gain K§Z) < K. < KS(Z-H)

can be formulated as

Minimize 7, (35)
a1

subject to ®pp = 0 for all 22 cQNA
0
bi]  (35-a)

where ®pp is represented by the following matrix

beo (P71 k) 0
dpp = =0
0 (ber(P_lyk%’Vr)
(36)

In the above problem, PID parameters k., k; and
kq in parameter vecters of the controller k; and
k, are given since they are already obtained by
solving (21). Therefore, matrix inequality (36) can
be represented by LMI, where variables are P!,
ko and kg. The matrix inequality (35-a) can be
expressed by two inequalities in (34) and 2* LMIs
as well as the case of (21-c). Hence it is easy to
obtain the optimal solution of the problem (35)
because there exist polynomial algorithms based
on the interior point method [4].

By using the estimator and the switching crite-
rion as mentioned above, the most effective PD
compensator which satisfies the good tracking
property is selected out of the set of pre-specified
PD parameters corresponding to the small di-
vided perturbations. The switching algorithm for
the proposed PID controller with two-degrees-of-
freedom is summarized as follows.

[The switching algorithm for the PID con-
troller with two-degrees-of-freedom]

[Step 1] Design the PID controller and the PD
compensator by solving the BMI problem (21).
[Step 2] Design the set of PD parameters corre-
sponding to the small divied perturbations by
solving the LMI problem (35).

[Step 3] Estimate the system conditions using
(27) thru (31).

[Step 4] Calculate K. from (32).

[Step 5] Choose the most effective PD parame-
ter from the detection rule in (33).

[Step 6] Return to [Step 3].

4. BMI SOLUTION BY USING AN EXACT
ALGORITHM

This section provides an exact algorithm for solv-
ing problem (21) based on branch and bound
algorithms [5]. Branch and bound algorithms give
us the lower bound ¥y and the upper bound
Uy satisfying ¥y < infy, < ¥y and (Py —
U.)/Vr < e for any € > 0. The lower bounds
are obtained using the SDP relaxation [6,7].

Let us define the function ¥(-), ¥ (-) and ¥y (+)
as follows.

Q)= inf Y, (37)
Ya < Fa, k1, ka]T € Q, "
® > 0 for all [a1, az,bo,b1]T € Q
Ur(Q)= inf Yry (38
@ 74 < Aa ki ke]T € Q, n (38)
® - 0 for all [a1,a2,b0,b1]T € Q
\IJU(Q7k>{7k;) = i]flf~ rs
Yd < Yd»
®* > 0 for all [a1, a2, by, b1]T € Q
(39)

where & is the SDP relaxation of ® obtained using
the method in the papers [7,8],

kil _
K = arg

and ®* is obtained by substituting [k}, k3]7 into
® in (17). Then ¥ (Q) < ¥(Q) < ¥y (Q) holds
for any Q. We can obtain ¥} and ¥y, such that
U, < infv, < ¥y holds for any & using the
following algorithm.

inf Yy
o va < Aa ki k)T €Q,
® > 0 for all [al,az,bo,bﬂT cN

[Branch and Bound Algorithm]

[Step 1] Set £k +« 0,Q0 « Qp,S0 +
{Qo}, Lo < ¥(Qo),Us +v (Qo)-

[Step 2] Select @ from Sy such that L, =
Ur(Q)- Sk+1 < Sk \ {Q}- B
[Step 3] Split @ along its longest edge into Q)

and Qs.

[Step 4] For i = 1,2

Sk+1 ¢ Sk+1 U{Qi}

[Step 5] Uk+1 < min \IIU(Q)
QESk+1

[Step 6] Pruning: Sk11 < Sk+1\{Q : ¥.(Q) >
Uk41}-

Step 7] L in ¥ .

[Step 7] Lit1 ¢ olin L(Q)

[Step 8] If (Uy — Li)/Lr < e then end else
k + k+1 and goto [Step 2].

if q/L(Ql) < Uk then

5. NUMERICAL EXAMPLE

In order to investigate the behavior of the pro-
posed control scheme, numerical simulation exam-
ples are illustrated in this section.



Let us consider the continuous-time model given
by the following equation.

Ko _
Ls where

(40)

From (3) and (4), the system parameters of the
descrete-time model which are transformed by
using sampling time period Ty = 1 are obtained
as follows:

A(z_l) =14az ' +asz?

B(z7Y) = by + bzt (41)
where
—1.4335 < a7 < —1.3959
0.4531 < ap < 0.4724 (42)

—0.0528 < by < —0.0362
0.0751 < b; <0.1100

By solving the BMI problem (21), parameters of
the PID controller and the PD compensator are
designed as follows:

ke =2.7525 ko, =0.4496 ~, =15.4295
k; =0.3818 kg =0.7565 4 = 162.6861 (43)
kq =4.3374

We designed the pre-specified PD compensators
by solving the LMI problems (35), and they are
obtained as follows:

—0.4009 — 1.9002A
1.0 < K,, <125
(v = 6.5864)
—0.7843 — 2.0138A
125 < K,, <15
(v = 5.9511)

Cy(z7Y) = (44)

The system parameters of the control object are
given as Ky = 1.0 and T' = 11.5 in the period from
O[step] to 400[step], and Ko = 1.4 and T = 12.0
in the period from 401[step] to 1000[step]. The
reference signal is given as r(t) = 1 in the period
from O[step] to 200[step], r(t) = 2 in the period
from 201[step] to 700[step] and r(t) = 2.5 in
the period 701[step] to 1000[step]. The stochastic
noise £(t) is given as a normal distribution with
N(0,0.001%). Fig.2 shows the result. We can see
that the influence by the stochastic noise can
be reduced, and that the system can track the
reference signal well.

