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Abstract: This work proposes a methodology for the design of fault-tolerant control systems
for nonlinear processes with actuator constraints. The proposed approach is predicated
upon the idea of integrating supervisory and feedback control over networks. Initially, a
family of candidate control configurations, characterized by different manipulated inputs,
are identified. For each control configuration, a bounded nonlinear feedback controller, that
enforces asymptotic closed-loop stability in the presence of constraints, is designed, and the
constrained stability region associated with it is explicitly characterized. A switching policy
is then derived, on the basis of the stability regions, to orchestrate the activation/deactivation
of the constituent control configurations in a way that guarantees closed-loop stability in
the event of control system failures. The switching laws are implemented by a higher-
level supervisor that constantly monitors the process and communicates with the various
control configurations over a network. The effects of delays in fault-detection, network
communication and actuator activation are taken explicitly into account in executing the
switching logic. The efficacy and implementation of the proposed approach are demonstrated
through a chemical process example.
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1. INTRODUCTION

One of the central problems in the design of any
practical process control system is the issue of fault-
tolerance. Present-day process control systems are
highly automated and therefore vulnerable to faults
such as defects in control actuators, defects in mea-
surement sensors, failures in the controllers or in
the control loops. Such failures can cause a host of
undesired reactions and consequences, if not appro-
priately accounted for in the control system design.
Examples include degradation of the control system
performance, instability, damage to technical parts of
the plant, jeopardizing personnel and environmental
safety, increasing downtime for process operation, in-
creasing raw material waste, and resulting in signif-
icant production losses. As efficient and profitable
process operation becomes more dependent on au-

tomated control systems, there is a greater need to
design and implement advanced fault-tolerant control
systems that can minimize the crippling effects of con-
trol system failures on process operation.

These considerations have consequently motivated
many research studies on the problem of fault-tolerant
control, particularly for linear and/or unconstrained
processes (e.g., see (Willsky, 1998; Yang et al., 1998;
Bao et al., 2002)). Many chemical processes, how-
ever, are inherently nonlinear and subject to hard con-
straints on the control actuators. In addition, the ability
of the process control system to deal with failure situ-
ations requires, inter alia, inherent structural flexibil-
ity that allows the control system to safely transition
from the failed control configuration to an alternative,
well-functioning configuration. To this end, classical
process control schemes, whereby a fixed controller



structure is used to achieve the desired control ob-
jectives, are in general not adequate for dealing with
the problem because they are not properly equipped
to cope with the discrete structural changes that these
failures induce in the closed-loop system.

The necessary flexibility of the control system in
dealing with failure situations requires consideration
of hybrid control instead. Hybrid control refers to
control structures that integrate lower-level continu-
ous controllers together with higher-level logic-based
supervisors that orchestrate switching between the
constituent controllers. These structures have pro-
vided a natural setting for addressing a wide range
of problems that cannot be addressed using classi-
cal control approaches, including fault-tolerant con-
trol of distributed systems (e.g., see (El-Farra and
Christofides, 2003b)) and control of hybrid processes
whose intrinsic dynamics exhibit switchings between
multiple modes of operation (e.g., see (Bemporad and
Morari, 1999; El-Farra and Christofides, 2002; El-
Farra and Christofides, 2003a)).

In this work, we propose a methodology for the de-
sign of fault-tolerant process control systems for non-
linear processes with actuator constraints. The basic
idea is that of integrating feedback control and logic-
based switching between multiple constrained con-
trol configurations, each characterized by a different
manipulated input and a different region of closed-
loop stability. The switching policy, which is based
on the stability regions, is implemented by a higher-
level supervisor, that receives and transmits informa-
tion to the feedback system over a network and ac-
tivates/deactivates the appropriate control configura-
tion accordingly in a way that ensures actuator fault-
tolerance. The effects of delays in fault-detection, de-
lays in network communication between the supervi-
sor and the control loops, and delays in actuator activa-
tion are handled explicitly in designing the switching
logic. Finally, the efficacy and implementation of the
proposed approach are demonstrated through a chem-
ical process example.