6. CONCLUSIONS

In this paper, a BMI based design scheme for
switched PID controllers with two-degrees-of-
freedom has been proposed. According to the

0 200 400 600 800 1000
t[step]

Fig. 2. Control result using the proposed PID
control scheme.

proposed scheme, two design specification based
on Hs norm are formulated in BMIs, and PID
parameters can be exactly obtained by solving the
BMI problems via branch and bound algorithms.
In order to reduce the conservativeness of the
control system, the proposed PD compensators
have switching structure based on adaptive con-
trol method. Numerical examples have shown the
effectiveness of the proposed method.
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HYBRID CONTROL: IMPLEMENTING OUTPUT FEEDBACK
MPC WITH GUARANTEED STABILITY REGION !

Prashant Mhaskar, Nael H. El-Farra and
Panagiotis D. Christo des

Department of Chemical Engineering
University of California, Los Angeles, CA 90095-1592

Abstract: In this work, a hybrid control scheme that employs switching between bounded
control and model predictive control (MPC) is proposed for the output feedback stabilization
of linear time-invariant systems with input constraints. Initially, we design a bounded output
feedback controller for which the region of constrained closed-loop stability is explicitly
characterized and an MPC controller that minimizes a given performance objective subject
to constraints. Switching laws are derived to orchestrate the transition between the two
controllers in a way that reconciles their respective stability and optimality properties, and
guarantees asymptotic closed-loop stability for all initial conditions within the stability region
of the bounded controller. The hybrid scheme is shown to provide a safety net for the practical
implementation of output feedback MPC by providing a priori knowledge, through off-line
computations, of a large set of initial conditions for which closed-loop stability is guaranteed.
The proposed hybrid control approach is illustrated through a simulation example.

Keywords: Hybrid control, Bounded control, MPC, State observers, Input constraints.

1. INTRODUCTION
1.1 Classical vs. hybrid control

The conventional, or classical", approach to control
has been that of modelling the process (up to the req-
uisite level of detail) and then designing an appropriate
controller to achieve the desired control objective. The
salient feature of the classical approach is the absence
of a discrete component in the control structure.

In contrast, a hybrid control structure (Figure 1) in-
volves, by design, a blend of continuous (i.e., the
classical controllers) and discrete components (i.e.,
the logic based supervisor that switches between the
controllers). The controllers within the control block
could be of similar structure (but with different gains
or parameters), or could be structurally different (for
example, an analytic and a model predictive con-
troller). The switching between multiple classical con-

1 Financial support from NSF, CTS-0129571, is gratefully ac-
knowledged

trollers is orchestrated by the supervisor for the pur-
pose of either meeting an objective that cannot be
achieved by the individual controllers or to reconcile
the different (complementary) strengths and capabili-
ties of different control approaches.

Process Supenvisor SWII(f)%*‘W":“Q
ComrolleM ComroHerZ ] [ConlrollerN ]

Fig. 1. A schematic representation of a hybrid control
structure.

[

u
Process y

The general idea of hybrid control, manifested through
switching between different controllers, has been used
in the literature in a variety of contexts. Examples in-
clude gain scheduling (e.g., see (Rugh and Shamma,
2000)) as a tool for control of nonlinear systems,
multiple linear models for transition control (e.g., see



(Banerjee and Arkun, 1998; Sun and Hoo, 1999)) and
scheduled predictive control (e.g., see (Aufderheide et
al., 2001)) of nonlinear processes. A recurrent theme
in most of the work on hybrid control has been that of
switching between different models (which results in
an implicit switching between different controllers), or
that of using multiple structurally similar controllers.

In (El-Farra et al., 2002), we proposed a hybrid control
structure, that employs switching between two struc-
turally different controllers an MPC controller and
a bounded analytical controller for the state feed-
back stabilization of linear systems with input con-
straints. The bounded controller was used to provide
a safety net for the implementation of MPC within a
well defined region of guaranteed stability. The pro-
posed hybrid control structure was extended to ad-
dress the problems of robust control of linear systems
with uncertainties (El-Farra et al., 2003b) and con-
strained stabilization of nonlinear systems (El-Farra
et al., 2003a). In this work, a hybrid control scheme,
uniting bounded control with MPC, is proposed for the
output feedback stabilization of linear time-invariant
systems with input constraints.

1.2 Background

Input constraints arise as a manifestation of the physi-
cal limitations inherent in the capacity of control actu-
ators (e.g., bounds on the magnitude of valve open-
ing). Input constraints automatically impose limita-
tions on our ability to steer the dynamics of the closed-
loop system at will, and can cause severe deterioration
in the nominal closed-loop performance and may even
lead to closed-loop instability if not explicitly taken
into account at the stage of controller design.

One of the key limitations imposed by input con-
straints is the restriction on the set of initial states
of the closed-loop system that can be steered to the
origin with the available control action. The absence
of an a priori explicit characterization of this set (or
an appropriate estimate thereof) can have an impact
on the practical implementation of the given control
policy by requiring extensive closed-loop simulations
over the whole set of possible initial conditions, to
check for closed-loop stability, or by limiting oper-
ation within an unnecessarily small and conservative
neighborhood of the desired equilibrium point. These
considerations have motivated signi cant work on the
design of stabilizing bounded control laws that pro-
vide explicitly-de ned, large regions of attraction for
the closed-loop system (e.g., see (Lin and Sontag,
1991; Teel, 1992; El-Farra and Christofides, 2001; El-
Farra and Christo des, 2003)).