2. PRELIMINARIES

2.1 System description - problem formulation

We consider the class of continuous-time, single-input
nonlinear processes with constraints on the manipu-
lated input, represented by the following state-space
description:

ẋ(t) = fk(t)(x(t))+gk(t)(x(t))uk(t)

|uk(t)| ≤ uk
max

k(t) ∈ K = {1, · · · ,N}, N < ∞
(1)

where x(t) ∈ IRn denotes the vector of process state
variables and uk(t) ∈ [−uk

max,u
k
max] ⊂ IR denotes the

constrained manipulated input associated with the k-
th control configuration. k(t), which takes values in
the finite index set K , represents a discrete state that

indexes the vector fields fk(·), gk(·) as well as the
manipulated input uk(·). For each value that k assumes
in K , the process is controlled via a different ma-
nipulated input which defines a given control config-
uration. Switching between the available N control
configurations is controlled by a higher-level super-
visor that monitors the process and orchestrates, ac-
cordingly, the transition between the different control
configurations in the event of control system failure.
This in turn determines the temporal evolution of the
discrete state, k(t). The supervisor ensures that only
one control configuration is active at any given time,
and allows only a finite number of switches over any
finite interval of time.

It is assumed that the origin is the equilibrium point of
the nominal process (i.e. fk(0) = 0) and that the vector
functions fk(·) and gk(·) are sufficiently smooth, for
all k, on IRn. The control objective is to stabilize the
process of Eq.1 in the presence of actuator constraints
and faults in the control system. The basic problem
is how to coordinate switching between the different
control configurations (or manipulated inputs) in a
way that respects actuator constraints and guarantees
closed-loop stability in the event of faults. To simplify
the presentation of our results, we will focus only on
the state feedback problem where measurements of all
process states are available for all times.
2.2 Motivating example

To motivate our fault-tolerant control system design
methodology (presented in section 3), we introduce
in this section a benchmark chemical reactor example
that will be used throughout the paper to illustrate
the design and implementation of the fault-tolerant
control system. To this end, consider a well-mixed,
non-isothermal continuous stirred tank reactor where
three parallel irreversible elementary exothermic re-

actions of the form A
k1→ B, A

k2→ U and A
k3→ R take

place, where A is the reactant species, B is the desired
product and U, R are undesired byproducts. The feed
to the reactor consists of pure A at flow rate F , molar
concentration CA0 and temperature TA0. Due to the
non-isothermal nature of the reactions, a jacket is used
to remove/provide heat to the reactor. Under standard
modeling assumptions, a mathematical model of the
process can be derived from material and energy bal-
ances and takes the following form:

dT
dt

=
F
V

(TA0−T )+
3

∑
i=1

Ri(CA,T )+
Q

ρcpV

dCA

dt
=

F
V

(CA0−CA)−
3

∑
i=1

ki0e
−Ei

RT CA

dCB

dt
= −

F
V

CB + k10e
−E1

RT CA

(2)

where Ri(CA,T ) = (−∆Hi)
ρcp

ki0e
−Ei
RT CA, CA and CB denote

the concentrations of the species A and B, T denotes
the temperature of the reactor, Q denotes rate of heat



input/removal from the reactor, V denotes the volume
of the reactor, ∆Hi, ki, Ei, i = 1,2,3, denote the en-
thalpies, pre-exponential constants and activation en-
ergies of the three reactions, respectively, cp and ρ
denote the heat capacity and density of the reactor. The
values of the process parameters and the correspond-
ing steady-state values can be found in (El-Farra and
Christofides, 2001). It was verified that under these
conditions, the process of Eq.2 has three steady-states
(two locally asymptotically stable and one unstable at
(Ts,CAs,CBs) = (388 K,3.59 mol/L,0.41 mol/L)).

The control objective considered here is the typical
one of stabilizing the reactor at the (open-loop) un-
stable steady-state. Operation at this point is typically
sought to avoid high temperatures, while simultane-
ously achieving reasonable conversion. To accomplish
this objective in the presence of control system fail-
ures, we consider the following manipulated input
candidates (see Fig.1):

(1) Rate of heat input, u1 = Q, subject to the con-
straints |Q| ≤ u1

max = 748 KJ/s.
(2) Inlet stream temperature, u2 = TA0−TA0s, subject

to the constraints |u2| ≤ u2
max = 100 K.

(3) Inlet reactant concentration, u3 = CA0 −CA0s,
subject to the constraints |u3| ≤ u3

max = 4 mol/L.

Each of the above manipulated inputs represents a
unique control configuration (or control-loop) that, by
itself, can stabilize the reactor. The first loop involving
the heat input, Q, will be considered as the primary
configuration. In the event of some failure in this con-
figuration, however, the plant supervisor, will have to
activate one of the other two backup configurations
in order to maintain closed-loop stability. The main
question, which we address in the next section, is how
can the supervisor determine which control loop to
activate once failure is detected in the active config-
uration.