Currently, MPC, also known as receding horizon con-
trol, is a widely used control method for handling
constraints within an optimal control setting. Within
MPC, the control action is obtained by solving re-
peatedly, on-line, a nite-horizon constrained open-
loop optimal control problem. The industrial success
of MPC has spurred numerous research investigations

into the stability properties of MPC controllers and
led to a plethora of MPC formulations that focus on
closed-loop stability (e.g., see (Rawlings and Muske,
1993; Allgower and Chen, 1998; Mayne et al., 2000)
for extensive surveys of these developments). The sig-
ni cant progress in characterizing the stability proper-
ties of MPC notwithstanding, the issue of obtaining,
a priori (i.e. before controller implementation), an
analytic characterization of the region of constrained
closed-loop stability for MPC controllers remains to
be adequately addressed. This dif culty can have an
impact on the practical implementation of MPC by
requiring extensive closed-loop simulations over the
whole set of possible initial conditions to check for
closed-loop stability, or by potentially limiting oper-
ation within an unnecessarily small neighborhood of
the nominal equilibrium point.

In addition to the problem of input constraints, the
problem of output feedback stabilization of con-
strained systems has been the subject of numer-
ous research studies. Examples include scalar out-
put feedback control of linear systems (Shamma and
Tu, 1998), stability analysis of a composite system
comprising of a moving horizon regulator and a mov-
ing horizon observer for control of nonlinear systems
(Michalska and Mayne, 1995) and moving horizon
estimation as an extension of Kalman ltering, for
constrained and nonlinear processes (Rao and Rawl-
ings, 2002). In these works, however, the stability
region of the constrained closed loop system is not
explicitly characterized.

Motivated by the above considerations, we propose in
this paper a controller switching strategy that extends
the hybrid control structure in (El-Farra et al., 2002)
to the case of output feedback. The guiding principle
in realizing this strategy is that of using a suitable
state observer design which, in conjunction with the
bounded controller, yields an explicitly characterized
stability region within which the operation of the
MPC controller can be embedded by devising suit-
able switching rules (see (Mhaskar et al., 2003) for
a detailed analysis of the theoretical issues involved
and the mathematical proofs of the results). The rest
of the paper is organized as follows: in section 2, we
present some preliminaries that describe the class of
systems considered and review brie y the methodol-
ogy of designing the state observer, and how the con-
strained control problem is addressed in both bounded
control and model predictive control. In section 3,
we formulate the controller switching problem un-
der output feedback and propose a switching scheme
that addresses the problem. Finally, in section 4, nu-
merical simulations are presented to demonstrate the
implementation of the switching scheme and test the
robustness of the proposed approach with respect to
measurement noise.

2. PRELIMINARIES
In this work, we consider the problem of output
feedback stabilization of continuous-time linear time-



invariant (LTT) systems with input constraints, with the
following state-space description:

T = Ax + Bu
y=Cz (1)

u(t) e d R™
where x = [z1, ,x,)" € IR™ denotes the vector
of state variables, y = [y1, ,yx] € IR denotes
the vector of output variables, v = [u1, ,up] is

the vector of manipulated inputs, taking values in a
compact and convex subset, U, of IR™ that contains
the origin in its interior. The matrices A, B and C are
constant n  n,n mand kK n matrices, respec-
tively. The pairs (A4, B) and (C, A) are assumed to be
controllable and observable, respectively. Throughout
the paper, the notation x’ denotes the transpose of x.

2.1 State observer design

For the system of Eq.1, we use a standard Luenberger
observer described by

i=Aé+Bu+ Ly Ci) 2)

where £ = [Z1, ,&,)’ € IR™ denotes the vector of
estimates of the state variables, L is a constant n =k
matrix chosen such that the eigenvalues of A LC are
placed at ai, as... a, with 1 and a; #
aj 1. In the closed loop system, the estimation
error, de ned as e = = Z, evolves independently
of the controller accordingto é = (A LC)e

Note that the dynamics of the error equation can be
manipulated at will by appropriate choice of the de-
sign parameters a; and . This state estimator design
guarantees convergence of the error in a way that for
larger values of the parameter , the error decreases
faster (i.e., given any e,, > 0, one can nd a Ty
such that ||e(t)]] em YVt Ty). However, for
larger values of , the error could possibly increase to
large values before eventually decaying. The design,
therefore, includes the possibility of peaking of state
estimates, where the observer generates incorrect esti-
mates for short times. This, however, does not pose a
problem in our design because the physical constraints
on the manipulated input prevent transmission of the
incorrect estimates to the plant.

2.2 Model predictive control

For the sake of illustration, we consider here the
following nominally-stabilizing nite-horizon MPC
formulation with terminal equality constraints:

t+T

Js(z,t,u( ) = /(ff'(S)Qx(S)+U'(8)RU(S))d8
u() = atrgmin{,]s(x,t,u( Nu() e St 3)
s.t. &(t) = Az(t) + Bu(t), x(0) =z
u() €S, zt+T)=0

where S = S(¢,T) is the family of piecewise contin-
uous functions, with period , mapping [t, ¢+ T into

the set of admissible controls, where 7T is the horizon
length. A control u( ) in S is characterized by the
sequence {u[k]} where u[k] := u(k ). A control u( )
in S satisfies u(t) = u[k] forallt € [k ,(k+1) ).
Js is the performance index and R and () are strictly
positive de nite, symmetric matrices. Feasibility of
the formulation in Eq.3 can be ensured by relaxing
the terminal equality constraint; however, closed loop
stability then cannot be guaranteed.

One of the issues that arise in the implementation of
MPC formulations of the form of Eq.3 is the dif -
culty in obtaining an explicit characterization of the
stability region, which depends on a complex interplay
between several factors, including the constraints, the
initial condition, and the horizon length. Faced with
these dif culties, the current industrial implementa-
tion of MPC relies heavily on extensive simulations
to test the stability of MPC controllers.

2.3 Bounded Lyapunov-based control

Consider the Lyapunov function candidate V' = 2’ Pz,
where P is a positive-de nite symmetric matrix that
satis es the Riccati equation

A'P+PA PBB'P= Q 4)

for some positive-de nite matrix ). Using this Lya-
punov function, we can construct, using amodi cation
of Sontag’s formula for bounded controls proposed
in (Lin and Sontag, 1991) (see also (El-Farra and
Christo des, 2003)), the following bounded nonlinear
controller

w(z) = 2k(z)B'Pz := b(2) 5)
where k(x) =

2
LV LV VY

I(LgV)'I? 1+ \/1 + (umas | (L V)'[)*

with L,V = ' (A'P + PA)x + a'Pzx, (LyV) =
2B’ Pz, > 0. One can show that whenever the
closed-loop state trajectory evolves within the state
space region described by the set:

(Umaz) = {2 €R" : LV Upmazl|l(LgV)']|}(6)
the resulting control action respects the constraints
(i.e., ||ul|  mae) and asymptotically stabilizes the
origin of the closed-loop system. Note that the size of
the set  depends on the magnitude of the constraints
in a way such that the tighter the constraints, the
smaller the region described by this set. Using this set,
an estimate of the stability region of the controller of
Eqgs.5 6 can be obtained by considering an invariant
subset of , preferably the largest, which we denote
by  (Umaz). A common way of doing this is using
the level sets of V.

Using Lyapunov arguments, one can derive bounds
on the estimation errors (e,,), with respect to which



the state feedback bounded controller ensures that the
closed loop state trajectory does not escape the state
feedback stability region (see Figure 3). By initializing
the states and the state estimates suf ciently inside

(Umaz) and choosing a consistent observer gain ma-
trix L, one can ensure that the norm of the estimation
error decays to a value less than the tolerable measure-
ment error before the states have a chance to reach the
boundary of the state feedback stability region. For a
given choice of (Umaz), therefore, one can
choose a value for the observer gain parameter that
guarantees stability for all initial conditions within
under output feedback control.

3. IMPLEMENTING OUTPUT FEEDBACK MPC
WITH GUARANTEED STABILITY REGION

While the bounded controller possesses a well-de ned
region of initial conditions that guarantee closed-loop
stability in the presence of constraints, the perfor-
mance of this controller is not guaranteed to be opti-
mal with respect to an arbitrary performance criterion.
On the other hand, the MPC controller is well-suited
for handling constraints within an optimal control set-
ting; however, the analytical characterization of its set
of initial conditions, for which closed loop stability is
guaranteed, is a more dif cult task than it is through
bounded control. The lack of state measurements in-
troduces another level of complexity in implementing
the controllers designed with the assumption of state
feedback. In this section, we show how to reconcile
the two control approaches by means of a switching
scheme that combines the desirable properties of both
approaches.

3.1 Problem formulation and overview of solution

Consider the linear time-invariant system of Eq.1, sub-
ject to input constraints ||u|  Umae, and for which
the observer of Eq.2, the bounded controller of Egs.5-
6 and the MPC controller of Eq.3 have been designed.
We formulate the control problem as that of designing
a set of switching laws that orchestrate the transition
between the MPC controller and the bounded con-
troller under output feedback in a way that guaran-
tees asymptotic stability of the origin of the closed-
loop system starting from any initial condition in an
explicitly characterized set (Urmaq ), TESPECLS
input constraints, and accommodates the optimality
requirements whenever possible. In the remainder of
this section, we present a switching scheme that ad-
dresses the problem.

3.2 Controller switching scheme

The four main components of the hybrid control struc-
ture include the observer, the bounded controller, the
MPC controller, and a higher-level supervisor that or-
chestrates the switching between the two controllers.
A schematic representation of this structure is shown
in Figure 2. The design procedure for the hybrid con-
trol structure and the implementation of the controller
switching scheme is as follows:

Switching logic
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controller

i \
I S
T T
"Optimality"
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Fig. 2. A schematic representation of the hierarchical
hybrid control structure merging the bounded and
MPC controllers under output feedback

(1) Given the system of Eq.1 and the performance
objective, design the bounded controller and the
MPC controller.

(2) Compute the stability region estimate for the
bounded controller under state feedback, (wmaz)s
using Eq.6 and, for the state observer design,
choose a  consistent with the choice of the out-
put feedback stability region .

(3) Compute the region » and Ty such that
if the norm of the error is less than a given
tolerance, then & € = x €  for all times
greater than T;.

(4) Initialize the closed loop system at an initial
condition, z(0) within ,, under the bounded
controller using an initial guess for the state &(0)
within .

(5) Afteratime Ty, once & € g, test the feasibility
of the MPC controller using values of the esti-
mates generated by the state observer.

(6) If the MPC controller is feasible, implement it
foraslong as & €  and V(&) keeps decaying,

else switch to the bounded controller.

Switching surface
Qs

--- State estimates trajectory
—— State trajectory

Fig. 3. A schematic representation of the implementa-
tion of the proposed controller switching scheme.