3. INTEGRATING SUPERVISORY AND
FEEDBACK CONTROL OVER NETWORKS

3.1 Fault-tolerant design methodology

Having identified the candidate control configurations
that can be used, we outline in this section the main
steps involved in the fault-tolerant control system de-
sign procedure. These include: 1) the synthesis of a
stabilizing feedback controller for each control con-
figuration, 2) the explicit characterization of the con-
strained stability region associated with each config-
uration, and 3) the design of a switching law that
orchestrates the re-configuration of control system in a
way that guarantees closed-loop stability in the event
of failures in the active control configuration. Below
is a brief description of each step as applied to the
chemical reactor example introduced in section 2.2.

(a) Constrained feedback controller synthesis:

In this step, we synthesize, for each control config-
uration, a feedback controller that enforces asymp-
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Fig. 1. Switching between multiple control configura-
tions, each characterized by a different manipu-
lated input

totic closed-loop stability in the presence of actuator
constraints. This task is carried out on the basis of
the process input/output dynamics. While our control
objective is to achieve full state stabilization (and not
output tracking), process outputs are introduced only
to facilitate transforming the system of Eq.2 into a
form more suitable for explicit controller synthesis.
In the case of Eq.2, a further simplification can be
obtained by noting that CB does not affect the evo-
lution of either T or CA, and therefore the controller
design can be addressed on the basis of the T and CA
equations only. A controller that stabilizes the (T,CA)
system will automatically stabilize the full system.

1. For the first configuration with u1 = Q, we consider
the output y1 = CA−CAs. This choice yields a relative
degree of r1 = 2 for the output with respect to the
manipulated input. The coordinate transformation (in
error variables form) takes the form: e1 = CA−CAs,
e2 = F

V (CA0−CA)−∑3
i=1ki0e

−Ei
RT CA.

2. For the second configuration with u2 = TA0−TA0s,
we choose the output y2 = CA −CAs which yields
the same relative degree as in the first configuration,
r2 = 2, and the same coordinate transformation.

3. For the third configuration with u3 =CA0−CA0s, we
choose the output y3 = T −Ts which yields a relative
degree of r3 = 2 and a coordinate transformation of
the form: e1 = T − Ts, e2 = F

V (TA0 − T ) + Q
ρcpV +

∑3
i=1Ri(CA,T ).

Note that since our objective is full state stabiliza-
tion, the choice of the output in each case is really
arbitrary. However, to facilitate our controller design
and subsequent stability analysis, we have chosen in
each case an output that produces a system of relative
degree 2. For each configuration, the corresponding
state transformation yields a system, describing the
input/output dynamics, of the following form

ė = Ae+ lk(e)+bαkuk
:= f̄k(e)+ ḡk(e)uk

(3)



where A =

[

0 1
0 0

]

, b =

[

0
1

]

, lk(·) = L2
fk

hk(x), αk(·) =

Lgk L fk hk(x), hk(x) = yk is the output associated with
the k-th configuration, x = [x1 x2]

T with x1 = T −Ts,
x2 =CA−CAs, and the functions fk(·) and gk(·) can be
obtained by re-writing the (T,CA) model equations in
Eq.2 in the form of Eq.1. The explicit forms of these
functions are omitted for brevity. Using a quadratic
Lyapunov function of the form Vk = eT Pke, where Pk
is a positive-definite symmetric matrix that satisfies
the Riccati inequality AT Pk + PkA−PkbbT Pk < 0, we
synthesize, for each control-loop, a bounded nonlinear
feedback control law (see (Lin and Sontag, 1991; El-
Farra and Christofides, 2001)) of the form:

u = −r(x,uk
max)LḡkVk (4)

where r(x,uk
max) =

L∗
f̄k

Vk +

√

(L∗
f̄k

Vk)2 +
(

uk
max|LḡkVk|

)4

(|LḡkVk|)
2
[

1+
√

1+(uk
max|LḡkVk|)2

] (5)

and L∗
f̄k

Vk = L f̄kVk + ρ|e|2, ρ > 0. The scalar func-
tion r(·) in Eqs.4-5 can be considered as a nonlinear
controller gain. This Lyapunov-based gain, which de-
pends on both the size of actuator constraints, uk

max,
and the particular configuration used is shaped in a
way that guarantees constraint satisfaction and asymp-
totic closed-loop stability within a well-characterized
region in the state space. The characterization of this
region is discussed in the next step.