Remark 1: Figure 3 shows a representative sketch of
the closed loop system under the controller switch-



ing scheme. The states are initialized at xy while the
state estimates are initialized at &(. The state estimator
design ensures that the norm of the error is under
the allowable error before (and if) the state trajectory
reaches the boundary of the state feedback stability
region, (Upmaz). After a time Ty (by which time,
the state estimator design ensures that the estimation
error has gone down to a small value), the supervisor
implements MPC in closed loop only if it is feasible
and the state estimates are in 4, while monitoring
the evolution of the Lyapunov function value. If the
switching rules are satis ed, MPC is implemented in
closed loop for the remaining time, else the supervi-
sor switches back to the bounded controller to stabilize
the closed loop system.

Remark 2: For a given choice of the output feedback
stability region, an estimate of the necessary observer
gain can be obtained; however, this estimate is typi-
cally conservative. In practice, having chosen ¢, one
can choose a ‘suf ciently’ large gain based on simula-
tions or experience. The stability region under output

feedback  can be made as close to the one under
state feedback, as desired by increasing the gain
parameter

4. ANUMERICAL EXAMPLE

In this section, we demonstrate an application of the
proposed hybrid control structure to a three dimen-
sional linear system where only two of the states are
measured. Speci cally, we consider an exponentially
unstable linear system of the form of Eq.1 with A =
0.55 0.15 0.05 10 100
0.150.40 020 |,B=|01|andC = 001 °
0.10 0.15 0.45 11
where both inputs u1, us are constrained in the interval
[ 1,1]. We initially used Egs.5 to design a bounded
controller and construct its stability region via Eq.6.
The matrix P was chosen as:

6.5843 4.2398 3.830
P = | 42398 3.6091 2.667 @)
3.830 2.667 2.8033

and the observer gain parameter was chosen to be
= 500 to ensure closed loop stability for all initial
conditions within . For the MPC controller,
the parameters in the objective function of Eq.3 were
chosen as Q = ¢l, with ¢ = 1 and R = rl,
with » = 0.1. We also chose a horizon length of
T = 1.5 in implementing the MPC controller of Eq.3.
The resulting quadratic program was solved using the
MATLAB subroutine QuadProg, and the set of ODEs
integrated using the MATLAB solver ODE45.

In the rst simulation run (solid lines in Figs.4 5),
the states were initialized at g = [0.75 0.5 1.0}’
while the observer states were initialized at g =
[0 0 0] (which belong to the stability region of
the bounded controller, ). The supervisor employs
the bounded controller, while continuously checking

MPC feasibility. At ¢ = 5.45, the MPC becomes
feasible and is implemented in the closed-loop to
stabilize the system. Note that feasibility of MPC
can be achieved by increasing the horizon length to
T = 3.5 (dashed lines in Figs.4 5). However, this
conclusion could not be reached a priori, i.e. before
running the closed-loop simulation in its entirety to
check whether the choice T' = 3.5 is appropriate. In
contrast, closed loop stability starting from the given
initial condition under the proposed hybrid control
structure is guaranteed.

In the second set of simulation results, we demonstrate
the need for a choice of observer gain consistent with
the choice of 4. To this end, we consider now an
observer design with a low gain (= 0.5). With
the low observer gain, the estimates take a long time
to converge to the true state values, resulting in the
implementation of ‘incorrect’ control action, by which
time, even though the states and state estimates are
initiated within ;, the states have escaped  (Umaz)s
thereby resulting in closed loop instability (dotted
lines in Figs.4 5).

10 . 20 25
Time

Fig. 4. Closed-loop state trajectory with 7' = 1.5
(solid line), T' = 3.5 (dashed line), with the low
observer gain (dotted line) and using observer
switching (dash-dotted lines).

To recover, as closely as possible, the state feedback
stability region, large values of the observer gain are
needed. However, it is well known that high observer
gains can amplify measurement noise and induce poor
performance. This points to a fundamental tradeoff
that cannot be resolved by simply changing the es-
timation scheme. For example, if the observer gain
consistent with the choice of the output feedback sta-
bility region is abandoned, the noise problem may
disappear, but then stability cannot be guaranteed. One
approach to avoid this scenario in practice is to ini-
tially use an observer gain to ensure quick decay of the
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Fig. 5. Manipulated input trajectory with 7' = 1.5
(solid line), T' = 3.5 (dashed line), with the low
observer gain (dotted line) and using observer
switching (dash-dotted lines).
initial estimation error, and then to switch to a low"
observer gain. In the following simulation, we show
how switching between an observer with a high gain
and a low gain in conjunction with switching between
controllers can be used to mitigate the undesirable ef-
fects of measurement noise. To illustrate the point, we
use switching between the high and low observer gains
used in the rst two simulation runs and demonstrate
the attenuation of noise.

Speci cally, we consider the nominal system de-
scribed by Eq.1, together with model uncertainty and
measurement noise. The model matrix A,,, is assumed
to be within ve percent error of the process matrix
A and the sensors are assumed to introduce noise in
the measured outputs as y(¢t) = Cz(t) + () where

(t) is a random gaussian noise with zero mean and a
variance of 0.01. As seen by the dash-dotted lines in
Fig.4, starting from the initial condition, xg = [0.75
0.5 1.0), using a high observer gain followed by a
switch to the low gain observer at ¢ = 1.0, and a
switch from bounded control to MPC at ¢ = 3.5,
the supervisor is still able to preserve closed loop
stability, while at the same time resulting in a smooth
enough control action (see Fig.5).
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Abstract. The max-plus-linear (MPL) system is a state-space description for a cer-
tain class of discrete-event-systems, and it has remarkable analogous features to the
conventional linear state-space description in the modern control theory. Hence, sev-
eral control techniques in the modern control theory have been extended so that they
could be applied to MPL systems. In the research context, the internal model control
(IMC) for MPL systems has been proposed by Boimond et al. and it succeeds to real-
ize feedback control techniques for discrete-event-systems described in MPL systems.
In this paper, the IMC control for MPL systems is extended to the case where the
controlled systems are given as MPL systems with linear parameter varying structure,
which is called LPV-MPL systems. In the LPV-MPL systems, the systems parame-
ters are explicitly represented in the systems description. Hence, the obtained IMC
control law can utilize the additive information on the parameters variations effec-
tively when the parameters are measured on-line, or the variation of the parameters
are scheduled beforehand. The effectiveness of the proposed IMC is shown through a
numerical example where it is applied to a two-inputs, two-outpus production system

with four machines.

Keywords. max-plus-linear systems, linear parameter varying, internal model

control, discrete-event-systems

1. INTRODUCTION

The researches on modeling and control of discrete-
event-systems using max-plus algebra have been
reported recently(Cohen et al., 1989; Baccelli
et al., 1992). The basic operations of max-plus
algebra are maximization and addition, which
have a remarkable analogy with ones of conven-
tional algebra. Especially, state-space descriptions
in the max-plus algebra for a certain class of
discrete-event-systems become linear representa-
tions which are similar to state-space equations
in the traditional modern control theory (van den
Boom and Schutter, 2001a). Hence, the several re-
searches on control design for the max-plus-linear

(MPL) systems have been reported from the view-
point of the analogy (Boimond and Ferrier, 1996;
van den Boom and Schutter, 2001 a; van den Boom
and Schutter, 2001b).

The internal model control (IMC) for MPL sys-
tems has been proposed by (Boimond and Fer-
rier, 1996) in the research context. It succeeds to
realize feedback control techniques for discrete-
event-systems described in MPL systems. In the
IMC control, however, it takes much time to re-
cover from the output delays because the input
signals are modified just after the output errors
are observed. Hence, it would be desirable that the
information on the parameters variation would be



collected beforehand, and it could be utilized ef-
fectively.

On the other hand, the MPL systems with lin-
ear parameter varying structure, which is called
LPV-MPL systems was proposed, and the design
method for inverse systems of LPV-MPL systems
was developed (Masuda et al., 2002). In the LPV-
MPL systems, the systems parameters are explic-
itly represented. Hence, the obtained control law
can utilize the additive information on the param-
eters variations effectively when the parameters
are measured on-line, or the variation of the pa-
rameters are scheduled beforehand.

Therefore, in this paper, the IMC control is ex-
tended so that it can be applied to the LPV-
MPL systems. In the proposed control law, the
information on the parameters variations in addi-
tion to the feedback signals are effectively utilized
for recovery from the output delays due to large
parameters variation. Furthermore, owing to the
IMC control law, the proposed method has ro-
bust property even when the the information on
the parameters variations has some errors.

The effectiveness of the proposed IMC is shown
through a numerical example where it is applied to
a two-inputs, two-outpus production system with
four machines.

2. MATHEMATICAL PRELIMINARIES

The basic operations of max-plus algebra are ad-
dition denoted by @ and mulitiplication denoted
by ®, which are defined as follows.

z®y=max(x,y), rRQY=1x+y,
where R. = RU{—o0}, and R stands for the real
field. Let € be defined as —oo, which is the unit
element of the addition &, and let e be defined as
0, which is the unit element of the multiplication
®. We also define the following operations.

rAy=min(z,y), 2\y=-r+y (1)

The above operations are extended to the matrices
calculation whose elements belong to R.. So, if

A,Be R™", C € R, then

[A® B]ij = [A]ij ® [B]ij = max ([A]ij7 [B]ij) (2)
[AA B]ij = [A]ij A [B]ij = min ([A]ij7 [B]ij) (3)

1<i<n, 1<j<m

n

[A® C]ij = @ ([A]zk ® [C]kj)

k=1
= max ([l + [Clyy) ()

where [ - |, stands for the element in the i-th row,
j-th column of the matrix, and

T,y € Re

n
@ ar, = max(ay, ag, -+, an)
k=1

.Ifde R., A€ RI"", then
[d ® A]ij =d® [A]ij (5)

Furthermore, we define the operator ® in the fol-
lowing way.

[AoC), = /n\ ([A]ik\[c]kj)

= mmin
k=1,--n
where
/\ ar = min(a1, az, - -, an)

k=1
. In the subsequent discussions, a < b implies
[a; <[b]; 1<i<nfora, be R_.

3. THE LPV-MPL SYSTEM

Consider the following MPL systems.

x(k+1) = Az(k) ® Bu(k + 1) (7)
y(k) =Cz(k) (8)

where A € R}*", B € R*P, C € RY"™. And
x(k) € R?, u(k+1) € R.P, y(k) € RI are
state variables, control inputs and controlled out-
puts respectively. These variables represent time
instants at which the representing events occur at
k-times. According to the custom, the operation
of multiplication denoted by ® is omitted.