(b) Characterization of constrained stability regions

Given that actuator constraints place fundamental lim-
itations on the initial conditions that can be used for
stabilization, it is important for the control system
designer to explicitly characterize these limitations
by identifying, for each control configuration, the set
of admissible initial conditions starting from where
the constrained closed-loop system is asymptotically
stable. As discussed in step (c) below, this character-
ization is necessary for the design of an appropriate
switching policy that ensures the fault-tolerance of the
control system. The control law designed in step (a)
provides such a characterization. Specifically, using a
Lyapunov argument, one can show that the set

Θ(uk
max) = {x ∈ IRn : L∗

f̄k
Vk ≤ uk

max|LḡkVk|} (6)

describes a region in the state space where the control
action satisfies the constraints and the time-derivative
of the corresponding Lyapunov function is negative-
definite along the trajectories of the closed-loop sys-
tem. Note that the size of this set depends, as expected,
on the magnitude of the constraints. In particular, the
set becomes smaller as the constraints become tighter
(smaller uk

max). For a given control configuration, one
can use the above inequality to estimate the stability
region associated with this configuration. This can be

done by constructing the largest invariant subset of
Θ, which we denote by Ω(uk

max). Confining the ini-
tial conditions within the set Ω(uk

max) ensures that the
closed-loop trajectory stays within the region defined
by Θ(uk

max), and thereby Vk continues to decay mono-
tonically, for all times that the k-th control configura-
tion is active (see (El-Farra and Christofides, 2001) for
further discussion on this issue).

(c) Supervisory switching-logic

Having designed the feedback control laws and char-
acterized the stability region associated with each con-
trol configuration, the third step is to derive the switch-
ing policy that the supervisor needs to employ to acti-
vate/deactivate the appropriate control configurations
in the event of failures. The key idea here is that, be-
cause of the limitations imposed by constraints on the
stability region of each configuration, the supervisor
can only activate the control configuration for which
the closed-loop state is within the stability region at
the time of control system failure. Without loss of gen-
erality, let the initial actuator configuration be k(0) = 1
and let T be the time when this configuration fails,
then the switching rule given by

k(T ) = j i f x(T ) ∈ Ω(u j
max) (7)

for some j ∈ {2,3, · · · ,N} guarantees asymptotic
closed-loop stability. The implementation of the above
switching law requires monitoring the closed-loop
state trajectory with respect to the stability regions
associated with the various actuator configurations.
This idea of tieing the switching logic to the sta-
bility regions was first proposed in (El-Farra and
Christofides, 2002) for the control of switched non-
linear systems.

3.2 Implementation over communication networks

Figure 2 is a schematic representation of the struc-
ture and implementation of the fault-tolerant control
system over a communication network. In this setting,
the multiple control loops or configurations (with their
sets of sensors and actuators) are connected to the
process unit (e.g., the reactor) through a network cable
that transmits information to and from the plant super-
visor which is physically located far from the process
unit (e.g., a computer in a distant control room).

The use of a network introduces additional time-
delays (e.g., see (Zhang et al., 2001)) between the
supervisor and the constituent control configurations
due to the time sharing of the communication medium
as well as the computing time required for the physi-
cal signal coding and communication processing. The
characteristics of these time delays depend on the
network protocols adopted as well as the hardware
chosen. For our purposes here, we will consider an
overall fixed time-delay (which we denote by τmax)
that includes the contribution of several delays, includ-
ing: (1) the time for fault detection and transmission of
the information to the supervisor, (2) the decision time



Fig. 2. Fault-tolerant control structure integrating su-
pervisory and feedback control over network

for the supervisor, (3) the time it takes the supervisor’s
decision to reach and activate the target control con-
figuration, and (4) the inherent time delays associated
with the various actuators and sensors. Failure to take
such delays into account can result in activating the
wrong control configuration and subsequent instabil-
ity. For example, even though failure of a given loop
may take place at t = T , the backup configuration
will not be switched in before t = T + τmax, where
τmax is the overall delay. If the delay is significant,
then the switching rule of Eq.7 should be modified
such that the supervisor activates the configuration for
which x(T + τmax) ∈Ω(u j

max). The implementation of
this rule requires that the supervisor be able to predict
where the trajectory will be at t = T +τmax and choose,
accordingly, the appropriate configuration. This can
be accomplished by running fast simulations, on-line,
using the available process model.