In LPV-MPL systems(Masuda et al., 2002), the
system matrices A, B and C in (7) and (8) are
replaced by the parameter affine form A(d), B(d)
and C(d), which are defined as

l
A(d)=dpAg P di1AL & --- B djA; = @ d; A;
i=0
l
B(d)=dyBy® d1B1®---®dB; = @ d;B;
i=0

l
C(d) = dOCO S dlcl DD dlCl = @dlcl
=0

where A;, B; and C;,i = 1,---] are matrices
whose elements are either € or e and the size are
the same as A, B and C, respectively, and d is the
parameter vector whose elements are dg, d1, - - -, d;
as is defined in the next.

d:[dO; dl; d?a adl]v
dy=e, di>0,1=1,---1



Hence, the LPV-MPL system can be described as

a(k+1)= A(d)z(k) ® B(d)yu(k+1) (9)
y(k)=C(d)z(k) (10)

In general, the elements of the matrices A, B and
C in the system representation consists of e and ¢
and real numbers. The elements of e and € depend
on the system structure such as the connection
among the machines in the case where the pro-
duction systems are modelled based on the MPL
system. While parameters e and € are expected to
be unchanged even as time goes by, it should be
considered that the real parameters might be the
varying ones.

4. THE INTERNAL MODEL CONTROL
(IMC)

The internal model control (IMC), which is a pop-
ular control technique in the field of chemical in-
dustries. The block diagram is given in Figure 1..

v controller process
+ TIm u y
—% 1 C P
model
ymy +

il

Fig. 1. The Block Diagram of IMC

In Figure 1., P stands for the real process, and
Py stands for the process model. y and yj; are the
controlled process outputs and the model outputs,
respectively. u and r are control input and refer-
ence signals, respectively. rjs is modified reference
signals, which satisfy the following equation

rv =1~ (Y —Ym) (11)

Hence, if the control input is designed so that the
model outputs yys should be equal to the mod-
ified reference signals 7,7, the controlled process
outputs follow the given reference signals. There-
fore, by using the inverse systems of the model
Py for the controller C' in the IMC, we can get
robust tracking of the process outputs to the ref-
erence signals even in the presence of model-plant
mismatch.

Addition to the IMC control, this paper consid-
ers utilizing additive information on the param-
eter variation of the controlled process, depected
in Figure 2.

In Figure 1., 6 stands for the parameters of pro-
cess model. In the conventional IMC control, it

control],e,/; process
r + Ir'm u y
model N
M
Pul—=
| 6

Fig. 2. The Block Diagram of the Proposed IMC

takes much time to recover from the output de-
lays because the input signals are modified just
after the output errors are observed. On the other
hand, in the proposed IMC, it can be expected
that we can get better performance because the
information on the parameters variation would be
utilized effectively.

However, the conventional controller requires re-
calculation of the inverse system of the MPL sys-
tem according as the parameters changes because
the relation between controller’s parameters and
the MPL system’s parameters is not represented
explicitly. Therefore, this paper utilizes the in-
verse system of LPV-MPL systems (Masuda et
al., 2002). Since the system’s parameters are ex-
plicitly represented in the LPV-MPL systems, the
additive information on the parameters variations
can be utilized effectively when the parameters are
measured on-line, or the variation of the parame-
ters are scheduled beforehand.

5. THE INVERSE SYSTEM FOR LPV-MPL

As is shown in 4., the controller of IMC systems
is designed for the model, so we will give the
model equation of LPV-MPL system besides the
real process model (9) and (10).

xM(k + 1) = AM(dM)ZCM(k’) D BM(dM)u(k; + 1)

Yy (k) =Cr(dpr)xa (k) (13)

This section gives the inverse system for the
model equation of LPV-MPL system (Masuda et
al., 2002) in (12) and (13).

The first, let the predition equation be derived for
the preparation of the inverse system. By using (9)
and (10), we can get

yMl(k + 01 + 1)

qu(k‘ —|— 5q + 1)
=Ty (dp)err (k) ® Ap(dar)u(k+ 1) (14)

where



[ chy(dar) Anr(dar)

Cu(da) = | , (15)
el (dar) A (dar)’e ™

[ el (d)Ans(dar)’ Bas(day)
Apy(dy)=|: (16)
| ¢y (dar) An(dar)’ Bar(da)
ch/(dy), h = 1---q is the h-th row vector of
C v (dyy). 6 are called the characteristic numbers
(Boimond and Ferrier, 1996), which imply that

dp-th outputs are firstly influenced after the k-th
input, and they are defined as:

e=cl(dy)Bu(dar) = iy (dar) Anr (dar) Bas(dar)
= =ch/(dar)An(da)® "' Bar(dar) (17)
h=1,---q(18)

e # chy(da)An(dar)™ Bar(dar),

€ is the vector whose elements are €. When the
desired reference signals are defined as

r(k) = [ri(k+ 01 + 1), rq(k + 6, + 1]7T,

it is considered that the control law for the inverse
system should be satisfied with the following equa-
tion replaced the predicted output vector in (14)
with the desired reference signals.

T‘(k‘) = I‘M(dM):I:M(k‘) (&) AM(dM)u(k + 1) (19)

(19) is considered to be a linear matrix equa-
tion in max-plus algebra. Hence, let the equation
be solved based on the linear equation theory in
dioid(Cohen et al., 1989). According to the theory,
after (19) is transformed into

Apr(dar)u(k + 1) = 7(k) ® Tar(dar)zar (k) (20)

the greatest subsolution of (20) is calculated. In
(Masuda et al., 2002), the following control law is
introuduced for the inverse systems of LPV-MPL
systems.

~

u(k + 1) :/\{A Ni(da)

1=1

©)
-

M;(dm)T )mM(/f)> }521)

Here,
I
Ty (dar) = @D (Mi(da)T) (22)
i=1
I
An(dy) =@ (Ni(du)Ay) (23)
i=1
where I = (l—|— 1)54.2, 5= maxy, 6p, I'; and A0 =

1,-- -1 are matrices whose elements are all € and

e. The size of T'; and A;,i = 1,---1 are the same
as I' and A, respectively. M;(d) and N;(d) are
diagonal matrices.

Therefore, the control law for the proposed IMC
can be obtained as

I
u(k+1)= \ {AiTNi(dM)

Mi(dM)Fi)mM(k)>

(24)
rau (k) =r(k) = (y(k) —yar (k) (25)
where 7/ (k) is the modified reference signals.

The main feature of the control law (24) is that
it explicitly includes the parameters of controlled
MPL systems as free parameters. Hence, when the
parameters are measured on-line, or the variation
of the parameters are scheduled beforehand, the
proposed control law can utilize the additive infor-
mation on the parameters variations effectively.

6. A SIMULATION EXAMPLE

Parts Flow ___y
u_ X1 Xo X3 Yoo
machinel machine2 ﬁ
[ H
'
Xy X5 X6 L Ve

(1 []
u2 machine3 machine4

Fig. 3. Two-Inputs and Two-Outputs Production
System

Consider a two-inputs, two-outpus production
system with four machines depicted in Figure 3..
The inputs u;(k + 1), = 1,2 are defined as
time instants at which the k + 1-th manufac-
tured parts are fed into the input stock in the
line ¢. The outputs y;(k),i = 1,2 are time in-
stants at which k-th finished products leaves
the output stock in the line i. The state vari-
ables x1(k), x3(k), z4(k), xz6(k) are time instants
at which k-th processing unit starts working in the
machine 1, 2, 3 and 4, respectively. The state vari-
ables zo(k) and x5(k) are time instants at which
k-th processing unit finished working in the ma-
chine 1 and 3, respectively. d;,i =1, ---,4 are the
working time in the machine 1, 2, 3 and 4, respec-
tively.

The working times for each machine are d; = 0.7,
do = 0.4, d3 = 0.3, dy = 0.6 for the first 15 parts,
but the working times are changed into d; = 1.0,



dy = 0.9, d3 = 1.2, dy = 1.2 after 16-th parts. It
is assumed that the information on the parame-
ter variations are given beforehand. Namely, the
model parameter dy; = d;, ¢ = 1,---,4. How-
ever, after 16-th parts, the information on d3 has
error, so the model parameter dj;3 is assumed to
be set to dyr3 = 0.8.

The reference signal is given as follows

ri(i+1)=r1(i) + 1.6, r2(i+1) =r2(i) + 1.4
0<:<9
ri(i+1)=r1(i) + 1.5, r2(i+1) =72(i) + 1.5
10 <7 <30
Then, the proposed control law is applied to the

production system. The following control law can
be derived as is designed in section 4.

u(k+1)= /\ {A?Ni(dM)

=1
(26)
rav (k) =r(k) — (y(k) —yup (k) (27
where
| dur +due €
Ni(da) = [ € dars + dM4] ’
| dy2+dus €
Na(dw) = [ € darg +darg |’
[ dary + darg €
M (dar) = | € dary + durg
[ 2d
Moo(dy) = 512 i]
[ dumg + dus €
Ma(du) = | € duvz + dag
(e ¢
M4(d]\/[): e 2d]\/[4:|

ee €e
ai- 2] &= 2

gecegceeg geecegcee
Fl: ,I‘Q:
gecegeceeg gegeeegceeg

cececec ccecece
I's = , Ty =
cececec ceccece

The simulation results are shown in Figure 4..

In Figure 4., the output errors, which imply
e(k) = y(k) — r(k) with using both IMC control
law and the information on the parameter varia-
tion are shown.
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Fig. 4. Plots of the 1st output error (o) and the
2nd output error (x) with using both IMC
control law and the information on the pa-
rameter variations (above) and the plots of
the control input (below)

For the comparison, the output errors with only
using the information on the parameter variation
are shown in .
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Fig. 5. Plots of the 1st output error (o) and the
2nd output error (x) with only using IMC
control law (without using the information
on the parameter variations) (above) and the
plots of the control input (below)

From Figure 4., in the case with using both IMC
control law and the information on the parame-
ter variation, the output delays, which mean the
output errors are positive value, does not occur ex-
cept during 3 samples after 16-th sample at which
the working time is changed. From Figure 5. and
Figure 6., however, the output delays occur after
the 16-th sample due to the change of the working
time when either IMC control law or the informa-
tion on the parameter variation is not utilized.

Therefore, it follows from the simulation result
that the utilization of both IMC control law and
the information on the parameter variations im-
proves the performance of the control system.
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Fig. 6. Plots of the 1st output error (o) and the
2nd output error (x) with only using the in-
formation on the parameter variations (with-
out using both IMC control law) (above) and
the plots of the control input (below)

Therefore, we can see that the proposed control
law shows better performance than the conven-
tional IMC control law and the inverse systems
for LPV-MPL systems with using the information
on the parameter variations.

7. CONCLUDING REMARKS

This paper proposed the IMC control for MPL
systems in the case where the controlled systems
are given as MPL systems with linear parame-
ter varying structure, which is called LPV-MPL
systems. In the LPV-MPL systems, the systems
parameters are explicitly represented in the sys-
tems description. Hence, the obtained IMC con-
trol law can utilize the additive information on the
parameters variations effectively when the param-
eters are measured on-line, or the variation of the
parameters are scheduled beforehand.

Furthermore, owing to the IMC control law, the
proposed method has robust property even when
the the information on the parameters variations
has some errors.

The effectiveness of the proposed IMC is shown
through a numerical example where it is applied to
a two-inputs, two-outpus production system with
four machines.
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