4. SIMULATION RESULTS

In this section, we illustrate, through computer sim-
ulations, the implementation of the proposed fault-
tolerant control methodology to the chemical reactor
example introduced in section 2.2. We have already
described in section 3.1 how the feedback controllers
can be designed and the stability regions characterized
for each of the three control configurations. Figure
3 depicts the stability region, in the (T,CA) space,
for each configuration. The stability region of con-
figuration 1 includes the entire area of the plot. The
stability region of configuration 2 is the entire area
to the left of the solid line, while the stability re-
gion of configuration 3 covers the area to the right
of the dashed vertical line. The desired steady-state is
depicted with an asterisk that lies in the intersection
of the three stability regions. We consider first the
case where no delays are present and the supervisor
can switch immediately between the different control-
loops in the event of failures. To this end, the reactor
is initialized at T (0) = 300 K, CA(0) = 4.0 mol/L,
CB(0) = 0.0 mol/L, using the Q-control configuration,
and the supervisor proceeds to monitor the evolution
of the closed-loop trajectory. Due to space limitations,
we present only the state profiles. As shown by the
solid parts of the closed-loop trajectory in Fig.3 and
the state profiles in Fig.4, the controller proceeds to
drive the closed-loop trajectory towards the desired

Fig. 3. Stability regions for the three control configu-
rations (I, II, III).

steady-state, up until the Q-configuration fails after
2.0 hr of reactor startup. From the solid part of the
trajectory in Fig.3, it is clear that the failure of the
primary control configuration occurs when the closed-
loop trajectory is within the stability region of the
second control configuration, and outside the stability
region of the third control configuration. Therefore, on
the basis of the switching logic of Eq.7, the supervisor
immediately activates the second configuration (with
TA0 as the manipulated input). The result is shown by
the dashed parts of the closed-loop trajectory in Fig.3
and the state profiles in Fig.4 where it is seen that,
upon switching to the TA0-configuration, the corre-
sponding controller continues to drive the closed-loop
trajectory closer to the desired steady-state. Before
reaching the steady-state, however, we consider the
case when a second failure occurs (this time in the TA0-
configuration) at t = 15.0 hr (which is simulated by
fixing TA0 for all t ≥ 15.0 hr). From the dashed part of
the trajectory in Fig.3, it is clear that the failure of the
second control configuration occurs when the closed-
loop trajectory is within the stability region of the third
configuration. Therefore, the supervisor immediately
activates the third control configuration (with CA0 as
the manipulated input) which finally stabilizes the re-
actor at the desired steady-state (see the dotted parts
of the closed-loop trajectory in Fig.3 and the state
profiles in Fig.4).

To demonstrate the effect of delays on the implemen-
tation of the switching logic, we consider an over-
all delay, between the supervisor and the constituent
control configurations, of τmax = 8.0 min (accounting
for delays in fault-detection, transmission and actuator
activation). In this case, the reactor is initialized at
(T (0),CA(0),CB(0)) = (300 K,4.0 mol/L,0 mol/L)
under the first control configuration (with Q as the
manipulated input). The actual failure of this config-
uration occurs at t = 10 hr, which, as can be seen from
Fig.5, is a time when the state trajectory is within the
intersection of all stability regions. In the absence of
delays, this suggests that switching to either config-
uration 2 or 3 should preserve closed-loop stability.
We observe however from Fig.6 that, when the de-
lay is present, activation of configuration 3 leads to
instability (dotted profile) while activation of config-
uration 2 achieves stabilization at the desired steady-
state (dashed profiles). The reason is the fact that, for
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Fig. 4. Evolution of closed-loop state profiles under
repeated control system failures and subsequent
switching from configuration 1 (solid lines) to 2
(dashed lines) to 3 (dotted lines).

Fig. 5. A phase plot showing the closed-loop state
trajectory leaving the intersection zone (I,II &
III) during the delay period (dashed-dotted lines)
rendering configuration 3 destabilizing (dotted
trajectory).

the time period between the actual failure (t = 10 hr)
and the activation of the backup configuration (t =
10.13 hr), the process evolves in an open-loop fashion
leading the trajectory to move out of the intersection
zone, such that at t = 10.13 hr, the state is within the
stability region of configuration 2 and outside that of
configuration 3. This is shown in Fig.5. To activate the
correct configuration in this case, the supervisor needs
to predict where the state trajectory will be at the end
of the communication delay period.
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